Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Cell Rep ; 43(2): 113795, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38367238

ABSTRACT

Activation of endosomal Toll-like receptor (TLR) 7, TLR9, and TLR11/12 is a key event in the resistance against the parasite Toxoplasma gondii. Endosomal TLR engagement leads to expression of interleukin (IL)-12 via the myddosome, a protein complex containing MyD88 and IL-1 receptor-associated kinase (IRAK) 4 in addition to IRAK1 or IRAK2. In murine macrophages, IRAK2 is essential for IL-12 production via endosomal TLRs but, surprisingly, Irak2-/- mice are only slightly susceptible to T. gondii infection, similar to Irak1-/- mice. Here, we report that upon T. gondii infection IL-12 production by different cell populations requires either IRAK1 or IRAK2, with conventional dendritic cells (DCs) requiring IRAK1 and monocyte-derived DCs (MO-DCs) requiring IRAK2. In both populations, we identify interferon regulatory factor 5 as the main transcription factor driving the myddosome-dependent IL-12 production during T. gondii infection. Consistent with a redundant role of DCs and MO-DCs, mutations that affect IL-12 production in both cell populations show high susceptibility to infection in vivo.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Toxoplasmosis , Animals , Mice , Dendritic Cells , Interferon Regulatory Factors/genetics , Interleukin-12
2.
Cell Metab ; 36(3): 484-497.e6, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38325373

ABSTRACT

Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.


Subject(s)
Malaria , Plasmodium , Succinates , Humans , Monocytes , DNA, Mitochondrial/metabolism , B7-H1 Antigen/genetics , Plasmodium/genetics , Plasmodium/metabolism , Malaria/metabolism , Mitochondria/metabolism , Dendritic Cells
3.
Hepatology ; 78(1): 225-242, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36862512

ABSTRACT

BACKGROUND AIMS: Prolonged systemic inflammation contributes to poor clinical outcomes in severe alcohol-associated hepatitis (AH) even after the cessation of alcohol use. However, mechanisms leading to this persistent inflammation remain to be understood. APPROACH RESULTS: We show that while chronic alcohol induces nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in the liver, alcohol binge results not only in NLRP3 inflammasome activation but also in increased circulating extracellular apoptosis-associated speck-like protein containing a caspase recruitment domain (ex-ASC) specks and hepatic ASC aggregates both in patients with AH and in mouse models of AH. These ex-ASC specks persist in circulation even after the cessation of alcohol use. Administration of alcohol-induced-ex-ASC specks in vivo in alcohol-naive mice results in sustained inflammation in the liver and circulation and causes liver damage. Consistent with the key role of ex-ASC specks in mediating liver injury and inflammation, alcohol binge failed to induce liver damage or IL-1ß release in ASC-deficient mice. Our data show that alcohol induces ex-ASC specks in liver macrophages and hepatocytes, and these ex-ASC specks can trigger IL-1ß release in alcohol-naive monocytes, a process that can be prevented by the NLRP3 inhibitor, MCC950. In vivo administration of MCC950 reduced hepatic and ex-ASC specks, caspase-1 activation, IL-1ß production, and steatohepatitis in a murine model of AH. CONCLUSIONS: Our study demonstrates the central role of NLRP3 and ASC in alcohol-induced liver inflammation and unravels the critical role of ex-ASC specks in the propagation of systemic and liver inflammation in AH. Our data also identify NLRP3 as a potential therapeutic target in AH.


Subject(s)
Hepatitis, Alcoholic , Hepatitis , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hepatitis/etiology , Inflammation , Hepatitis, Alcoholic/etiology , Ethanol/adverse effects , Caspase 1/metabolism , Interleukin-1beta/metabolism , CARD Signaling Adaptor Proteins/metabolism
4.
Am J Trop Med Hyg ; 107(4_Suppl): 168-181, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228921

ABSTRACT

The 1990s saw the rapid reemergence of malaria in Amazonia, where it remains an important public health priority in South America. The Amazonian International Center of Excellence in Malaria Research (ICEMR) was designed to take a multidisciplinary approach toward identifying novel malaria control and elimination strategies. Based on geographically and epidemiologically distinct sites in the Northeastern Peruvian and Western Brazilian Amazon regions, synergistic projects integrate malaria epidemiology, vector biology, and immunology. The Amazonian ICEMR's overarching goal is to understand how human behavior and other sociodemographic features of human reservoirs of transmission-predominantly asymptomatically parasitemic people-interact with the major Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, and with human immune responses to maintain malaria resilience and continued endemicity in a hypoendemic setting. Here, we will review Amazonian ICEMR's achievements on the synergies among malaria epidemiology, Plasmodium-vector interactions, and immune response, and how those provide a roadmap for further research, and, most importantly, point toward how to achieve malaria control and elimination in the Americas.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/physiology , Biology , Brazil/epidemiology , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors/physiology , Peru/epidemiology
5.
Cell Rep ; 40(7): 111225, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35977521

