Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Mol Nutr Food Res ; 68(10): e2300796, 2024 May.
Article in German | MEDLINE | ID: mdl-38704747

ABSTRACT

Alpha-gal syndrome (AGS) is a mammalian meat allergy associated with tick bites and specific IgE to the oligosaccharide galactose-α-1,3-galactose (α-gal). Recent studies have shown that 10-20% of AGS patients also react to the dairy proteins. Considering the already described role of the meat lipid fraction in AGS manifestations, the aim of this work has been to investigate whether the milk fat globule proteins (MFGPs) could be involved in AGS. The MFGPs are extracted and their recognition by the IgE of AGS patients is proved through immunoblotting experiments. The identification of the immunoreactive proteins by LC-HRMS analysis allows to demonstrate for the first time that butyrophillin, lactadherin, and xanthine oxidase (XO) are α-gal glycosylated. The role of xanthine oxidase seems to be prevalent since it is highly recognized by both the anti-α-gal antibody and AGS patient sera. The results obtained in this study provide novel insights in the characterization of α-Gal carrying glycoproteins in bovine milk, supporting the possibility that milk, especially in its whole form, may give reactions in AGS patients. Although additional factors are probably associated with the clinical manifestations, the avoidance of milk and milk products should be considered in individuals with AGS showing symptoms related to milk consumption.


Subject(s)
Glycolipids , Glycoproteins , Lipid Droplets , Milk , Humans , Animals , Cattle , Milk/chemistry , Allergens/immunology , Butyrophilins/metabolism , Female , Milk Proteins/immunology , Immunoglobulin E/immunology , Food Hypersensitivity/immunology , Tick Bites , Adult , Male , Antigens, Surface/immunology , Middle Aged , alpha-Galactosidase , Disaccharides
2.
Front Nutr ; 9: 842375, 2022.
Article in English | MEDLINE | ID: mdl-35571904

ABSTRACT

Beta-casein makes up about 30% of the total protein contained in milk and can be present in cows' milk in two distinct forms (A1 or A2) or as a combination of the two. The only difference between these two variants of ß-casein (ß-CN) is a single amino acid substitution. This results in a different behavior of the protein upon enzymatic cleavage, following human consumption or due to microbial action. In most of the commercially available milk containing A1 or A1/A2 ß-CN variants, the ß-casomorphin-7 peptide (BCM-7) is released upon digestion and during cheese manufacturing/ripening, while this does not happen with A2 milk. BCM-7 is a known µ-opioid receptor agonist that may influence the gastro-intestinal physiology directly and may also exert effects elsewhere in the body, such as on the cardiovascular, neurological and endocrine systems. The present article is aimed at a revision of prior review papers on the topic, with a focus on the impact of ingestion of A1 ß-CN milk and A2 ß-CN milk on any health-related outcomes and on the impact of A1 or A2 ß-CN variant on technological properties of cows' milk. When systematic reviews were considered, it was possible to conclude that A2 ß-CN exerts beneficial effects at the gastrointestinal level compared with A1 ß-CN, but that there is no evidence of A1 ß-CN having negative effects on human health. Physicochemical differences among cows' milk containing either ß-CN A2 or ß-CN A1 and their effects on technological properties are discussed.

3.
Food Res Int ; 148: 110567, 2021 10.
Article in English | MEDLINE | ID: mdl-34507722

ABSTRACT

Edible insects are considered as a promising and sustainable alternative protein source for humans, although risk assessments, with particular reference to the allergic potential of insect proteins, are required. Considering that insects are likely to be consumed after processing, it is crucial to assess how processing can influence allergenicity. In our study, we investigated how boiling and frying affect the IgE cross-recognition of proteins from five edible insects (mealworm, buffalo worm, silkworm, cricket and grasshopper). We considered three groups of Italian patients allergic to shrimps and to house dust mites, who had never consumed insects before and two subjects with occupational allergy and food sensitization to mealworm. Our data suggest that thermal processing may change the solubility of proteins, thereby resulting in a protein shift from water-soluble fractions to water-insoluble fractions. Immunoblot and LC-MS/MS analyses have shown that tropomyosin may play an important role as a cross-allergen for house dust mite and shrimp allergic patients, while larval cuticle protein seems to play a major role in the cross-reactivity of patients primarily sensitized to mealworm. On the basis of our results, the effects of processing appear to be protein-, species- and treatment-specific. Therefore, house dust mite, shrimp and mealworm allergic patients should consume insects with caution, even after thermal processing.


Subject(s)
Hypersensitivity , Tenebrio , Allergens , Animals , Chromatography, Liquid , Humans , Immunoglobulin E , Insecta , Italy , Pyroglyphidae , Tandem Mass Spectrometry
4.
Molecules ; 26(16)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34443691

ABSTRACT

BACKGROUND: Milk is considered an important source of bioactive peptides, which can be produced by endogenous or starter bacteria, such as lactic acid bacteria, that are considered effective and safe producers of food-grade bioactive peptides. Among the various types of milk, donkey milk has been gaining more and more attention for its nutraceutical properties. METHODS: Lactobacillus rhamnosus 17D10 and Lactococcus lactis subsp. cremoris 40FEL3 were selected for their ability to produce peptides from donkey milk. The endogenous peptides and those obtained after bacterial fermentation were assayed for their antioxidant, antibacterial, and antiviral activities. The peptide mixtures were characterized by means of LC-MS/MS and then analyzed in silico using the Milk Bioactive Peptide DataBase. RESULTS: The peptides produced by the two selected bacteria enhanced the antioxidant activity and reduced E. coli growth. Only the peptides produced by L. rhamnosus 17D10 were able to reduce S. aureus growth. All the peptide mixtures were able to inhibit the replication of HSV-1 by more than 50%. Seventeen peptides were found to have 60% sequence similarity with already known bioactive peptides. CONCLUSIONS: A lactic acid bacterium fermentation process is able to enhance the value of donkey milk through bioactivities that are important for human health.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Fermentation , Lacticaseibacillus rhamnosus/physiology , Lactococcus/physiology , Milk/microbiology , Amino Acid Sequence , Animals , Antioxidants/pharmacology , Chelating Agents/pharmacology , Equidae , Milk Proteins/analysis , Peptides/chemistry , Peptides/pharmacology
5.
Pediatr Allergy Immunol ; 32(8): 1743-1755, 2021 11.
Article in English | MEDLINE | ID: mdl-34146442

ABSTRACT

BACKGROUND: Hazelnut allergy, which is characterized by symptoms that range from mild to severe, is one of the most common allergies in children throughout Europe, and an accurate diagnosis of this allergy is therefore essential. However, lipophilic allergens, such as oleosins, are generally underrepresented in diagnostic tests. We therefore sought to characterize the IgE reactivity of raw and roasted hazelnut oleosins, using the sera of hazelnut-allergic pediatric patients. METHODS: Raw and roasted hazelnut oil body-associated proteins were analyzed by means of 1D and 2D electrophoresis and MS. Oleosin IgE reactivity was assessed by immunoblotting with the sera of 27 children who have confirmed hazelnut allergies and from 10 tolerant subjects. A molecular characterization of the oleosins was performed by interrogating the C. avellana cv. Jefferson and cv. TGL genomes, and through expression and purification of the recombinant new allergen. RESULTS: A proteomic and genomic investigation allowed two new oleosins to be identified, in addition to Cor a 12 and Cor a 13, in hazelnut oil bodies. One of the new oleosins was registered as a new allergen, according to the WHO/IUIS Allergen Nomenclature Subcommittee criteria, and termed Cor a 15. Cor a 15 was the most frequently immunorecognized oleosin in our cohort. Oleosins resulted to be the only immunorecognized allergens in a subgroup of allergic patients who showed low ImmunoCAP assay IgE values and positive OFC and PbP. Hazelnut roasting resulted in an increase in oleosin immunoreactivity. CONCLUSION: A novel hazelnut oleosin, named Cor a 15, has been discovered. Cor a 15 could play a role in eliciting an allergic reaction in a subgroup of pediatric patients that exclusively immunorecognize oleosins. The high prevalence of hazelnut oleosin sensitization here reported further confirms the need to include oleosins in routine diagnostic procedures.


