Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cancers (Basel) ; 15(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37296987

ABSTRACT

Cancer metastasis is a complex process. After their intravasation into the circulation, the cancer cells are exposed to a harsh environment of physical and biochemical hazards. Whether circulating tumor cells (CTCs) survive and escape from blood flow defines their ability to metastasize. CTCs sense their environment with surface-exposed receptors. The recognition of corresponding ligands, e.g., fibrinogen, by integrins can induce intracellular signaling processes driving CTCs' survival. Other receptors, such as tissue factor (TF), enable CTCs to induce coagulation. Cancer-associated thrombosis (CAT) is adversely connected to patients' outcome. However, cancer cells have also the ability to inhibit coagulation, e.g., through expressing thrombomodulin (TM) or heparan sulfate (HS), an activator of antithrombin (AT). To that extent, individual CTCs can interact with plasma proteins, and whether these interactions are connected to metastasis or clinical symptoms such as CAT is largely unknown. In the present review, we discuss the biological and clinical relevance of cancer-cell-expressed surface molecules and their interaction with plasma proteins. We aim to encourage future research to expand our knowledge of the CTC interactome, as this may not only yield new molecular markers improving liquid-biopsy-based diagnostics but also additional targets for better cancer therapies.

2.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982528

ABSTRACT

Heparan sulfate proteoglycans (HSPGs) possess various functions driving malignancy of tumors. However, their impact on tumor cell sensitivity to cytotoxic treatment is far less understood. Aiming to investigate this, we depleted HSPGs by downregulating Exostosin 1 (EXT1), a key enzyme in HS formation, or upregulating heparanase in human MV3 human melanoma cells, and investigated their response to cytotoxic drugs. Cytotoxicity of trametinib, doxorubicin, and mitoxantrone was detected by MTT assay. Insights into intracellular signaling was provided by kinome protein profiler array, and selected kinases were inhibited to investigate their impact on cell sensitization and migratory dynamics. EXT1 knockdown (EXT1kd) in MV3 cells affected the activity of doxorubicin and mitoxantrone, significantly increasing EC50 values two- or fourfold, respectively. Resistance formation was scarcely related to HSPG deficiency, suggested by enzymatic cleavage of HSPG in control cells. Notably, EXT1kd induced an upregulation of EGFR signaling via JNK and MEK/ERK, and hence blocking these kinases returned resistance to a sensitive level. JNK appeared as a key signal component, also inducing higher migratory activity of EXT1kd cells. Furthermore, EXT1kd upregulated thrombotic properties of MV3 cells, indicated by tissue factor and PAR-1 expression, functionally reflected by a stronger activation of platelet aggregation. EXT1 was confirmed to act as a tumor suppressor, shown here for the first time to affect chemosensitivity of melanoma cells.


Subject(s)
Antineoplastic Agents , Melanoma , Humans , Doxorubicin , Drug Resistance, Neoplasm/genetics , Heparan Sulfate Proteoglycans/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mitogen-Activated Protein Kinase Kinases , Mitoxantrone
3.
Hum Mol Genet ; 32(2): 304-318, 2023 01 06.
Article in English | MEDLINE | ID: mdl-35981076

ABSTRACT

Heterozygous germline missense variants in the HRAS gene underlie Costello syndrome (CS). The molecular basis for cutaneous manifestations in CS is largely unknown. We used an immortalized human cell line, HaCaT keratinocytes, stably expressing wild-type or CS-associated (p.Gly12Ser) HRAS and defined RIN1 as quantitatively most prominent, high-affinity effector of active HRAS in these cells. As an exchange factor for RAB5 GTPases, RIN1 is involved in endosomal sorting of cell-adhesion integrins. RIN1-dependent RAB5A activation was strongly increased by HRASGly12Ser, and HRAS-RIN1-ABL1/2 signaling was induced in HRASWT- and HRASGly12Ser-expressing cells. Along with that, HRASGly12Ser expression decreased total integrin levels and enriched ß1 integrin in RAB5- and EEA1-positive early endosomes. The intracellular level of active ß1 integrin was increased in HRASGly12Ser HaCaT keratinocytes due to impaired recycling, whereas RIN1 disruption raised ß1 integrin cell surface distribution. HRASGly12Ser induced co-localization of ß1 integrin with SNX17 and RAB7 in early/sorting and late endosomes, respectively. Thus, by retaining ß1 integrin in intracellular endosomal compartments, HRAS-RIN1 signaling affects the subcellular availability of ß1 integrin. This may interfere with integrin-dependent processes as we detected for HRASGly12Ser cells spreading on fibronectin. We conclude that dysregulation of receptor trafficking and integrin-dependent processes such as cell adhesion are relevant in the pathobiology of CS.