ABSTRACT

Interleukin-1 receptor-associated kinases (IRAKs) -4, -2, and -1 are involved in transducing signals from Toll-like receptors (TLRs) via the adaptor myeloid differentiation primary-response protein 88 (MYD88). How MYD88/IRAK4/2/1 complexes are formed, their redundancies, and potential non-enzymatic roles are subjects of debate. Here, we examine the hierarchical requirements for IRAK proteins in the context of TLR4 activation and confirmed that the kinase activity of IRAK4 is essential for MYD88 signaling. Surprisingly, the IRAK4 scaffold is required for activation of the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) by both MYD88 and TIR domain-containing adaptor protein inducing IFN-ß (TRIF), a unique adaptation in the TLR4 response. IRAK4 scaffold is, therefore, essential in integrating MYD88 and TRIF in TLR4 signaling.


Subject(s)
Interleukin-1 Receptor-Associated Kinases , Myeloid Differentiation Factor 88 , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Humans , Interleukin-1 Receptor-Associated Kinases/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/physiology , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism
6.
J Clin Invest ; 132(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35642634

ABSTRACT

Plasmodium falciparum (P. falciparum) induces trained innate immune responses in vitro, where initial stimulation of adherent PBMCs with P. falciparum-infected RBCs (iRBCs) results in hyperresponsiveness to subsequent ligation of TLR2. This response correlates with the presence of T and B lymphocytes in adherent PBMCs, suggesting that innate immune training is partially due to adaptive immunity. We found that T cell-depleted PBMCs and purified monocytes alone did not elicit hyperproduction of IL-6 and TNF-α under training conditions. Analysis of P. falciparum-trained PBMCs showed that DCs did not develop under control conditions, and IL-6 and TNF-α were primarily produced by monocytes and DCs. Transwell experiments isolating purified monocytes from either PBMCs or purified CD4+ T cells, but allowing diffusion of secreted proteins, enabled monocytes trained with iRBCs to hyperproduce IL-6 and TNF-α after TLR restimulation. Purified monocytes stimulated with IFN-γ hyperproduced IL-6 and TNF-α, whereas blockade of IFN-γ in P. falciparum-trained PBMCs inhibited trained responses. Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) on monocytes from patients with malaria showed persistently open chromatin at genes that appeared to be trained in vitro. Together, these findings indicate that the trained immune response of monocytes to P. falciparum is not completely cell intrinsic but depends on soluble signals from lymphocytes.


Subject(s)
Lymphocytes , Malaria, Falciparum , Monocytes , Chromatin , Humans , Interleukin-6/genetics , Lymphocytes/immunology , Malaria, Falciparum/immunology , Monocytes/immunology , Plasmodium falciparum , Tumor Necrosis Factor-alpha/metabolism
7.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35429403

ABSTRACT

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Subject(s)
Respiratory Syncytial Virus Infections , Cytokines , Humans , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/deficiency , Respiratory Syncytial Virus, Human
9.
PLoS Negl Trop Dis ; 15(10): e0009077, 2021 10.
Article in English | MEDLINE | ID: mdl-34714821

ABSTRACT

Individuals with asymptomatic infection due to Plasmodium vivax are posited to be important reservoirs of malaria transmission in endemic regions. Here we studied a cohort of P. vivax malaria patients in a suburban area in the Brazilian Amazon. Overall 1,120 individuals were screened for P. vivax infection and 108 (9.6%) had parasitemia detected by qPCR but not by microscopy. Asymptomatic individuals had higher levels of antibodies against P. vivax and similar hematological and biochemical parameters compared to uninfected controls. Blood from asymptomatic individuals with very low parasitemia transmitted P. vivax to the main local vector, Nyssorhynchus darlingi. Lower mosquito infectivity rates were observed when blood from asymptomatic individuals was used in the membrane feeding assay. While blood from symptomatic patients infected 43.4% (199/458) of the mosquitoes, blood from asymptomatic infected 2.5% (43/1,719). However, several asymptomatic individuals maintained parasitemia for several weeks indicating their potential role as an infectious reservoir. These results suggest that asymptomatic individuals are an important source of malaria parasites and Science and Technology for Vaccines granted by Conselho Nacional de may contribute to the transmission of P. vivax in low-endemicity areas of malaria.


Subject(s)
Anopheles/parasitology , Malaria, Vivax/transmission , Plasmodium vivax/physiology , Animals , Anopheles/physiology , Asymptomatic Infections/epidemiology , Blood/parasitology , Brazil/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Humans , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Male , Middle Aged , Plasmodium vivax/genetics , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL