Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Adv Redox Res ; 102024 Apr.
Article in English | MEDLINE | ID: mdl-38562524

ABSTRACT

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.

2.
Basic Clin Pharmacol Toxicol ; 134(4): 460-471, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38284460

ABSTRACT

Fentanyl exposure and overdose are growing concerns in public health and occupational safety. This study aimed to establish parameters of fentanyl lethality in SKH1 mice for future overdose research. Lethality was determined using the up-down procedure, with subjects monitored post-administration using pulse oximetry (5 min) and then whole-body plethysmography (40 min). Following the determination of subcutaneous dose-response, [18F]Fluorodeoxyglucose positron emission tomography (18 F-FDG PET) was performed after LD10 fentanyl at 40 min, 6 h, 24 h or 7 days post-dose. LD10 and LD50 were observed to be 110 and 135 mg/kg, respectively, and consistent with four-parameter logistic fit values of 111.2 and 134.6 mg/kg (r2  = 0.9996). Overdose (LD10 or greater) yielded three distinct cardiovascular groups: survival, non-survival with blood oxygen saturation (SpO2) minimum ≥37% and non-survival with SpO2 <37%. Breaths per minute, minute volume and inspiratory quotient were significantly different between surviving and non-surviving animals for up to 40 min post-injection. 18 F-FDG PET revealed decreased glucose uptake in the heart, lungs and brain for up to 24 h. These findings provide critical insights into fentanyl lethality in SKH1 mice, including non-invasive respiratory effects and organ-specific impacts that are invaluable for future translational studies investigating the temporal effects of fentanyl overdose.


Subject(s)
Drug Overdose , Fluorodeoxyglucose F18 , Humans , Animals , Mice , Fluorodeoxyglucose F18/therapeutic use , Prognosis , Fentanyl/toxicity , Positron-Emission Tomography , Drug Overdose/drug therapy , Analgesics, Opioid/therapeutic use
3.
Env Sci Adv ; 2(5): 740-748, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37181648

ABSTRACT

Nano-titanium dioxide (nano-TiO2) is a widely used nanomaterial found in several industrial and consumer products, including surface coatings, paints, sunscreens and cosmetics, among others. Studies have linked gestational exposure to nano-TiO2 with negative maternal and fetal health outcomes. For example, maternal pulmonary exposure to nano-TiO2 during gestation has been associated not only with maternal, but also fetal microvascular dysfunction in a rat model. One mediator of this altered vascular reactivity and inflammation is oxylipid signaling. Oxylipids are formed from dietary lipids through several enzyme-controlled pathways as well as through oxidation by reactive oxygen species. Oxylipids have been linked to control of vascular tone, inflammation, pain and other physiological and disease processes. In this study, we use a sensitive UPLC-MS/MS based analysis to probe the global oxylipid response in liver, lung, and placenta of pregnant rats exposed to nano-TiO2 aerosols. Each organ presented distinct patterns in oxylipid signaling, as assessed by principal component and hierarchical clustering heatmap analysis. In general, pro-inflammatory mediators, such as 5-hydroxyeicosatetraenoic acid (1.6 fold change) were elevated in the liver, while in the lung, anti-inflammatory and pro-resolving mediators such as 17-hydroxy docosahexaenoic acid (1.4 fold change) were elevated. In the placenta the levels of oxylipid mediators were generally decreased, both inflammatory (e.g. PGE2, 0.52 fold change) and anti-inflammatory (e.g. Leukotriene B4, 0.49 fold change). This study, the first to quantitate the levels of these oxylipids simultaneously after nano-TiO2 exposure, shows the complex interplay of pro- and anti-inflammatory mediators from multiple lipid classes and highlights the limitations of monitoring the levels of oxylipid mediators in isolation.

4.
Front Toxicol ; 5: 1096173, 2023.
Article in English | MEDLINE | ID: mdl-36950144

ABSTRACT

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulations, thus functioning as an interface that profoundly impacts fetal growth and development. The placenta has long been considered an asexual organ, but, due to its embryonic origin it shares the same sex as the fetus. Exposures to toxicant such as diesel exhaust, have been shown to result in sexually dimorphic outcomes like decreased placental mass in exposed females. Therefore, we hypothesize that maternal nano-TiO2 inhalation exposure during gestation alters placental hemodynamics in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.69 mg/m3) or filtered air (sham-control). Dams were euthanized on GD20, and fetal tissue was collected based on fetal sex: whole placentas, placental junctional zone (JZ), and placental labyrinth zone (LZ). Fetal mass, placental mass, and placental zone percent areas were assessed for sex-based differences. Exposed fetal females were significantly smaller compared to their exposed male counterparts (2.65 ± 0.03 g vs 2.78 ± 0.04 g). Nano-TiO2 exposed fetal females had a significantly decreased percent junctional zone area compared to the sham-control females (24.37 ± 1.30% vs 30.39 ± 1.54%). The percent labyrinth zone area was significantly increased for nano-TiO2 females compared to sham-control females (75.63 ± 1.30% vs 69.61 ± 1.54%). Placental flow and hemodynamics were assessed with a variety of vasoactive substances. It was found that nano-TiO2 exposed fetal females only had a significant decrease in outflow pressure in the presence of the thromboxane (TXA2) mimetic, U46619, compared to sham-control fetal females (3.97 ± 1.30 mm Hg vs 9.10 ± 1.07 mm Hg) and nano-TiO2 fetal males (9.96 ± 0.66 mm Hg). Maternal nano-TiO2 inhalation exposure has a greater effect on fetal female mass, placental zone mass and area, and adversely impacts placental vasoreactivity. This may influence the female growth and development later in life, future studies need to further study the impact of maternal nano-TiO2 inhalation exposure on zone specific mechanisms.