Subject(s)
Costello Syndrome , Skin Diseases , Humans , Integrins/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Keratinocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Proto-Oncogene Proteins p21(ras)/genetics
4.
Cells ; 11(20)2022 10 18.
Article in English | MEDLINE | ID: mdl-36291142

ABSTRACT

Breast cancer (BC) is the second-most common cause of brain metastases (BM) and BCBM patients have a reduced quality of life and a poor prognosis. Hyaluronan (HA), and in particular the hyaluronidase Hyal-1, has been already linked to the development of BCBM, and therefore presents an interesting opportunity to develop new effective therapeutic options. HA metabolism was further discovered by the CRISPR/Cas9-mediated knockout of HYAL1 and the shRNA-mediated down-regulation of HA-receptor CD44 in the brain-seeking triple-negative breast cancer (TNBC) cell line MDA-MB-231-BR. Therefore, the impact of Hyal-1 on adhesion, disruption, and invasion through the brain endothelium, both in vitro and in vivo, was studied. Our analysis points out a key role of Hyal-1 and low-molecular-weight HA (LMW-HA) in the formation of a pericellular HA-coat in BC cells, which in turn promotes tumor cell adhesion, disruption, and migration through the brain endothelium in vitro as well as the extent of BM in vivo. CD44 knockdown in MDA-MB-231-BR significantly reduced the pericellular HA-coat on these cells, and, consequently, tumor cell adhesion and invasion through the brain endothelium. Thus, the interaction between Hyal-1-generated LMW-HA fragments and the HA-receptor CD44 might represent a potential target for future therapeutic options in BC patients with a high risk of cerebral metastases formation.


Subject(s)
Brain Neoplasms , Hyaluronic Acid , Hyaluronoglucosaminidase , Triple Negative Breast Neoplasms , Humans , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Cell Line, Tumor , Hyaluronic Acid/metabolism , Hyaluronoglucosaminidase/genetics , Hyaluronoglucosaminidase/metabolism , Quality of Life , RNA, Small Interfering , Triple Negative Breast Neoplasms/pathology
5.
Proc Natl Acad Sci U S A ; 119(33): e2122716119, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35960843

ABSTRACT

The microenvironment of malignant melanomas defines the properties of tumor blood vessels and regulates infiltration and vascular dissemination of immune and cancer cells, respectively. Previous research in other cancer entities suggested the complement system as an essential part of the tumor microenvironment. Here, we confirm activation of the complement system in samples of melanoma patients and murine melanomas. We identified the tumor endothelium as the starting point of the complement cascade. Generation of complement-derived C5a promoted the recruitment of neutrophils. Upon contact with the vascular endothelium, neutrophils were further activated by complement membrane attack complexes (MACs). MAC-activated neutrophils release neutrophil extracellular traps (NETs). Close to the blood vessel wall, NETs opened the endothelial barrier as indicated by an enhanced vascular leakage. This facilitated the entrance of melanoma cells into the circulation and their systemic spread. Depletion of neutrophils or lack of MAC formation in complement component 6 (C6)-deficient animals protected the vascular endothelium and prevented vascular intravasation of melanoma cells. Our data suggest that inhibition of MAC-mediated neutrophil activation is a potent strategy to abolish hematogenous dissemination in melanoma.


Subject(s)
Complement Membrane Attack Complex , Endothelium, Vascular , Extracellular Traps , Melanoma , Neutrophils , Tumor Microenvironment , Animals , Complement Membrane Attack Complex/immunology , Complement System Proteins , Endothelium, Vascular/physiopathology , Humans , Melanoma/blood supply , Melanoma/immunology , Melanoma/pathology , Mice , Neutrophils/immunology , Permeability
6.
Matrix Biol ; 111: 76-94, 2022 08.
Article in English | MEDLINE | ID: mdl-35690300