Subject(s)
Corylus , Nut Hypersensitivity , Allergens , Child , Humans , Immunoglobulin E , Italy , Nut Hypersensitivity/diagnosis , Plant Proteins , Proteomics
6.
Food Chem ; 345: 128822, 2021 May 30.
Article in English | MEDLINE | ID: mdl-33352406

ABSTRACT

The presence of residues from fining agents in wines may represent a risk for allergic consumers and a source of discomfort for others, such as vegans. Even though ELISA is the official detection method for such residues, this technique may be hindered by cross-reactivity issues, or by matrix-molecule interference due to a high polyphenol content, especially in red wines. An HRMS-based method has been developed to detect pig gelatin and egg white in experimental five-year aged Nebbiolo-based red wine. Biomarker peptides were selected, after tryptic digestion, and quantified by multitarget nanoHPLC-HRMS analysis. The method resulted in an LLOQs of 5 µg/mL in the experimental wine, and between 1 and 2 µg/mL in the buffer. This method allowed both gelatin and egg white proteins to be detected and quantified in aged red wine, while whereas the commercial ELISA kit was instead unable to detect egg white in the same samples.


Subject(s)
Chromatography, High Pressure Liquid/methods , Egg White/analysis , Food Analysis/methods , Gelatin/analysis , Mass Spectrometry/methods , Nanotechnology/methods , Wine/analysis , Animals , Swine
7.
Food Chem ; 342: 128174, 2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33077287

ABSTRACT

Roasting is known to affect the protein profile and allergenicity of hazelnuts (Corylus avellana cv TGL). The aim of the study was to investigate whether roasting techniques based on different heat transfer methods (hot air and infrared), differently affect the protein solubility and the IgE-binding capacities of both the soluble and insoluble hazelnut protein fractions. The immune-reactivity of the Cor a 9, Cor a 11 and Cor a 14 allergens resulted to be stable after roasting at 140 °C, for both types of treatment, while roasting at 170 °C caused a reduction in IgE-binding, which was particularly noticeable after infrared processing, that led to an almost complete disappearance of allergenicity. Microscopical analyses showed that roasting caused cytoplasmic network disruption, with a loss of lipid compartmentalization, as well as an alteration of the structure of the protein bodies and of the cell wall organization.


Subject(s)
Allergens/immunology , Cooking/methods , Corylus/metabolism , Infrared Rays , Plant Proteins/immunology , Allergens/chemistry , Child , Chromatography, High Pressure Liquid , Food Hypersensitivity/blood , Food Hypersensitivity/pathology , Hot Temperature , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Plant Proteins/chemistry , Protein Stability , Tandem Mass Spectrometry
8.
Microorganisms ; 8(7)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708203

ABSTRACT

Breast milk is a complex biofluid that nourishes infants, supports their growth and protects them from diseases. However, at the same time, breastfeeding is a transmission route for human cytomegalovirus (HCMV), with preterm infants being at a great risk of congenital disease. The discrepancy between high HCMV transmission rates and the few reported cases of infants with severe clinical illness is likely due to the protective effect of breast milk. The aim of this study was to investigate the anti-HCMV activity of human preterm colostrum and clarify the role of colostrum-derived extracellular vesicles (EVs). Preterm colostrum samples were collected and the EVs were purified and characterized. The in vitro anti-HCMV activity of both colostrum and EVs was tested against HCMV, and the viral replication step inhibited by colostrum-purified EVs was examined. We investigated the putative role EV surface proteins play in impairing HCMV infection using shaving experiments and proteomic analysis. The obtained results confirmed the antiviral action of colostrum against HCMV and demonstrated a remarkable antiviral activity of colostrum-derived EVs. Furthermore, we demonstrated that EVs impair the attachment of HCMV to cells, with EV surface proteins playing a role in mediating this action. These findings contribute to clarifying the mechanisms that underlie the protective role of human colostrum against HCMV infection.