5.
BMC Res Notes ; 15(1): 275, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953874

ABSTRACT

OBJECTIVE: Chronic multisymptom illness (CMI) is an idiopathic disease affecting thousands of U.S. Veterans exposed to open-air burn pits emitting aerosolized particulate matter (PM) while serving in Central and Southwest Asia and Africa. Exposure to burn pit PM can result in profound biologic consequences including chronic fatigue, impaired cognition, and respiratory diseases. Dysregulated or unresolved inflammation is a possible underlying mechanism for CMI onset. We describe a rat model of whole-body inhalation exposure using carbon black nanoparticles (CB) as a surrogate for military burn pit-related exposure. Using this model, we measured biomarkers of inflammation in multiple tissues. RESULTS: Male Sprague Dawley rats were exposed to CB aerosols by whole body inhalation (6 ± 0.83 mg/m3). Proinflammatory biomarkers were measured in multiple tissues including arteries, brain, lung, and plasma. Biomarkers of cardiovascular injury were also assayed in plasma. CB inhalation exposure increased CMI-related proinflammatory biomarkers such as IFN-γ and TNFα in multiple tissue samples. CB exposure also induced cardiovascular injury markers (adiponectin, MCP1, sE-Selectin, sICam-1 and TIMP1) in plasma. These findings support the validity of our animal exposure model for studies of burn pit-induced CMI. Future studies will model more complex toxicant mixtures as documented at multiple burn pit sites.


Subject(s)
Incineration , Soot , Animals , Biomarkers , Carbon , Chronic Disease , Inflammation , Inhalation Exposure/adverse effects , Lung , Male , Rats , Rats, Sprague-Dawley , Soot/toxicity
6.
Toxicol Sci ; 188(2): 219-233, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35642938

ABSTRACT

Pregnancy requires rapid adaptations in the uterine microcirculation to support fetal development. Nanomaterial inhalation is associated with cardiovascular dysfunction, which may impair gestation. We have shown that maternal nano-titanium dioxide (nano-TiO2) inhalation impairs microvascular endothelial function in response to arachidonic acid and thromboxane (TXA2) mimetics. However, the mechanisms underpinning this process are unknown. Therefore, we hypothesize that maternal nano-TiO2 inhalation during gestation results in uterine microvascular prostacyclin (PGI2) and TXA2 dysfunction. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.67 mg/m3) or filtered air (sham-control). Dams were euthanized on gestational day 20, and serum, uterine radial arterioles, implantation sites, and lungs were collected. Serum was assessed for PGI2 and TXA2 metabolites. TXB2, the stable TXA2 metabolite, was significantly decreased in nano-TiO2 exposed dams (597.3 ± 84.4 vs 667.6 ± 45.6 pg/ml), whereas no difference was observed for 6-keto-PGF1α, the stable PGI2 metabolite. Radial arteriole pressure myography revealed that nano-TiO2 exposure caused increased vasoconstriction to the TXA2 mimetic, U46619, compared with sham-controls (-41.3% ± 4.3% vs -16.8% ± 3.4%). Nano-TiO2 exposure diminished endothelium-dependent vasodilation to carbaprostacyclin, a PGI2 receptor agonist, compared with sham-controls (30.0% ± 9.0% vs 53.7% ± 6.0%). Maternal nano-TiO2 inhalation during gestation decreased nano-TiO2 female pup weight when compared with sham-control males (3.633 ± 0.064 vs 3.995 ± 0.124 g). Augmented TXA2 vasoconstriction and decreased PGI2 vasodilation may lead to decreased placental blood flow and compromise maternofetal exchange of waste and nutrients, which could ultimately impact fetal health outcomes.


Subject(s)
Nanostructures , Prostaglandin-Endoperoxide Synthases , Animals , Female , Fetus , Male , Placenta , Pregnancy , Rats , Rats, Sprague-Dawley
7.
Part Fibre Toxicol ; 19(1): 18, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35260159

ABSTRACT

BACKGROUND: Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS: Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION: In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.


