Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Redox Biol ; 50: 102232, 2022 04.
Article in English | MEDLINE | ID: mdl-35101798

ABSTRACT

Ferroptosis and necroptosis are two pro-inflammatory cell death programs contributing to major pathologies and their inhibition has gained attention to treat a wide range of disease states. Necroptosis relies on activation of RIP1 and RIP3 kinases. Ferroptosis is triggered by oxidation of polyunsaturated phosphatidylethanolamines (PUFA-PE) by complexes of 15-Lipoxygenase (15LOX) with phosphatidylethanolamine-binding protein 1 (PEBP1). The latter, also known as RAF kinase inhibitory protein, displays promiscuity towards multiple proteins. In this study we show that RIP3 K51A kinase inactive mice have increased ferroptotic burden and worse outcome after irradiation and brain trauma rescued by anti-ferroptotic compounds Liproxstatin-1 and Ferrostatin 16-86. Given structural homology between RAF and RIP3, we hypothesized that PEBP1 acts as a necroptosis-to-ferroptosis switch interacting with either RIP3 or 15LOX. Using genetic, biochemical, redox lipidomics and computational approaches, we uncovered that PEBP1 complexes with RIP3 and inhibits necroptosis. Elevated expression combined with higher affinity enables 15LOX to pilfer PEBP1 from RIP3, thereby promoting PUFA-PE oxidation and ferroptosis which sensitizes Rip3K51A/K51A kinase-deficient mice to total body irradiation and brain trauma. This newly unearthed PEBP1/15LOX-driven mechanism, along with previously established switch between necroptosis and apoptosis, can serve multiple and diverse cell death regulatory functions across various human disease states.


Subject(s)
Apoptosis , Ferroptosis , Animals , Cell Death , Mice , Necrosis , Oxidation-Reduction , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
2.
Cells ; 10(5)2021 04 27.
Article in English | MEDLINE | ID: mdl-33925729

ABSTRACT

Acute pancreatitis (AP) is a severe and potentially fatal disease caused predominantly by alcohol excess and gallstones, which lacks a specific therapy. The role of Receptor-Interacting Protein Kinase 1 (RIPK1), a key component of programmed necrosis (Necroptosis), is unclear in AP. We assessed the effects of RIPK1 inhibitor Necrostatin-1 (Nec-1) and RIPK1 modification (RIPK1K45A: kinase dead) in bile acid (TLCS-AP), alcoholic (FAEE-AP) and caerulein hyperstimulation (CER-AP) mouse models. Involvement of collateral Nec-1 target indoleamine 2,3-dioxygenase (IDO) was probed with the inhibitor Epacadostat (EPA). Effects of Nec-1 and RIPK1K45A were also compared on pancreatic acinar cell (PAC) fate in vitro and underlying mechanisms explored. Nec-1 markedly ameliorated histological and biochemical changes in all models. However, these were only partially reduced or unchanged in RIPK1K45A mice. Inhibition of IDO with EPA was protective in TLCS-AP. Both Nec-1 and RIPK1K45A modification inhibited TLCS- and FAEE-induced PAC necrosis in vitro. Nec-1 did not affect TLCS-induced Ca2+ entry in PACs, however, it inhibited an associated ROS elevation. The results demonstrate protective actions of Nec-1 in multiple models. However, RIPK1-dependent necroptosis only partially contributed to beneficial effects, and actions on targets such as IDO are likely to be important.


Subject(s)
Imidazoles/therapeutic use , Indoles/therapeutic use , Pancreatitis/drug therapy , Pancreatitis/enzymology , Protective Agents/therapeutic use , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Acinar Cells/metabolism , Alcohols , Animals , Bile Acids and Salts , Calcium/metabolism , Ceruletide , Imidazoles/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/pharmacology , Male , Mice, Inbred C57BL , Pancreas/pathology , Pancreatitis/chemically induced , Protective Agents/pharmacology , Reactive Oxygen Species/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors
3.
Nature ; 588(7838): 436-441, 2020 12.
Article in English | MEDLINE | ID: mdl-33328667