9.
Microorganisms ; 9(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383704

ABSTRACT

Lactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains. The antimicrobial potential of 14 food-derived lactic acid bacteria strains has been investigated in this study. Among them, four strains were able to counteract Listeria monocytogenes growth: Lactococcus lactis SN12 and L. lactis SN17 by high lactic acid production, whereas L. lactis 41FLL3 and Lactobacillus sakei I151 by Nisin Z and Sakacin P production, respectively. Strains Lactococcus lactis MG1363, Lactobacillus rhamnosus 17D10 and Lactobacillus helveticus 4D5 were tested and selected for their potential attitude to hydrolyze caseins. All the strains were able to release bioactive peptides with already known antimicrobial, antihypertensive and opioid activities. These features render these strains or their bioactive molecules suitable for use in food as biocontrol agents, or as nutraceutical supplements to treat mild disorders such as moderate hypertension and children insomnia. These results highlight once again that LAB potential in ensuring food safety, food nutraceutical value and ultimately in favoring human health is still underexplored and underexploited.

11.
PeerJ ; 7: e6723, 2019.
Article in English | MEDLINE | ID: mdl-31223520

ABSTRACT

BACKGROUND: Silkworm pupae is the main by-product of the sericulture industry with an interesting nutritional profile, especially in terms of proteins. In consideration of its possible use as a food or food ingredient in Western countries, a comparative proteomic experiment has been performed to investigate the differences of the protein profile of male and female silkworm pupae reared on mulberry leaves or on an artificial diet. METHODS: The nutritional profile of lyophilized silkworm pupae in terms of dry matter and ash was evaluated according to the AOAC procedures, the total nitrogen content was determined by a nitrogen analyzer and the silkworm pupae gross energy value was measured using an adiabatic calorimetric bomb. The comparative proteomic analysis was performed on male and female silkworm pupae reared on mulberry leaves or on the artificial diet. Proteins were separated by two-dimensional electrophoresis and, after a multivariate statistical analysis, the differentially expressed proteins were identified by LC-MS/MS. RESULTS: The comparative proteomic approach highlighted 47 silkworm pupae proteins differentially expressed comparing diet and gender. PCA analysis showed that seven proteins were more effective in discriminating the sex and five were more effective in discriminating the diet type. In spite of the above-mentioned differences in the silkworm pupae protein profile, no strong alteration of the pupa physiological traits have been demonstrated, suggesting a general silkworm pupae flexibility to adapt to a well-balanced artificial diet. Differences in lipid transport and metabolism were found among the experimental groups, that might have a relevant effect on the timing and on hormone secretion. This aspect may also affect silk production, as univoltine strains are the most productive. The proteomic data provided in this work, may offer a contribution in understanding also the influence of gender and farming strategy on the allergen profile of Bombyx mori, when used as food or as a food ingredient. Female silkworm pupae reared on mulberry leaves seemed to contain lower levels of known allergens than those reared in the other experimental conditions; these findings will have to be taken into account when farming B. mori for food production purposes. However, our results need to be supported by further characterization of the allergenic potential of B. mori.

12.
Front Microbiol ; 9: 2275, 2018.
Article in English | MEDLINE | ID: mdl-30319582

ABSTRACT

The viability and competitiveness of Staphylococcus xylosus in meat mostly depend on the ability to adapt itself to rapid oxygen and nutrients depletion during meat fermentation. The utilization of nitrite instead of oxygen becomes a successful strategy for this strain to improve its performance in anaerobiosis; however, metabolic pathways of this strain underlying this adaptation, are partially known. The aim of this study was to provide an overview on proteomic changes of S. xylosus DSM 20266T cultured under anaerobiosis and nitrite exposure. Thus, two different cultures of this strain, supplemented or not with nitrite, were in vitro incubated in aerobiosis and anaerobiosis monitoring cell viability, pH, oxidation reduction potential and nitrite content. Protein extracts, obtained from cells, collected as nitrite content was depleted, were analyzed by 2DE/MALDI-TOF/TOF-MS. Results showed that DSM 20266T growth was significantly sustained by nitrite in anaerobiosis, whereas no differences were found in aerobiosis. Accordingly, nitrite content was depleted after 13 h only in anaerobiosis. At this time of sampling, a comparative proteomic analysis showed 45 differentially expressed proteins. Most differences were found between aerobic and anaerobic cultures without nitrite; the induction of glycolytic enzymes and glyoxylate cycle, the reduction of TCA enzymes, and acetate fermentation were found in anaerobiosis to produce ATP and maintain the cell redox balance. In anaerobic cultures the nitrite supplementation partially restored TCA cycle, and reduced the amount of glycolytic enzymes. These results were confirmed by phenotypic microarray that, for the first time, was carried out on cell previously adapted at the different growth conditions. Overall, metabolic changes were similar between aerobiosis and anaerobiosis NO2-adapted cells, whilst cells grown under anaerobiosis showed different assimilation profiles by confirming proteomic data; indeed, these latter extensively assimilated substrates addressed at both supplying glucose for glycolysis or fueling alternative pathways to TCA cycle. In conclusion, metabolic pathways underlying the ability of S. xylosus to adapt itself to oxygen starvation were revealed; the addition of nitrite allowed S. xylosus to take advantage of nitrite to this condition, restoring some metabolic pathway underlying aerobic behavior of the strain.