Subject(s)
Inhalation Exposure , NF-kappa B , Female , Humans , Hydrogen Peroxide , Inhalation Exposure/adverse effects , Male , Oxidation-Reduction , Pregnancy , Titanium
8.
Cardiovasc Toxicol ; 22(2): 167-180, 2022 02.
Article in English | MEDLINE | ID: mdl-35066857

ABSTRACT

Maternal inhalation exposure to engineered nanomaterials (ENM) has been associated with microvascular dysfunction and adverse cardiovascular responses. Pregnancy requires coordinated vascular adaptation and growth that are imperative for survival. Key events in pregnancy hallmark distinct periods of gestation such as implantation, spiral artery remodeling, placentation, and trophoblast invasion. Angiotensin II (Ang II) is a critical vasoactive mediator responsible for adaptations and is implicated in the pathology of preeclampsia. If perturbations occur during gestation, such as those caused by ENM inhalation exposure, then maternal-fetal health consequences may occur. Our study aimed to identify the period of gestation in which maternal microvascular functional and fetal health are most vulnerable. Additionally, we wanted to determine if Ang II sensitivity and receptor density is altered due to exposure. Dams were exposed to ENM aerosols (nano-titanium dioxide) during three gestational windows: early (EE, gestational day (GD) 2-6), mid (ME, GD 8-12) or late (LE, GD 15-19). Within the EE group dry pup mass decreased by 16.3% and uterine radial artery wall to lumen ratio (WLR) increased by 25.9%. Uterine radial artery response to Ang II sensitivity increased by 40.5% in the EE group. Ang II receptor density was altered in the EE and LE group with decreased levels of AT2R. We conclude that early gestational maternal inhalation exposures resulted in altered vascular anatomy and physiology. Exposure during this time-period results in altered vascular reactivity and changes to uterine radial artery WLR, leading to decreased perfusion to the fetus and resulting in lower pup mass.


Subject(s)
Angiotensin II/pharmacology , Metal Nanoparticles/toxicity , Microcirculation , Placental Circulation , Titanium/toxicity , Uterine Artery/drug effects , Vasoconstriction/drug effects , Aerosols , Animals , Estradiol/blood , Female , Gestational Age , Inhalation Exposure , Maternal Exposure , Metal Nanoparticles/administration & dosage , Pregnancy , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/agonists , Receptor, Angiotensin, Type 1/metabolism , Titanium/administration & dosage , Uterine Artery/physiopathology
9.
Part Fibre Toxicol ; 18(1): 44, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34911549

ABSTRACT

BACKGROUND: Air pollution is a complex mixture of particles and gases, yet current regulations are based on single toxicant levels failing to consider potential interactive outcomes of co-exposures. We examined transcriptomic changes after inhalation co-exposure to a particulate and a gaseous component of air pollution and hypothesized that co-exposure would induce significantly greater impairments to mitochondrial bioenergetics. A whole-body inhalation exposure to ultrafine carbon black (CB), and ozone (O3) was performed, and the impact of single and multiple exposures was studied at relevant deposition levels. C57BL/6 mice were exposed to CB (10 mg/m3) and/or O3 (2 ppm) for 3 h (either a single exposure or four independent exposures). RNA was isolated from lungs and mRNA sequencing performed using the Illumina HiSeq. Lung pathology was evaluated by histology and immunohistochemistry. Electron transport chain (ETC) activities, electron flow, hydrogen peroxide production, and ATP content were assessed. RESULTS: Compared to individual exposure groups, co-exposure induced significantly greater neutrophils and protein levels in broncho-alveolar lavage fluid as well as a significant increase in mRNA expression of oxidative stress and inflammation related genes. Similarly, a significant increase in hydrogen peroxide production was observed after co-exposure. After single and four exposures, co-exposure revealed a greater number of differentially expressed genes (2251 and 4072, respectively). Of these genes, 1188 (single exposure) and 2061 (four exposures) were uniquely differentially expressed, with 35 mitochondrial ETC mRNA transcripts significantly impacted after four exposures. Both O3 and co-exposure treatment significantly reduced ETC maximal activity for complexes I (- 39.3% and - 36.2%, respectively) and IV (- 55.1% and - 57.1%, respectively). Only co-exposure reduced ATP Synthase activity (- 35.7%) and total ATP content (30%). Further, the ability for ATP Synthase to function is limited by reduced electron flow (- 25%) and translation of subunits, such as ATP5F1, following co-exposure. CONCLUSIONS: CB and O3 co-exposure cause unique transcriptomic changes in the lungs that are characterized by functional deficits to mitochondrial bioenergetics. Alterations to ATP Synthase function and mitochondrial electron flow underly a pathological adaptation to lung injury induced by co-exposure.