ABSTRACT

Rivers support some of Earth's richest biodiversity1 and provide essential ecosystem services to society2, but they are often fragmented by barriers to free flow3. In Europe, attempts to quantify river connectivity have been hampered by the absence of a harmonized barrier database. Here we show that there are at least 1.2 million instream barriers in 36 European countries (with a mean density of 0.74 barriers per kilometre), 68 per cent of which are structures less than two metres in height that are often overlooked. Standardized walkover surveys along 2,715 kilometres of stream length for 147 rivers indicate that existing records underestimate barrier numbers by about 61 per cent. The highest barrier densities occur in the heavily modified rivers of central Europe and the lowest barrier densities occur in the most remote, sparsely populated alpine areas. Across Europe, the main predictors of barrier density are agricultural pressure, density of river-road crossings, extent of surface water and elevation. Relatively unfragmented rivers are still found in the Balkans, the Baltic states and parts of Scandinavia and southern Europe, but these require urgent protection from proposed dam developments. Our findings could inform the implementation of the EU Biodiversity Strategy, which aims to reconnect 25,000 kilometres of Europe's rivers by 2030, but achieving this will require a paradigm shift in river restoration that recognizes the widespread impacts caused by small barriers.


Subject(s)
Ecosystem , Rivers , Agriculture/statistics & numerical data , Altitude , Biodiversity , Datasets as Topic , Environmental Restoration and Remediation/methods , Environmental Restoration and Remediation/trends , Europe , Human Activities , Humans , Logistic Models , Machine Learning , Population Density , Power Plants/supply & distribution
5.
Nat Metab ; 2(10): 1113-1125, 2020 10.
Article in English | MEDLINE | ID: mdl-32989316

ABSTRACT

Obesity is a major public health burden worldwide and is characterized by chronic low-grade inflammation driven by the cooperation of the innate immune system and dysregulated metabolism in adipose tissue and other metabolic organs. Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a central regulator of inflammatory cell function that coordinates inflammation, apoptosis and necroptosis in response to inflammatory stimuli. Here we show that genetic polymorphisms near the human RIPK1 locus associate with increased RIPK1 gene expression and obesity. We show that one of these single nucleotide polymorphisms is within a binding site for E4BP4 and increases RIPK1 promoter activity and RIPK1 gene expression in adipose tissue. Therapeutic silencing of RIPK1 in vivo in a mouse model of diet-induced obesity dramatically reduces fat mass, total body weight and improves insulin sensitivity, while simultaneously reducing macrophage and promoting invariant natural killer T cell accumulation in adipose tissue. These findings demonstrate that RIPK1 is genetically associated with obesity, and reducing RIPK1 expression is a potential therapeutic approach to target obesity and related diseases.


Subject(s)
Gene Silencing , Obesity/genetics , Obesity/therapy , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Adipocytes/metabolism , Adipose Tissue , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Energy Metabolism , Glucose Tolerance Test , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Polymorphism, Genetic , Subcutaneous Fat/metabolism
7.
J Immunol ; 204(9): 2337-2348, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32213560

ABSTRACT

The signaling protein MALT1 plays a key role in promoting NF-κB activation in Ag-stimulated lymphocytes. In this capacity, MALT1 has two functions, acting as a scaffolding protein and as a substrate-specific protease. MALT1 is also required for NF-κB-dependent induction of proinflammatory cytokines after FcεR1 stimulation in mast cells, implicating a role in allergy. Because MALT1 remains understudied in this context, we sought to investigate how MALT1 proteolytic activity contributes to the overall allergic response. We compared bone marrow-derived mast cells from MALT1 knockout (MALT1-/-) and MALT1 protease-deficient (MALTPD/PD) mice to wild-type cells. We found that MALT1-/- and MALT1PD/PD mast cells are equally impaired in cytokine production following FcεRI stimulation, indicating that MALT1 scaffolding activity is insufficient to drive the cytokine response and that MALT1 protease activity is essential. In addition to cytokine production, acute mast cell degranulation is a critical component of allergic response. Intriguingly, whereas degranulation is MALT1-independent, MALT1PD/PD mice are protected from vascular edema induced by either passive cutaneous anaphylaxis or direct challenge with histamine, a major granule component. This suggests a role for MALT1 protease activity in endothelial cells targeted by mast cell-derived vasoactive substances. Indeed, we find that in human endothelial cells, MALT1 protease is activated following histamine treatment and is required for histamine-induced permeability. We thus propose a dual role for MALT1 protease in allergic response, mediating 1) IgE-dependent mast cell cytokine production, and 2) histamine-induced endothelial permeability. This dual role indicates that therapeutic inhibitors of MALT1 protease could work synergistically to control IgE-mediated allergic disease.