13.
Appl Microbiol Biotechnol ; 102(15): 6393-6407, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29869070

ABSTRACT

Microbial deterioration accounts for a significant percentage of the degradation processes that occur on archeological/historical objects and artworks, and identifying the causative agents of such a phenomenon should therefore be a priority, in consideration of the need to conserve these important cultural heritage items. Diverse microbiological approaches, such as microscopic evaluations, cultural methods, metabolic- and DNA-based techniques, as well as a combination of the aforementioned methods, have been employed to characterize the bacterial, archaeal, and fungal communities that colonize art objects. The purpose of the present review article is to report the interactions occurring between the microorganisms and nutrients that are present in stones, bones, wood, paper, films, paintings, and modern art specimens (namely, collagen, cellulose, gelatin, albumin, lipids, and hydrocarbons). Some examples, which underline that a good knowledge of these interactions is essential to obtain an in depth understanding of the factors that favor colonization, are reported. These data can be exploited both to prevent damage and to obtain information on historical aspects that can be decrypted through the study of microbial population successions.


Subject(s)
Art , Biodegradation, Environmental , Environmental Microbiology , Microbial Consortia/physiology , Archaea/isolation & purification , Archaea/physiology , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Construction Materials/microbiology , Fungi/isolation & purification , Fungi/physiology , Microbial Consortia/genetics , Microbiological Techniques
14.
Appl Microbiol Biotechnol ; 102(16): 6815-6825, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29882164

ABSTRACT

Ancient documents and milestones of human history such as manuscripts and textiles are fragile and during aging undergo chemical, physical, and biological deterioration. Among the different causes of damage, also human intervention plays a role since some restoration strategies proved to be transient and/or they generated further damage. Outdoor monuments undergo deterioration since they are exposed to pollution, weathering, microbial attack (giving rise to undesired pigmentation, discoloration or true dissolution, corrosion, and overall decay), as well as man-made damage (i.e., graffiti). This review article reports the best-fitting strategies used to restore wall paintings, outdoor monuments, textiles, and paper documents to their ancient beauty by employing "soft" biobased approaches such as viable bacteria or suitable enzymes.


Subject(s)
Bacteria/enzymology , Textiles/microbiology , Bacteria/metabolism , Corrosion , Environmental Pollution , Paintings
15.
Appl Microbiol Biotechnol ; 102(13): 5445-5455, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29737392

ABSTRACT

The present review article reports the most innovative methods to detect proteins in historical and archeological samples as well as to characterize proteins used as binders in artworks. Difficulties to ascribe proteins to a certain animal species are often due to post-translational modifications originated by chemical or microbial deterioration during aging. Combining different techniques such as peptide mass fingerprinting and tandem mass spectrometry can solve some of these problems and also allow discrimination between taxonomically related species like sheep and goat. The most studied proteins in bones and textile samples are osteocalcin, collagen and keratin, whereas egg yolk and white proteins, casein and collagen are the most relevant for binders used in old paintings. With the suitable approaches (immune-based methods, DOT-blot, etc…) it is also possible to obtain in situ characterization or analyze the samples directly in the museum laboratories, with the advantage of avoiding artwork damage and expensive external commitments. Recent cutting-edge strategies allowed detection of proteinaceous infection markers that, for instance, were used to establish the cause of death of old Inca mummies and also proved the presence of Yersinia pestis in old documents dating from the period in 17th century in which the plague ravaged Europe.