ABSTRACT

Heparan sulfate (HS), a highly negatively charged glycosaminoglycan, is ubiquitously present in all tissues and also exposed on the surface of mammalian cells. A plethora of molecules such as growth factors, cytokines or coagulation factors bear HS binding sites. Accordingly, HS controls the communication of cells with their environment and therefore numerous physiological and pathophysiological processes such as cell adhesion, migration, and cancer cell metastasis. In the present work, we found that HS exposed by blood circulating melanoma cells recruited considerable amounts of plasmatic von Willebrand factor (vWF) to the cellular surface. Analyses assisted by super-resolution microscopy indicated that HS and vWF formed a tight molecular complex. Enzymatic removal of HS or genetic engineering of the HS biosynthesis showed that a reduced length of the HS chains or complete lack of HS was associated with significantly reduced vWF encapsulation. In microfluidic experiments, mimicking a tumor-activated vascular system, we found that vWF-HS complexes prevented vascular adhesion. In line with this, single molecular force spectroscopy suggested that the vWF-HS complex promoted the repulsion of circulating cancer cells from the blood vessel wall to counteract metastasis. Experiments in wild type and vWF knockout mice confirmed that the HS-vWF complex at the melanoma cell surface attenuated hematogenous metastasis, whereas melanoma cells lacking HS evade the anti-metastatic recognition by vWF. Analysis of tissue samples obtained from melanoma patients validated that metastatic melanoma cells produce less HS. Transcriptome data further suggest that attenuated expression of HS-related genes correlate with metastases and reduced patients' survival. In conclusion, we showed that HS-mediated binding of plasmatic vWF to the cellular surface can reduce the hematogenous spread of melanoma. Cancer cells with low HS levels evade vWF recognition and are thus prone to form metastases. Therefore, therapeutic expansion of the cancer cell exposed HS may prevent tumor progression.


Subject(s)
Heparitin Sulfate , Melanoma , von Willebrand Factor , Animals , Cell Adhesion , Heparitin Sulfate/metabolism , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Knockout , Neoplasm Metastasis , Protein Binding , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
7.
Int J Mol Sci ; 23(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35163822

ABSTRACT

Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the blood-brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cell's ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases.


Subject(s)
Brain Neoplasms/secondary , Breast Neoplasms/pathology , Gene Expression Profiling/methods , Gene Regulatory Networks , Animals , Blood-Brain Barrier , Brain Neoplasms/genetics , Breast Neoplasms/genetics , Cell Communication , Cell Line, Tumor , Cell Movement , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Mice , Neoplasm Transplantation
8.
Cancer Treat Rev ; 102: 102322, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34922151

ABSTRACT

Advances in understanding the molecular mechanisms of tumor progression have achieved impressive progress in the treatment of cancer and so-called immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy. Indeed, antibody-based drugs blocking immune escape of tumor cells by modulation of T cell responses are increasingly utilized for a wide range of tumor entities. Nonetheless, response rates remain limited, and the development of secondary resistance is a common problem. In addition, by increasing the immune response a variety of severe side effects are provoked. Next to autoimmune responses, activation of the complement system and skin toxicity, an increased incidence for thrombotic complications has been observed associated with an increased mortality rate. Based on this, it can be postulated that the interplay of coagulation with inflammation in the tumor microenvironment is relevant for each step in the tumor life cycle. This review focuses on the coagulation as central player fostering mechanisms associated with tumor progression. Thus, a better understanding of the molecular pathways involved in the complex interaction of circulating tumor cells, the plasmatic coagulation and immune cells may help to improve therapeutic concepts reducing mortality and morbidity associated with cancer.


Subject(s)
Blood Coagulation/immunology , Heparin, Low-Molecular-Weight/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use , Inflammation/blood , Neoplasms/blood , Neoplasms/drug therapy , Anticoagulants/therapeutic use , Blood Coagulation/drug effects , Humans , Inflammation/immunology , Inflammation/pathology , Neoplasms/immunology , Thrombosis/blood , Thrombosis/drug therapy , Thrombosis/pathology , Tumor Escape/drug effects
9.
Front Immunol ; 13: 1078891, 2022.
Article in English | MEDLINE | ID: mdl-36591269