Subject(s)
Air Pollutants , Ozone , Air Pollutants/toxicity , Animals , Inhalation Exposure/adverse effects , Lung , Mice , Mice, Inbred C57BL , Mitochondria , Ozone/toxicity , Soot/toxicity , Transcriptome
10.
Redox Biol ; 46: 102092, 2021 10.
Article in English | MEDLINE | ID: mdl-34418598

ABSTRACT

Environmental inhalation exposures are inherently mixed (gases and particles), yet regulations are still based on single toxicant exposures. While the impacts of individual components of environmental pollution have received substantial attention, the impact of inhalation co-exposures is poorly understood. Here, we mechanistically investigated pulmonary inflammation and lung function decline after inhalation co-exposure and individual exposures to ozone (O3) and ultrafine carbon black (CB). Environmentally/occupationally relevant lung deposition levels in mice were achieved after inhalation of stable aerosols with similar aerodynamic and mass median distributions. X-ray photoemission spectroscopy detected increased surface oxygen contents on particles in co-exposure aerosols. Compared with individual exposures, co-exposure aerosols produced greater acellular and cellular oxidants detected by electron paramagnetic resonance (EPR) spectroscopy, and in vivo immune-spin trapping (IST), as well as synergistically increased lavage neutrophils, lavage proteins and inflammation related gene/protein expression. Co-exposure induced a significantly greater respiratory function decline compared to individual exposure. A synthetic catalase-superoxide dismutase mimetic (EUK-134) significantly blunted lung inflammation and respiratory function decline confirming the role of oxidant imbalance. We identified a significant induction of epithelial alarmin (thymic stromal lymphopoietin-TSLP)-dependent interleukin-13 pathway after co-exposure, associated with increased mucin and interferon gene expression. We provided evidence of interactive outcomes after air pollution constituent co-exposure and identified a key mechanistic pathway that can potentially explain epidemiological observation of lung function decline after an acute peak of air pollution. Developing and studying the co-exposure scenario in a standardized and controlled fashion will enable a better mechanistic understanding of how environmental exposures result in adverse outcomes.


Subject(s)
Air Pollutants , Ozone , Pneumonia , Air Pollutants/toxicity , Alarmins/pharmacology , Animals , Carbon/pharmacology , Inhalation Exposure , Lung , Mice , Oxidants/pharmacology , Ozone/toxicity , Particle Size , Pneumonia/chemically induced
11.
Nanotoxicology ; 15(6): 812-831, 2021 08.
Article in English | MEDLINE | ID: mdl-33969789

ABSTRACT

Maternal engineered nanomaterial (ENM) exposure during gestation has been associated with negative long-term effects on cardiovascular health in progeny. Here, we evaluate an epitranscriptomic mechanism that contributes to these chronic ramifications and whether overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (mPHGPx) can preserve cardiovascular function and bioenergetics in offspring following gestational nano-titanium dioxide (TiO2) inhalation exposure. Wild-type (WT) and mPHGPx (Tg) dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.01 ± 0.50 mg/m3 starting from gestational day (GD) 5 for 360 mins/day for 6 nonconsecutive days over 8 days. Echocardiography was performed in pregnant dams, adult (11-week old) and fetal (GD 14) progeny. Mitochondrial function and global N6-methyladenosine (m6A) content were assessed in adult progeny. MPHGPx enzymatic function was further evaluated in adult progeny and m6A-RNA immunoprecipitation (RIP) was combined with RT-qPCR to evaluate m6A content in the 3'-UTR. Following gestational ENM exposure, global longitudinal strain (GLS) was 32% lower in WT adult offspring of WT dams, with preservation in WT offspring of Tg dams. MPHGPx activity was significantly reduced in WT offspring (29%) of WT ENM-exposed dams, but preserved in the progeny of Tg dams. M6A-RIP-qPCR for the SEC insertion sequence region of mPHGPx revealed hypermethylation in WT offspring from ENM-exposed WT dams, which was thwarted in the presence of the maternal transgene. Our findings implicate that m6A hypermethylation of mPHGPx may be culpable for diminished antioxidant capacity and resultant mitochondrial and cardiac deficits that persist into adulthood following gestational ENM inhalation exposure.


Subject(s)
Nanostructures , Prenatal Exposure Delayed Effects , Adult , Antioxidants , Female , Fetus , Heart , Humans , Maternal Exposure , Pregnancy
12.
medRxiv ; 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33619500

ABSTRACT

Universal mask wearing is recommended by the Centers for Disease Control and Prevention to help control the spread of COVID-19. Masks reduce the expulsion of respiratory aerosols (called source control) and offer some protection to the wearer. However, masks vary greatly in their designs and construction materials, and it is not clear which are most effective. Our study tested 15 reusable cloth masks (which included face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators as source control devices for aerosols ≤ 7 µm produced during simulated coughing and exhalation. These measurements were compared with the mask filtration efficiencies, airflow resistances, and fit factors. The source control collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. The filtration efficiencies of the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on an elastomeric manikin headform and 1.0 to 4.0 on human test subjects. The correlation coefficients between the source control efficacies and the other performance metrics ranged from 0.31 to 0.66 and were significant in all but one case. However, none of the alternative metrics were strong predictors of the source control performance of cloth masks. Our results suggest that a better understanding of the relationships between source control performance and metrics like filtration efficiency, airflow resistance, and fit factor are needed to develop simple methods to estimate the effectiveness of masks as source control devices for respiratory aerosols.