Subject(s)
Endothelial Cells/metabolism , Hypersensitivity/metabolism , Mast Cells/metabolism , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Animals , Bone Marrow/immunology , Bone Marrow/metabolism , Cell Line , Cytokines/immunology , Cytokines/metabolism , Endothelial Cells/immunology , Female , Histamine/immunology , Humans , Hypersensitivity/immunology , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Inflammation/immunology , Inflammation/metabolism , Lymphocyte Activation/immunology , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/immunology , NF-kappa B/immunology , NF-kappa B/metabolism , Receptors, IgE/immunology , Receptors, IgE/metabolism
8.
Am J Respir Crit Care Med ; 201(11): 1358-1371, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32105156

ABSTRACT

Rationale: Respiratory syncytial virus (RSV) bronchiolitis causes significant infant mortality. Bronchiolitis is characterized by airway epithelial cell (AEC) death; however, the mode of death remains unknown.Objectives: To determine whether necroptosis contributes to RSV bronchiolitis pathogenesis via HMGB1 (high mobility group box 1) release.Methods: Nasopharyngeal samples were collected from children presenting to the hospital with acute respiratory infection. Primary human AECs and neonatal mice were inoculated with RSV and murine Pneumovirus, respectively. Necroptosis was determined via viability assays and immunohistochemistry for RIPK1 (receptor-interacting protein kinase-1), MLKL (mixed lineage kinase domain-like pseudokinase) protein, and caspase-3. Necroptosis was blocked using pharmacological inhibitors and RIPK1 kinase-dead knockin mice.Measurements and Main Results: HMGB1 levels were elevated in nasopharyngeal samples of children with acute RSV infection. RSV-induced epithelial cell death was associated with increased phosphorylated RIPK1 and phosphorylated MLKL but not active caspase-3 expression. Inhibition of RIPK1 or MLKL attenuated RSV-induced HMGB1 translocation and release, and lowered viral load. MLKL inhibition increased active caspase-3 expression in a caspase-8/9-dependent manner. In susceptible mice, Pneumovirus infection upregulated RIPK1 and MLKL expression in the airway epithelium at 8 to 10 days after infection, coinciding with AEC sloughing, HMGB1 release, and neutrophilic inflammation. Genetic or pharmacological inhibition of RIPK1 or MLKL attenuated these pathologies, lowered viral load, and prevented type 2 inflammation and airway remodeling. Necroptosis inhibition in early life ameliorated asthma progression induced by viral or allergen challenge in later life.Conclusions: Pneumovirus infection induces AEC necroptosis. Inhibition of necroptosis may be a viable strategy to limit the severity of viral bronchiolitis and break its nexus with asthma.


Subject(s)
Bronchiolitis/virology , Epithelial Cells/metabolism , Epithelial Cells/pathology , HMGB1 Protein/metabolism , Necroptosis , Respiratory Mucosa/cytology , Respiratory Syncytial Virus Infections/metabolism , Animals , Child, Preschool , Humans , Infant , Mice , Prospective Studies
9.
Mol Ecol ; 29(5): 886-898, 2020 03.
Article in English | MEDLINE | ID: mdl-32011775