ABSTRACT

Introduction: The intravascular formation of neutrophil extracellular traps (NETs) is a trigger for coagulation and blood vessel occlusion. NETs are released from neutrophils as a response to strong inflammatory signals in the course of different diseases such as COVID-19, cancer or antiphospholipid syndrome. NETs are composed of large, chromosomal DNA fibers decorated with a variety of proteins such as histones. Previous research suggested a close mechanistic crosstalk between NETs and the coagulation system involving the coagulation factor XII (FXII), von Willebrand factor (VWF) and tissue factor. However, the direct impact of NET-related DNA fibers on blood flow and blood aggregation independent of the coagulation cascade has remained elusive. Methods: In the present study, we used different microfluidic setups in combination with fluorescence microscopy to investigate the influence of neutrophil-derived extracellular DNA fibers on blood rheology, intravascular occlusion and activation of the complement system. Results: We found that extended DNA fiber networks decelerate blood flow and promote intravascular occlusion of blood vessels independent of the plasmatic coagulation. Associated with the DNA dependent occlusion of the flow channel was the strong activation of the complement system characterized by the production of complement component 5a (C5a). Vice versa, we detected that the local activation of the complement system at the vascular wall was a trigger for NET release. Discussion: In conclusion, we found that DNA fibers as the principal component of NETs are sufficient to induce blood aggregation even in the absence of the coagulation system. Moreover, we discovered that complement activation at the endothelial surface promoted NET formation. Our data envisions DNA degradation and complement inhibition as potential therapeutic strategies in NET-induced coagulopathies.


Subject(s)
COVID-19 , Extracellular Traps , Humans , Extracellular Traps/metabolism , COVID-19/metabolism , Neutrophils/metabolism , DNA/metabolism , Complement Activation
10.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070905

ABSTRACT

BACKGROUND: The interleukin-1-receptor antagonist IL1RA (encoded by the IL1RN gene) is a potent competitive antagonist to interleukin-1 (IL1) and thereby is mainly involved in the regulation of inflammation. Previous data indicated a role of IL1RA in muscle-invasive urothelial carcinoma of the bladder (UCB) as well as an IL1-dependent decrease in tissue barrier function, potentially contributing to cancer cell invasion. OBJECTIVE: Based on these observations, here we investigated the potential roles of IL1RA, IL1A, and IL1B in bladder cancer cell invasion in vitro. METHODS: Cell culture, real-time impedance sensing, invasion assays (Boyden chamber, pig bladder model), qPCR, Western blot, ELISA, gene overexpression. RESULTS: We observed a loss of IL1RA expression in invasive, high-grade bladder cancer cell lines T24, UMUC-3, and HT1197 while IL1RA expression was readily detectable in the immortalized UROtsa cells, the non-invasive bladder cancer cell line RT4, and in benign patient urothelium. Thus, we modified the invasive human bladder cancer cell line T24 to ectopically express IL1RA, and measured changes in cell migration/invasion using the xCELLigence Real-Time-Cell-Analysis (RTCA) system and the Boyden chamber assay. The real-time observation data showed a significant decrease of cell migration and invasion in T24 cells overexpressing IL1RA (T24-IL1RA), compared to cells harboring an empty vector (T24-EV). Concurrently, tumor cytokines, e.g., IL1B, attenuated the vascular endothelial barrier, which resulted in a reduction of the Cell Index (CI), an impedance-based dimensionless unit. This reduction could be reverted by the simultaneous incubation with IL1RA. Moreover, we used an ex vivo porcine organ culture system to evaluate cell invasion capacity and showed that T24-IL1RA cells showed significantly less invasive capacity compared to parental T24 cells or T24-EV. CONCLUSIONS: Taken together, our results indicate an inverse correlation between IL1RA expression and tumor cell invasive capacity and migration, suggesting that IL1RA plays a role in bladder carcinogenesis, while the exact mechanisms by which IL1RA influences tumor cells migration/invasion remain to be clarified in future studies. Furthermore, we confirmed that real-time impedance sensing and the porcine ex vivo organ culture methods are powerful tools to discover differences in cancer cell migration and invasion.


Subject(s)
Cell Movement/genetics , Epithelial Cells/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1alpha/genetics , Interleukin-1beta/genetics , Urinary Bladder Neoplasms/genetics , Animals , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Proliferation , Epithelial Cells/pathology , Gene Expression Regulation, Neoplastic , Humans , Interleukin 1 Receptor Antagonist Protein/metabolism , Interleukin-1alpha/metabolism , Interleukin-1beta/metabolism , Neoplasm Invasiveness , Signal Transduction , Swine , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology
11.
Int J Mol Sci ; 22(8)2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33920100

ABSTRACT

Chitinase 3-like 1 (CHI3L1) is an enzymatically inactive mammalian chitinase that is associated with tumor inflammation. Previous research indicated that CHI3L1 is able to interact with different extracellular matrix components, such as heparan sulfate. In the present work, we investigated whether the interaction of CHI3L1 with the extracellular matrix of melanoma cells can trigger an inflammatory activation of endothelial cells. The analysis of the melanoma cell secretome indicated that CHI3L1 increases the abundance of various cytokines, such as CC-chemokine ligand 2 (CCL2), and growth factors, such as vascular endothelial growth factor A (VEGF-A). Using a solid-phase binding assay, we found that heparan sulfate-bound VEGF-A and CCL2 were displaced by recombinant CHI3L1 in a dose-dependent manner. Microfluidic experiments indicated that the CHI3L1 altered melanoma cell secretome promoted immune cell recruitment to the vascular endothelium. In line with the elevated VEGF-A levels, CHI3L1 was also able to promote angiogenesis through the release of extracellular matrix-bound pro-angiogenic factors. In conclusion, we showed that CHI3L1 is able to affect the tumor cell secretome, which in turn can regulate immune cell recruitment and blood vessel formation. Accordingly, our data suggest that the molecular targeting of CHI3L1 in the course of cancer immunotherapies can tune patients' response and antitumoral inflammation.


Subject(s)
Chemokine CCL2/genetics , Chitinase-3-Like Protein 1/genetics , Melanoma/genetics , Neovascularization, Pathologic/genetics , Vascular Endothelial Growth Factor A/genetics , Animals , Blood Vessels/growth & development , Blood Vessels/immunology , Blood Vessels/pathology , Cell Line, Tumor , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/growth & development , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Extracellular Matrix/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glycosaminoglycans/pharmacology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Melanoma/immunology , Melanoma/pathology , Microfluidic Analytical Techniques , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/pathology , Protein Binding/genetics , Protein Binding/immunology
12.
ACS Appl Mater Interfaces ; 13(6): 7080-7093, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33533245

ABSTRACT

Low-molecular-weight heparin (LMWH) is the guideline-based drug for antithrombotic treatment of cancer patients, while its direct antitumor effects are a matter of ongoing debate. Although therapeutically established for decades, LMWH has several drawbacks mainly associated with its origin from animal sources. Aiming to overcome these limitations, a library of synthetic heparin mimetic polymers consisting of homo- and copolymers of sulfonated and carboxylated noncarbohydrate monomers has recently been synthesized via reversible addition-fragmentation chain transfer polymerization. These heparin mimetics were investigated for their capacities to interfere with simulated steps of tumor cell metastasis. Among them, homo- and copolymers from sodium 4-styrenesulfonate (poly(SSS)) with acrylic acid (poly(SSS-co-AA)) with an MW between 5 and 50 kDa efficiently attenuated cancer cell-induced coagulation and thus platelet activation and degranulation similar to or even better than LMWH. Furthermore, independent of anticoagulant activities, these polymers affected other metastasis-relevant targets with impressive affinities. Hence, they blocked heparanase enzymatic activity outmatching commercial heparins or a glycosidic drug candidate. Furthermore, these polymers bind P-selectin and the integrin VLA-4 similar to or even better than heparin, indicated by a biosensor approach and thus efficiently blocked melanoma cell binding to endothelium under blood flow conditions. This is the first report on the prospects of synthetic heparin mimetics as promising nontoxic compounds in oncology to potentially substitute heparin as an anticoagulant and to better understand its role as an antimetastatic drug.


Subject(s)
Anticoagulants/pharmacology , Heparin, Low-Molecular-Weight/pharmacology , Melanoma/drug therapy , Anticoagulants/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Endothelial Cells/drug effects , Heparin, Low-Molecular-Weight/chemistry , Humans , Melanoma/pathology , Molecular Structure , Particle Size , Surface Properties
13.
Neurooncol Adv ; 3(1): vdab175, 2021.
Article in English | MEDLINE | ID: mdl-34993481