13.
Aerosol Sci Technol ; 55(10): 1125-1142, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-35923216

ABSTRACT

Universal mask wearing is recommended to help control the spread of COVID-19. Masks reduce the expulsion of aerosols of respiratory fluids into the environment (called source control) and offer some protection to the wearer. Masks are often characterized using filtration efficiency, airflow resistance, and manikin or human fit factors, which are standard metrics used for personal protective devices. However, none of these metrics are direct measurements of how effectively a mask blocks coughed and exhaled aerosols. We studied the source control performance of 15 cloth masks (face masks, neck gaiters, and bandanas), two medical masks, and two N95 filtering facepiece respirators by measuring their ability to block aerosols ≤ 7 µm expelled during simulated coughing and exhalation (called source control collection efficiency). These measurements were compared with filtration efficiencies, airflow resistances, and fit factors measured on manikin headforms and humans. Collection efficiencies for the cloth masks ranged from 17% to 71% for coughing and 35% to 66% for exhalation. Filtration efficiencies for the cloth masks ranged from 1.4% to 98%, while the fit factors were 1.3 to 7.4 on headforms and 1.0 to 4.0 on human subjects. The Spearman's rank correlation coefficients between the source control collection efficiencies and the standard metrics ranged from 0.03 to 0.68 and were significant in all but two cases. However, none of the standard metrics were strongly correlated with source control performance. A better understanding of the relationships between source control collection efficiency, filtration efficiency, airflow resistance, and fit factor is needed.

14.
J Vis Exp ; (155)2020 01 12.
Article in English | MEDLINE | ID: mdl-31984951

ABSTRACT

Vinyl chloride (VC), an abundant environmental contaminant, causes steatohepatitis at high levels, but is considered safe at lower levels. Although several studies have investigated the role of VC as a direct hepatotoxicant, the concept that VC modifies sensitivity of the liver to other factors, such as nonalcoholic fatty liver disease (NAFLD) caused by high-fat diet (HFD) is novel. This protocol describes an exposure paradigm to evaluate the effects of chronic, low-level exposure to VC. Mice are acclimated to low-fat or high-fat diet one week prior to the beginning of the inhalation exposure and remain on these diets throughout the experiment. Mice are exposed to VC (sub-OSHA level: <1 ppm) or room air in inhalation chambers for 6 hours/day, 5 days/week, for up to 12 weeks. Animals are monitored weekly for body weight gain and food consumption. This model of VC exposure causes no overt liver injury with VC inhalation alone. However, the combination of VC and HFD significantly enhances liver disease. A technical advantage of this co-exposure model is the whole-body exposure, without restraint. Moreover, the conditions more closely resemble a very common human situation of a combined exposure to VC with underlying nonalcoholic fatty liver disease and therefore support the novel hypothesis that VC is an environmental risk factor for the development of liver damage as a complication of obesity (i.e., NAFLD). This work challenges the paradigm that the current exposure limits of VC (occupational and environmental) are safe. The use of this model can shed new light and concern on the risks of VC exposure. This model of toxicant-induced liver injury can be used for other volatile organic compounds and to study other interactions that may impact the liver and other organ systems.


Subject(s)
Diet, High-Fat/adverse effects , Environmental Exposure , Models, Biological , Obesity/etiology , Vinyl Chloride/toxicity , Administration, Inhalation , Animals , Humans , Liver/drug effects , Liver/injuries , Liver/pathology , Liver Diseases/etiology , Mice, Inbred C57BL
15.
Am J Respir Cell Mol Biol ; 62(5): 563-576, 2020 05.
Article in English | MEDLINE | ID: mdl-31671270

ABSTRACT

Stachybotrys chartarum is a fungal contaminant within the built environment and a respiratory health concern in the United States. The objective of this study was to characterize the mechanisms influencing pulmonary immune responses to repeatedly inhaled S. chartarum. Groups of B6C3F1/N mice repeatedly inhaled viable trichothecene-producing S. chartarum conidia (strain A or strain B), heat-inactivated conidia, or high-efficiency particulate absolute-filtered air twice per week for 4 and 13 weeks. Strain A was found to produce higher amounts of respirable fragments than strain B. Lung tissue, serum, and BAL fluid were collected at 24 and 48 hours after final exposure and processed for histology, flow cytometry, and RNA and proteomic analyses. At 4 weeks after exposure, a T-helper cell type 2-mediated response was observed. After 13 weeks, a mixed T-cell response was observed after exposure to strain A compared with a T-helper cell type 2-mediated response after strain B exposure. After exposure, both strains induced pulmonary arterial remodeling at 13 weeks; however, strain A-exposed mice progressed more quickly than strain B-exposed mice. BAL fluid was composed primarily of eosinophils, neutrophils, and macrophages. Both the immune response and the observed pulmonary arterial remodeling were supported by specific cellular, molecular, and proteomic profiles. The immunopathological responses occurred earlier in mice exposed to high fragment-producing strain A. The rather striking induction of pulmonary remodeling by S. chartarum appears to be related to the presence of fungal fragments during exposure.


Subject(s)
Pulmonary Artery/microbiology , Pulmonary Artery/physiopathology , Stachybotrys/physiology , Vascular Remodeling , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid/cytology , Female , Gene Expression Profiling , Gene Expression Regulation , Lung Diseases, Fungal/genetics , Lung Diseases, Fungal/immunology , Lung Diseases, Fungal/microbiology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microbial Viability , Proteomics , Pulmonary Artery/pathology , Th1 Cells/immunology , Th17 Cells/immunology , Vascular Remodeling/genetics
16.
Part Fibre Toxicol ; 16(1): 24, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31215478

ABSTRACT

BACKGROUND: Nano-titanium dioxide (nano-TiO2) is amongst the most widely utilized engineered nanomaterials (ENMs). However, little is known regarding the consequences maternal ENM inhalation exposure has on growing progeny during gestation. ENM inhalation exposure has been reported to decrease mitochondrial bioenergetics and cardiac function, though the mechanisms responsible are poorly understood. Reactive oxygen species (ROS) are increased as a result of ENM inhalation exposure, but it is unclear whether they impact fetal reprogramming. The purpose of this study was to determine whether maternal ENM inhalation exposure influences progeny cardiac development and epigenomic remodeling. RESULTS: Pregnant FVB dams were exposed to nano-TiO2 aerosols with a mass concentration of 12.09 ± 0.26 mg/m3 starting at gestational day five (GD 5), for 6 h over 6 non-consecutive days. Aerosol size distribution measurements indicated an aerodynamic count median diameter (CMD) of 156 nm with a geometric standard deviation (GSD) of 1.70. Echocardiographic imaging was used to assess cardiac function in maternal, fetal (GD 15), and young adult (11 weeks) animals. Electron transport chain (ETC) complex activities, mitochondrial size, complexity, and respiration were evaluated, along with 5-methylcytosine, Dnmt1 protein expression, and Hif1α activity. Cardiac functional analyses revealed a 43% increase in left ventricular mass and 25% decrease in cardiac output (fetal), with an 18% decrease in fractional shortening (young adult). In fetal pups, hydrogen peroxide (H2O2) levels were significantly increased (~ 10 fold) with a subsequent decrease in expression of the antioxidant enzyme, phospholipid hydroperoxide glutathione peroxidase (GPx4). ETC complex activity IV was decreased by 68 and 46% in fetal and young adult cardiac mitochondria, respectively. DNA methylation was significantly increased in fetal pups following exposure, along with increased Hif1α activity and Dnmt1 protein expression. Mitochondrial ultrastructure, including increased size, was observed at both fetal and young adult stages following maternal exposure. CONCLUSIONS: Maternal inhalation exposure to nano-TiO2 results in adverse effects on cardiac function that are associated with increased H2O2 levels and dysregulation of the Hif1α/Dnmt1 regulatory axis in fetal offspring. Our findings suggest a distinct interplay between ROS and epigenetic remodeling that leads to sustained cardiac contractile dysfunction in growing and young adult offspring following maternal ENM inhalation exposure.


Subject(s)
Epigenesis, Genetic/drug effects , Heart Diseases/chemically induced , Maternal Exposure/adverse effects , Nanoparticles/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Reactive Oxygen Species/metabolism , Titanium/toxicity , Animals , Female , Fetal Heart/cytology , Fetal Heart/drug effects , Fetal Heart/metabolism , Heart Diseases/embryology , Heart Diseases/metabolism , Male , Mice , Mice, Inbred Strains , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Nanoparticles/administration & dosage , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Titanium/administration & dosage
17.
Toxicol Sci ; 169(2): 524-533, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30843041

ABSTRACT

Maternal engineered nanomaterial (ENM) inhalation is associated with uterine vascular impairments and endocrine disruption that may lead to altered gestational outcomes. We have shown that nano-titanium dioxide (nano-TiO2) inhalation impairs endothelium-dependent uterine arteriolar dilation in pregnant rats. However, the mechanism underlying this dysfunction is unknown. Due to its role as a potent vasoconstrictor and essential reproductive hormone, we examined how kisspeptin is involved in nano-TiO2-induced vascular dysfunction and placental efficiency. Pregnant Sprague Dawley rats were exposed (gestational day [GD] 10) to nano-TiO2 aerosols (cumulative dose = 525 ± 16 µg; n = 8) or sham exposed (n = 6) and sacrificed on GD 20. Plasma was collected to evaluate estrogen (E2), progesterone (P4), prolactin (PRL), corticosterone (CORT), and kisspeptin. Pup and placental weights were measured to calculate placental efficiency (grams fetus/gram placental). Additionally, pressure myography was used to determine uterine artery vascular reactivity. Contractile responses were assessed via cumulative additions of kisspeptin (1 × 10-9 to 1 × 10-4 M). Estrogen was decreased at GD 20 in exposed (11.08 ± 3 pg/ml) versus sham-control rats (66.97 ± 3 pg/ml), whereas there were no differences in P4, PRL, CORT, or kisspeptin. Placental weights were increased in exposed (0.99 ± 0.03 g) versus sham-control rats (0.70 ± 0.04 g), whereas pup weights (4.01 ± 0.47 g vs 4.15 ± 0.15 g) and placental efficiency (4.5 ± 0.2 vs 6.4 ± 0.5) were decreased in exposed rats. Maternal ENM inhalation exposure augmented uterine artery vasoconstrictor responses to kisspeptin (91.2%±2.0 vs 98.6%±0.10). These studies represent initial evidence that pulmonary maternal ENM exposure perturbs the normal gestational endocrine vascular axis via a kisspeptin-dependent mechanism, and decreased placental, which may adversely affect health outcomes.


Subject(s)
Fetus/drug effects , Kisspeptins/physiology , Maternal Exposure/adverse effects , Titanium/toxicity , Uterine Artery/drug effects , Animals , Female , Gonadal Steroid Hormones/blood , Inhalation Exposure , Kisspeptins/blood , Nanoparticles , Placenta/drug effects , Placenta/pathology , Pregnancy , Rats , Rats, Sprague-Dawley , Uterine Artery/physiology
18.
Nanotoxicology ; 13(5): 644-663, 2019 06.
Article in English | MEDLINE | ID: mdl-30704319

ABSTRACT

Nano-titanium dioxide (nano-TiO2), though one of the most utilized and produced engineered nanomaterials (ENMs), diminishes cardiovascular function through dysregulation of metabolism and mitochondrial bioenergetics following inhalation exposure. The molecular mechanisms governing this cardiac dysfunction remain largely unknown. The purpose of this study was to elucidate molecular mediators that connect nano-TiO2 exposure with impaired cardiac function. Specifically, we were interested in the role of microRNA (miRNA) expression in the resulting dysfunction. Not only are miRNA global regulators of gene expression, but also miRNA-based therapeutics provide a realistic treatment modality. Wild type and MiRNA-378a knockout mice were exposed to nano-TiO2 with an aerodynamic diameter of 182 ± 1.70 nm and a mass concentration of 11.09 mg/m3 for 4 h. Cardiac function, utilizing the Vevo 2100 Imaging System, electron transport chain complex activities, and mitochondrial respiration assessed cardiac and mitochondrial function. Immunoblotting and qPCR examined molecular targets of miRNA-378a. MiRNA-378a-3p expression was increased 48 h post inhalation exposure to nano-TiO2. Knockout of miRNA-378a preserved cardiac function following exposure as revealed by preserved E/A ratio and E/SR ratio. In knockout animals, complex I, III, and IV activities (∼2- to 6-fold) and fatty acid respiration (∼5-fold) were significantly increased. MiRNA-378a regulated proteins involved in mitochondrial fusion, transcription, and fatty acid metabolism. MiRNA-378a-3p acts as a negative regulator of mitochondrial metabolic and biogenesis pathways. MiRNA-378a knockout animals provide a protective effect against nano-TiO2 inhalation exposure by altering mitochondrial structure and function. This is the first study to manipulate a miRNA to attenuate the effects of ENM exposure.


Subject(s)
Cardiovascular Physiological Phenomena/drug effects , Heart/drug effects , Inhalation Exposure/adverse effects , MicroRNAs/genetics , Nanoparticles/toxicity , Titanium/toxicity , Animals , Cardiovascular Physiological Phenomena/genetics , Echocardiography , Gene Expression/drug effects , Heart/diagnostic imaging , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Nanoparticles/chemistry , Titanium/chemistry
19.
Toxicol Appl Pharmacol ; 367: 51-61, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30711534

ABSTRACT

The fetal consequences of gestational engineered nanomaterial (ENM) exposure are unclear. The placenta is a barrier protecting the fetus and allowing transfer of substances from the maternal circulation. The purpose of this study was to determine the effects of maternal pulmonary titanium dioxide nanoparticle (nano-TiO2) exposure on the placenta and umbilical vascular reactivity. We hypothesized that pulmonary nano-TiO2 inhalation exposure increases placental vascular resistance and impairs umbilical vascular responsiveness. Pregnant Sprague-Dawley rats were exposed via whole-body inhalation to nano-TiO2 with an aerodynamic diameter of 188 ±â€¯0.36 nm. On gestational day (GD) 11, rats began inhalation exposures (6 h/exposure). Daily lung deposition was 87.5 ±â€¯2.7 µg. Animals were exposed for 6 days for a cumulative lung burden of 525 ±â€¯16 µg. On GD 20, placentas, umbilical artery and vein were isolated, cannulated, and treated with acetylcholine (ACh), angiotensin II (ANGII), S-nitroso-N-acetyl-DL-penicillamine (SNAP), or calcium-free superfusate (Ca2+-free). Mean outflow pressure was measured in placental units. ACh increased outflow pressure to 53 ±â€¯5 mmHg in sham-controls but only to 35 ±â€¯4 mmHg in exposed subjects. ANGII decreased outflow pressure in placentas from exposed animals (17 ±â€¯7 mmHg) compared to sham-controls (31 ±â€¯6 mmHg). Ca2+-free superfusate yielded maximal outflow pressures in sham-control (63 ±â€¯5 mmHg) and exposed (30 ±â€¯10 mmHg) rats. Umbilical artery endothelium-dependent dilation was decreased in nano-TiO2 exposed fetuses (30 ±â€¯9%) compared to sham-controls (58 ±â€¯6%), but ANGII sensitivity was increased (-79 ±â€¯20% vs -36 ±â€¯10%). These results indicate that maternal gestational pulmonary nano-TiO2 exposure increases placental vascular resistance and impairs umbilical vascular reactivity.


Subject(s)
Hemodynamics/drug effects , Metal Nanoparticles/toxicity , Placenta/blood supply , Titanium/toxicity , Animals , Female , Inhalation Exposure , Maternal Exposure , Pregnancy , Rats, Sprague-Dawley
20.
Part Fibre Toxicol ; 15(1): 43, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413212

ABSTRACT

BACKGROUND: The cardiovascular effects of pulmonary exposure to engineered nanomaterials (ENM) are poorly understood, and the reproductive consequences are even less understood. Inflammation remains the most frequently explored mechanism of ENM toxicity. However, the key mediators and steps between lung exposure and uterine health remain to be fully defined. The purpose of this study was to determine the uterine inflammatory and vascular effects of pulmonary exposure to titanium dioxide nanoparticles (nano-TiO2). We hypothesized that pulmonary nano-TiO2 exposure initiates a Th2 inflammatory response mediated by Group II innate lymphoid cells (ILC2), which may be associated with an impairment in uterine microvascular reactivity. METHODS: Female, virgin, Sprague-Dawley rats (8-12 weeks) were exposed to 100 µg of nano-TiO2 via intratracheal instillation 24 h prior to microvascular assessments. Serial blood samples were obtained at 0, 1, 2 and 4 h post-exposure for multiplex cytokine analysis. ILC2 numbers in the lungs were determined. ILC2s were isolated and phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB) levels were measured. Pressure myography was used to assess vascular reactivity of isolated radial arterioles. RESULTS: Pulmonary nano-TiO2 exposure was associated with an increase in IL-1ß, 4, 5 and 13 and TNF- α 4 h post-exposure, indicative of an innate Th2 inflammatory response. ILC2 numbers were significantly increased in lungs from exposed animals (1.66 ± 0.19%) compared to controls (0.19 ± 0.22%). Phosphorylation of the transactivation domain (Ser-468) of NF-κB in isolated ILC2 and IL-33 in lung epithelial cells were significantly increased (126.8 ± 4.3% and 137 ± 11% of controls respectively) by nano-TiO2 exposure. Lastly, radial endothelium-dependent arteriolar reactivity was significantly impaired (27 ± 12%), while endothelium-independent dilation (7 ± 14%) and α-adrenergic sensitivity (8 ± 2%) were not altered compared to control levels. Treatment with an anti- IL-33 antibody (1 mg/kg) 30 min prior to nano-TiO2 exposure resulted in a significant improvement in endothelium-dependent dilation and a decreased level of IL-33 in both plasma and bronchoalveolar lavage fluid. CONCLUSIONS: These results provide evidence that the uterine microvascular dysfunction that follows pulmonary ENM exposure may be initiated via activation of lung-resident ILC2 and subsequent systemic Th2-dependent inflammation.


Subject(s)
Arterioles/drug effects , Immunity, Innate/drug effects , Lung/drug effects , Lymphocytes/drug effects , Nanoparticles/toxicity , Titanium/toxicity , Uterus/blood supply , Animals , Arterioles/immunology , Arterioles/physiopathology , Endothelium, Vascular/drug effects , Endothelium, Vascular/immunology , Female , Inhalation Exposure/adverse effects , Interleukin-33/blood , Lung/blood supply , Lung/immunology , Lymphocyte Count , Lymphocytes/immunology , Microcirculation/drug effects , Microcirculation/immunology , Rats, Sprague-Dawley , Vasodilation/drug effects , Vasodilation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...