Subject(s)
Archaeology/trends , Paintings , Proteins/analysis , Textiles , Animals , Bone and Bones/chemistry , Caseins , Paper , Proteins/chemistry , Textiles/analysis
16.
Food Res Int ; 105: 1011-1018, 2018 03.
Article in English | MEDLINE | ID: mdl-29433191

ABSTRACT

A strain of Saccharomyces (S) cerevisiae (ISE19), which displayed an initial good adaptation to a high sugar medium with increased acetate and glycerol production but weak overall growth/fermentation performances, was selected during the alcoholic fermentation of Cortese grape must. To obtain insights into the metabolic changes that occur in the must during growth in particular conditions (high ethanol, high residual sugars and low nitrogen availability) leading to a sluggish fermentation or even fermentation arrest, comparative in-gel proteomic analyses were performed on cells grown in media containing 200g/L and 260g/L of glucose, respectively, while the YAN (Yeast Assimilable Nitrogen) concentration was maintained as it was. Two post-translationally different arginine synthases (pIs 5.6 and 5.8) were found in higher abundances in the high glucose-grown cells, together with an increased abundance of a glycosyltransferase involved in cell-wall mannans synthesis, and of two regulatory proteins (K7_Bmh1p and K7_Bmh2p) that control membrane transport. In parallel, a proteinase K-like proteolytic enzyme and three other protein fragments (Indolepyruvate decarboxylase 1, Fba1p and Eno1p) were present in lower abundances in the high glucose condition, where oxidative stress and cell cycle involved enzymes were also found to be less abundant. The overall results suggest that in stationary phase stress conditions, leading to stuck fermentation, S. cerevisiae ISE19 decreases cell replication, oxidative stress responses and proteolytic activity, while induces other metabolic modifications that are mainly based on cell-wall renewal, regulation of the solute transport across the cell membrane and de novo arginine synthesis.


Subject(s)
Arginine/metabolism , Energy Metabolism , Fermentation , Food Microbiology/methods , Fruit/microbiology , Glucose/metabolism , Oxidative Stress , Proteomics/methods , Saccharomyces cerevisiae/metabolism , Vitis/microbiology , Wine/microbiology , Proteolysis , Saccharomyces cerevisiae/growth & development , Time Factors
17.
J Sci Food Agric ; 98(6): 2370-2377, 2018 Apr.
Article in English | MEDLINE | ID: mdl-28994453

ABSTRACT

BACKGROUND: The sale of raw drinking milk through automatic dispensers is permitted in some EU member states, but consumers are usually advised to boil the milk before consumption. The present study has been conducted to evaluate the effects of two common domestic boiling techniques on the proteins of raw milk and, in particular, on their potential allergenicity. RESULTS: Native one-dimensional electrophoresis, N-terminal amino acid sequencing and immunoblotting have been used to characterize the protein pattern and to evaluate the possible changes in the allergenic properties of the processed milk. The main result of this investigation is that heating induces the aggregation of ß-lactoglobulin in higher-molecular-weight products, while caseins seem to be more resistant to the treatments. ß-Lactoglobulin aggregates have been found to be non-immunoreactive with the sera of subjects suffering from cow's milk protein allergy. CONCLUSION: Domestic boiling modifies the milk protein profile, causing a minor reduction in milk allergenicity. © 2017 Society of Chemical Industry.


Subject(s)
Cooking/methods , Milk/chemistry , Animals , Animals, Domestic , Cattle , Female , Hot Temperature , Immunoblotting , Milk/immunology , Milk Proteins/chemistry , Milk Proteins/immunology
18.
Int Arch Allergy Immunol ; 174(3-4): 133-143, 2017.
Article in English | MEDLINE | ID: mdl-29169170