ABSTRACT

BACKGROUND: The prognosis of patients with brain metastases (BM) is poor despite advances in our understanding of the underlying pathophysiology. The high incidence of thrombotic complications defines tumor progression and the high mortality rate. We, therefore, postulated that von Willebrand factor (VWF) promotes BM via its ability to induce platelet aggregation and thrombosis. METHODS: We measured the abundance of VWF in the blood and intravascular platelet aggregates of patients with BM, and determined the specific contribution of endothelial and platelet-derived VWF using in vitro models and microfluidics. The relevance for the brain metastatic cascade in vivo was demonstrated in ret transgenic mice, which spontaneously develop BM, and by the intracardiac injection of melanoma cells. RESULTS: Higher levels of plasma VWF in patients with BM were associated with enhanced intraluminal VWF fiber formation and platelet aggregation in the metastatic tissue and peritumoral regions. Platelet activation triggered the formation of VWF multimers, promoting platelet aggregation and activation, in turn enhancing tumor invasiveness. The absence of VWF in platelets, or the blocking of platelet activation, abolished platelet aggregation, and reduced tumor cell transmigration. Anticoagulation and platelet inhibition consistently reduced the number of BM in preclinical animal models. CONCLUSIONS: Our data indicate that platelet-derived VWF is involved in cerebral clot formation and in metastatic growth of melanoma in the brain. Targeting platelet activation with low-molecular-weight heparins represents a promising therapeutic approach to prevent melanoma BM.

14.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764340

ABSTRACT

Chitosan-caseinate nanoparticles were synthesized by polyelectrolyte complex (PEC) formation. Caseinate is an anionic micellar nanocolloid in aqueous solutions, which association with the polycationic chitosan yielded polyelectrolyte complexes with caseinate cores surrounded by a chitosan corona. The pre-structuration of caseinate micelles facilitates the formation of natural polyelectrolyte nanoparticles with good stability and sizes around 200 nm. Such natural nanoparticles can be loaded with molecules for applications in drug-controlled release. In the nanoparticles processing, parameters such as the chitosan degree of acetylation (DA) and molecular weight, order of addition of the polyelectrolytes chitosan (polycation) and caseinate (polyanion), and added weight ratio of polycation:polyanion were varied, which were shown to influence the structure of the polyelectrolyte association, the nanoparticle size and zeta potential. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) analyses revealed the chemical structure of hydrogel colloidal systems consisting of nanoparticles that contain chitosan and caseinate. Transmission electron microscopy (TEM) allowed further characterization of the spherical morphology of the nanoparticles. Furtherly, insulin was chosen as a model drug to study the application of the nanoparticles as a safe biodegradable nanocarrier system for drug-controlled release. An insulin entrapment efficiency of 75% was achieved in the chitosan-caseinate nanoparticles.


Subject(s)
Chitosan/chemistry , Drug Liberation , Hydrogels/pharmacology , Nanoparticles/chemistry , Caseins/chemistry , Chitosan/pharmacology , Colloids/chemistry , Colloids/pharmacology , Humans , Hydrogels/chemistry , Hydrogen-Ion Concentration , Particle Size , Polyelectrolytes/chemistry
15.
Pharmaceutics ; 12(7)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698388

ABSTRACT

Although, drugs are required in the various skin compartments such as viable epidermis, dermis, or hair follicles, to efficiently treat skin diseases, drug delivery into and across the skin is still challenging. An improved understanding of skin barrier physiology is mandatory to optimize drug penetration and permeation. The various barriers of the skin have to be known in detail, which means methods are needed to measure their functionality and outside-in or inside-out passage of molecules through the various barriers. In this review, we summarize our current knowledge about mechanical barriers, i.e., stratum corneum and tight junctions, in interfollicular epidermis, hair follicles and glands. Furthermore, we discuss the barrier properties of the basement membrane and dermal blood vessels. Barrier alterations found in skin of patients with atopic dermatitis are described. Finally, we critically compare the up-to-date applicability of several physical, biochemical and microscopic methods such as transepidermal water loss, impedance spectroscopy, Raman spectroscopy, immunohistochemical stainings, optical coherence microscopy and multiphoton microscopy to distinctly address the different barriers and to measure permeation through these barriers in vitro and in vivo.