ABSTRACT

Microbial communities associated with the gut and the skin are strongly influenced by environmental factors, and can rapidly adapt to change. Historical processes may also affect the microbiome. In particular, variation in microbial colonisation in early life has the potential to induce lasting effects on microbial assemblages. However, little is known about the relative extent of microbiome plasticity or the importance of historical colonisation effects following environmental change, especially for nonmammalian species. To investigate this we performed a reciprocal translocation of Atlantic salmon between artificial and semi-natural conditions. Wild and hatchery-reared fry were transferred to three common garden experimental environments for 6 weeks: standard hatchery conditions, hatchery conditions with an enriched diet, and simulated wild conditions. We characterized the faecal and skin microbiome of individual fish before and after the environmental translocation, using a BACI (before-after-control-impact) design. We found evidence of extensive microbiome plasticity for both the gut and skin, with the greatest changes in alpha and beta diversity associated with the largest changes in environment and diet. Microbiome richness and diversity were entirely determined by environment, with no detectable effects of fish origin, and there was also a near-complete turnover in microbiome structure. However, we also identified, for the first time in fish, evidence of historical colonisation effects reflecting early-life experience, including ASVs characteristic of captive rearing. These results have important implications for host adaptation to local selective pressures, and highlight how conditions experienced during early life can have a long-term influence on the microbiome and, potentially, host health.


Subject(s)
Diet , Environment , Microbiota , Salmo salar/microbiology , Animals , Aquaculture , Bacteria/classification , Feces/microbiology , Skin/microbiology
10.
ACS Med Chem Lett ; 10(11): 1518-1523, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749904

ABSTRACT

Herein we report the discovery of pyrazolocarboxamides as novel, potent, and kinase selective inhibitors of receptor interacting protein 2 kinase (RIP2). Fragment based screening and design principles led to the identification of the inhibitor series, and X-ray crystallography was used to inform key structural changes. Through key substitutions about the N1 and C5 N positions on the pyrazole ring significant kinase selectivity and potency were achieved. Bridged bicyclic pyrazolocarboxamide 11 represents a selective and potent inhibitor of RIP2 and will allow for a more detailed investigation of RIP2 inhibition as a therapeutic target for autoinflammatory disorders.

11.
J Med Chem ; 62(14): 6482-6494, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31265286

ABSTRACT

RIP2 kinase has been identified as a key signal transduction partner in the NOD2 pathway contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP2 kinase or its signaling partners on the NOD2 pathway that are suitable for advancement into the clinic have yet to be described. Herein, we report our discovery and profile of the prodrug clinical compound, inhibitor 3, currently in phase 1 clinical studies. Compound 3 potently binds to RIP2 kinase with good kinase specificity and has excellent activity in blocking many proinflammatory cytokine responses in vivo and in human IBD explant samples. The highly favorable physicochemical and ADMET properties of 3 combined with high potency led to a predicted low oral dose in humans.


Subject(s)
Benzothiazoles/pharmacology , Phosphates/pharmacology , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Animals , Benzothiazoles/chemistry , Benzothiazoles/pharmacokinetics , Benzothiazoles/therapeutic use , Colitis/drug therapy , Dogs , Drug Discovery , Humans , Male , Mice , Molecular Docking Simulation , Phosphates/chemistry , Phosphates/pharmacokinetics , Phosphates/therapeutic use , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Quinazolines/chemistry , Quinazolines/pharmacokinetics , Quinazolines/therapeutic use , Rats, Sprague-Dawley , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Swine , Swine, Miniature
12.
ACS Med Chem Lett ; 10(6): 857-862, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31223438

ABSTRACT

RIP1 regulates cell death and inflammation and is believed to play an important role in contributing to a variety of human pathologies, including immune-mediated inflammatory diseases and cancer. While small-molecule inhibitors of RIP1 kinase have been advanced to the clinic for inflammatory diseases and CNS indications, RIP1 inhibitors for oncology indications have yet to be described. Herein we report on the discovery and profile of GSK3145095 (compound 6). Compound 6 potently binds to RIP1 with exquisite kinase specificity and has excellent activity in blocking RIP1 kinase-dependent cellular responses. Highlighting its potential as a novel cancer therapy, the inhibitor was also able to promote a tumor suppressive T cell phenotype in pancreatic adenocarcinoma organ cultures. Compound 6 is currently in phase 1 clinical studies for pancreatic adenocarcinoma and other selected solid tumors.