ABSTRACT

BACKGROUND: Shrimp sensitization is common in the general population, but the presence of symptoms is only moderately related to sensitization. A point still at issue is which in vivo and/or in vitro tests (food challenge, component-resolved diagnosis, house dust mite [HDM] sensitization) can help in distinguishing shrimp-allergic subjects from subjects that are sensitized but tolerant. METHODS: The aim of this study was to evaluate the role of IgE to the different shrimp and mite allergens in distinguishing shrimp challenge-positive from challenge-negative patients. Subjects with suspected hypersensitivity reactions to shrimp, positive skin prick tests (SPTs), and/or anti-shrimp IgE were submitted to open and double-blind placebo-controlled food challenges (DBPCFC). Specific IgE to shrimp, mites, and the recombinants rPen a 1, rDer p 1, 2, and 10 were tested using ImmunoCAP-FEIA. IgE immunoblotting was performed to identify the patients' allergenic profiles. RESULTS: In total, 13 out of 51 (25.5%) patients with reported reactions to shrimp were truly shrimp allergic (7 DBPCFC positive and 6 with documented severe reactions). These patients had significantly higher skin test wheal diameters than nonallergic patients, as well as higher levels of IgE to rPen a 1 and rDer p 10. HDM-induced asthma and the simultaneous presence of anti-nDer p 1, 2, and 10 IgE levels increased the risk of true shrimp allergy. CONCLUSION: Food challenge tests are mandatory for the diagnosis of shrimp allergy. Tropomyosin is associated with clinical reactivity. HDM-induced asthma and anti-mite IgE are risk factors for shrimp allergy.


Subject(s)
Asthma/diagnosis , Food Hypersensitivity/diagnosis , Tropomyosin/immunology , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Arginine Kinase/immunology , Arthropod Proteins/immunology , Cricetinae , Humans , Immune Tolerance , Immunization , Immunoglobulin E/blood , Penaeidae , Pyroglyphidae , Risk Factors , Skin Tests
19.
J Food Sci Technol ; 54(7): 1910-1916, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28720947

ABSTRACT

The global interest in saving food resources is leading to recycle wasted-food materials to extract useful nutrients. In dairy industry, the recycling of whey proteins determines their utilization in the healthy-addressed foods, which, however, can cause immunological responses in allergic subjects. In this work, a whey protein concentrate (WPC) was alternatively hydrolyzed with pepsin, papain, trypsin and rennin in order to attenuate or abolish the ß-lactoglobulin (BLG) antigenicity. The electrophoretic profiles of both pepsin and papain WPC hydrolysates proved the disappearance of the BLG band, even though a slight antigenicity was still found by ELISA. Pepsin hydrolysates, filtered through a 10-kDa cut-off membrane, did not produce immunological response. A deeper investigation carried out on pepsin digested and ultrafiltered samples by LC-MS/MS showed the disappearance of the immunoreactive BLG-fragment IVTQMKGLDIQKVAGTW. The remaining peptides, partially overlapped to major IgE binding epitopes, were not able to give immunoreactivity response. The combined WPC pepsin digestion with ultrafiltration confirmed to be a user-friendly strategy to reduce markedly the WPC antigenicity. The improvement of this two-steps process could be used to produce novel hypoallergenic infant food formulas.

20.
Food Chem ; 199: 119-27, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26775952

ABSTRACT

A simple validated LC-MS/MS-based method was set up to detect milk contamination in bakery products, taking the effects of food processing into account for the evaluation of allergen recovery and quantification. Incurred cookies were prepared at eight levels of milk contamination and were cooked to expose all milk components, including allergenic proteins, to food processing conditions. Remarkable results were obtained in term of sufficiently low LOD and LOQ (1.3 and 4 mg/kg cookies, respectively). Precision was calculated as intra-day repeatability (RSD in the 5-20% range) and inter-day repeatability (4 days; RSD never exceeded 12%). The extraction recovery values ranged from 20% to 26%. Method applicability was evaluated by analysing commercial cookies labelled either as "milk-free" or "may contain milk". Although the ELISA methodology is considered the gold standard for detecting allergens in foods, this robust LC-MS/MS approach should be a useful confirmatory method for assessing and certifying "milk-free" food products.


Subject(s)
Food Analysis/methods , Food Handling , Milk/chemistry , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Animals , Chromatography, Liquid/methods , Enzyme-Linked Immunosorbent Assay/methods , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...