16.
Mol Cancer Res ; 18(7): 1099-1109, 2020 07.
Article in English | MEDLINE | ID: mdl-32234826

ABSTRACT

Cancer-related venous thromboembolisms (VTE) are associated with metastasis and reduced survival in patients with urothelial cancer of the bladder. Although previous reports suggest the contribution of tissue factor and podoplanin, the mechanistic linkage between VTE and bladder cancer cell-derived molecules is unknown. Therefore, we compared distinct procoagulant pathways in four different cell lines. In vitro findings were further confirmed by microfluidic experiments mimicking the pathophysiology of tumor blood vessels and in tissue samples of patients with bladder cancer by transcriptome analysis and immunohistology. In vitro and microfluidic experiments identified bladder cancer-derived VEGF-A as highly procoagulant because it promoted the release of von Willebrand factor (VWF) from endothelial cells and thus platelet aggregation. In tissue sections from patients with bladder cancer, we found that VWF-mediated blood vessel occlusions were associated with a poor outcome. Transcriptome data further indicate that elevated expression levels of enzymes modulating VEGF-A availability were significantly connected to a decreased survival in patients with bladder cancer. In comparison with previously postulated molecular players, we identified tumor cell-derived VEGF-A and endothelial VWF as procoagulant mediators in bladder cancer. Therapeutic strategies that prevent the VEGF-A-mediated release of VWF may reduce tumor-associated hypercoagulation and metastasis in patients with bladder cancer. IMPLICATIONS: We identified the VEGF-A-mediated release of VWF from endothelial cells to be associated with bladder cancer progression.


Subject(s)
Carcinoma, Transitional Cell/metabolism , Endothelial Cells/cytology , Urinary Bladder Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , von Willebrand Factor/metabolism , Carcinoma, Transitional Cell/genetics , Cell Line, Tumor , Disease Progression , Endothelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Human Umbilical Vein Endothelial Cells , Humans , Microfluidic Analytical Techniques , Neoplasm Metastasis , Proteomics , Urinary Bladder Neoplasms/genetics
17.
Proc Natl Acad Sci U S A ; 117(7): 3551-3559, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32015121

ABSTRACT

Cryptococcus neoformans is an opportunistic fungal pathogen that infects ∼280,000 people every year, causing >180,000 deaths. The human immune system recognizes chitin as one of the major cell-wall components of invading fungi, but C. neoformans can circumvent this immunosurveillance mechanism by instead exposing chitosan, the partly or fully deacetylated form of chitin. The natural production of chitosans involves the sequential action of chitin synthases (CHSs) and chitin deacetylases (CDAs). C. neoformans expresses four putative CDAs, three of which have been confirmed as functional enzymes that act on chitin in the cell wall. The fourth (CnCda4/Fpd1) is a secreted enzyme with exceptional specificity for d-glucosamine at its -1 subsite, thus preferring chitosan over chitin as a substrate. We used site-specific mutagenesis to reduce the subsite specificity of CnCda4 by converting an atypical isoleucine residue in a flexible loop region to the bulkier or charged residues tyrosine, histidine, and glutamic acid. We also investigated the effect of CnCda4 deacetylation products on human peripheral blood-derived macrophages, leading to a model explaining the function of CnCda4 during infection. We propose that CnCda4 is used for the further deacetylation of chitosans already exposed on the C. neoformans cell wall (originally produced by CnChs3 and CnCda1 to 3) or released from the cell wall as elicitors by human chitinases, thus making the fungus less susceptible to host immunosurveillance. The absence of CnCda4 during infection could therefore promote the faster recognition and elimination of this pathogen.


Subject(s)
Amidohydrolases/metabolism , Chitosan/metabolism , Cryptococcus neoformans/enzymology , Fungal Proteins/metabolism , Amidohydrolases/genetics , Cell Wall/enzymology , Cell Wall/genetics , Chitin/chemistry , Chitin/metabolism , Chitosan/chemistry , Cryptococcosis/microbiology , Cryptococcus neoformans/chemistry , Cryptococcus neoformans/genetics , Fungal Proteins/chemistry , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Humans , Substrate Specificity
18.
Sci Rep ; 10(1): 2024, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029783

ABSTRACT

The transmembrane protein claudin-1 is a major component of epidermal tight junctions (TJs), which create a dynamic paracellular barrier in the epidermis. Claudin-1 downregulation has been linked to atopic dermatitis (AD) pathogenesis but variable levels of claudin-1 have also been observed in healthy skin. To elucidate the impact of different levels of claudin-1 in healthy and diseased skin we determined claudin-1 levels in AD patients and controls and correlated them to TJ and skin barrier function. We observed a strikingly broad range of claudin-1 levels with stable TJ and overall skin barrier function in healthy and non-lesional skin. However, a significant decrease in TJ barrier function was detected in lesional AD skin where claudin-1 levels were further reduced. Investigations on reconstructed human epidermis expressing different levels of claudin-1 revealed that claudin-1 levels correlated with inside-out and outside-in barrier function, with a higher coherence for smaller molecular tracers. Claudin-1 decrease induced keratinocyte-autonomous IL-1ß expression and fostered inflammatory epidermal responses to non-pathogenic Staphylococci. In conclusion, claudin-1 decrease beyond a threshold level results in TJ and epidermal barrier function impairment and induces inflammation in human epidermis. Increasing claudin-1 levels might improve barrier function and decrease inflammation and therefore be a target for AD treatment.


Subject(s)
Claudin-1/metabolism , Dermatitis, Atopic/immunology , Epidermis/pathology , Tight Junctions/pathology , Adult , Biopsy , Case-Control Studies , Cells, Cultured , Claudin-1/analysis , Claudin-1/genetics , Dermatitis, Atopic/microbiology , Dermatitis, Atopic/pathology , Down-Regulation , Epidermis/immunology , Epidermis/microbiology , Female , Gene Knockdown Techniques , Healthy Volunteers , Humans , Interleukin-1beta/metabolism , Keratinocytes/immunology , Keratinocytes/metabolism , Male , Middle Aged , Primary Cell Culture , Staphylococcus/immunology , Staphylococcus/isolation & purification , Water Loss, Insensible/immunology , Young Adult
19.
Sci Rep ; 10(1): 22443, 2020 12 31.
Article in English | MEDLINE | ID: mdl-33384430

ABSTRACT

The glycocalyx regulates the interaction of mammalian cells with extracellular molecules, such as cytokines. However, it is unknown to which extend the glycocalyx of distinct cancer cells control the binding and uptake of nanoparticles. In the present study, exome sequencing data of cancer patients and analysis of distinct melanoma and bladder cancer cell lines suggested differences in cancer cell-exposed glycocalyx components such as heparan sulphate. Our data indicate that glycocalyx differences affected the binding of cationic chitosan nanocapsules (Chi-NCs). The pronounced glycocalyx of bladder cancer cells enhanced the internalisation of nanoencapsulated capsaicin. Consequently, capsaicin induced apoptosis in the cancer cells, but not in the less glycosylated benign urothelial cells. Moreover, we measured counterion condensation on highly negatively charged heparan sulphate chains. Counterion condensation triggered a cooperative binding of Chi-NCs, characterised by a weak binding rate at low Chi-NC doses and a strongly increased binding rate at high Chi-NC concentrations. Our results indicate that the glycocalyx of tumour cells controls the binding and biological activity of nanoparticles. This has to be considered for the design of tumour cell directed nanocarriers to improve the delivery of cytotoxic drugs. Differential nanoparticle binding may also be useful to discriminate tumour cells from healthy cells.


Subject(s)
Antipruritics/administration & dosage , Antipruritics/pharmacokinetics , Capsaicin/administration & dosage , Capsaicin/pharmacokinetics , Chitosan/chemistry , Glycocalyx/metabolism , Nanocapsules/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heparitin Sulfate/metabolism , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Organ Specificity , Protein Binding , Static Electricity , Theranostic Nanomedicine
20.
Sci Rep ; 9(1): 17246, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754198

ABSTRACT

One of the main challenges in endoprosthesis surgeries are implant-associated infections and aseptic-loosenings, caused by wear debris. To combat these problems, the requirements to surfaces of endoprostheses are wear-resistance, low cytotoxicity and antimicrobial efficacy. We here present antimicrobial coatings with a smart, adaptive release of metal ions in case of infection, based on ZnO-nanoparticles embedded in diamond-like carbon (DLC). The Zn2+ ion release of these coatings in aqueous environments reacts and adapts smartly on inflammations accompanied by acidosis. Moreover, we show that this increased ion release comes along with an increased toxicity to fibroblastic cells (L929) and bacteria (Staphylococcus aureus subsp. aureus, resistant to methicillin and oxacillin. (ATCC 43300, MRSA) and Staphylococcus epidermidis (ATCC 35984, S. epidermidis). Interestingly, the antimicrobial effect and the cytotoxicity of the coatings increase with a reduction of the pH value from 7.4 to 6.4, but not further to pH 5.4.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Carbon/chemistry , Coated Materials, Biocompatible/chemistry , Zinc Oxide/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Cell Line , Fibroblasts/drug effects , Fibroblasts/microbiology , Hydrogen-Ion Concentration , Methicillin/pharmacology , Mice , Nanoparticles/chemistry , Oxacillin/pharmacology , Prostheses and Implants , Surface Properties/drug effects , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...