14.
J Med Chem ; 62(10): 5096-5110, 2019 05 23.
Article in English | MEDLINE | ID: mdl-31013427

ABSTRACT

RIP1 kinase regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including inflammatory and neurological diseases. Currently, RIP1 kinase inhibitors have advanced into early clinical trials for evaluation in inflammatory diseases such as psoriasis, rheumatoid arthritis, and ulcerative colitis and neurological diseases such as amyotrophic lateral sclerosis and Alzheimer's disease. In this paper, we report on the design of potent and highly selective dihydropyrazole (DHP) RIP1 kinase inhibitors starting from a high-throughput screen and the lead-optimization of this series from a lead with minimal rat oral exposure to the identification of dihydropyrazole 77 with good pharmacokinetic profiles in multiple species. Additionally, we identified a potent murine RIP1 kinase inhibitor 76 as a valuable in vivo tool molecule suitable for evaluating the role of RIP1 kinase in chronic models of disease. DHP 76 showed efficacy in mouse models of both multiple sclerosis and human retinitis pigmentosa.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Nuclear Pore Complex Proteins/antagonists & inhibitors , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , RNA-Binding Proteins/antagonists & inhibitors , Animals , Biological Availability , Cell Line , Chronic Disease , Drug Design , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Enzyme Inhibitors/pharmacokinetics , Haplorhini , High-Throughput Screening Assays , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Multiple Sclerosis/drug therapy , Pyrazoles/pharmacokinetics , Rats , Retinitis Pigmentosa/drug therapy , Structure-Activity Relationship
15.
Sci Total Environ ; 673: 756-762, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31003103

ABSTRACT

Artificial barriers are one of the main threats to river ecosystems, resulting in habitat fragmentation and loss of connectivity. Yet, the abundance and distribution of most artificial barriers, excluding high-head dams, is poorly documented. We provide a comprehensive assessment of the distribution and typology of artificial barriers in Great Britain, and estimate for the first time the extent of river fragmentation. To this end, barrier data were compiled from existing databases and were ground-truthed by field surveys in England, Scotland and Wales to derive a correction factor for barrier density across Great Britain. Field surveys indicate that existing barrier databases underestimate barrier density by 68%, particularly in the case of low-head structures (<1 m) which are often missing from current records. Field-corrected barrier density estimates ranged from 0.48 barriers/km in Scotland to 0.63 barriers/km in Wales, and 0.75 barriers/km in England. Corresponding estimates of stream fragmentation by weirs and dams only, measured as mean barrier-free length, were 12.30 km in Scotland, 6.68 km in Wales and 5.29 km in England, suggesting the extent of river modification differs between regions. Our study indicates that 97% of the river network in Great Britain is fragmented and <1% of the catchments are free of artificial barriers.

16.
Mol Cell ; 73(3): 413-428.e7, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30598363

ABSTRACT

Receptor-interacting protein kinase (RIPK) 1 functions as a key mediator of tissue homeostasis via formation of Caspase-8 activating ripoptosome complexes, positively and negatively regulating apoptosis, necroptosis, and inflammation. Here, we report an unanticipated cell-death- and inflammation-independent function of RIPK1 and Caspase-8, promoting faithful chromosome alignment in mitosis and thereby ensuring genome stability. We find that ripoptosome complexes progressively form as cells enter mitosis, peaking at metaphase and disassembling as cells exit mitosis. Genetic deletion and mitosis-specific inhibition of Ripk1 or Caspase-8 results in chromosome alignment defects independently of MLKL. We found that Polo-like kinase 1 (PLK1) is recruited into mitotic ripoptosomes, where PLK1's activity is controlled via RIPK1-dependent recruitment and Caspase-8-mediated cleavage. A fine balance of ripoptosome assembly is required as deregulated ripoptosome activity modulates PLK1-dependent phosphorylation of downstream effectors, such as BUBR1. Our data suggest that ripoptosome-mediated regulation of PLK1 contributes to faithful chromosome segregation during mitosis.


Subject(s)
Caspase 8/metabolism , Chromosomal Instability , Colonic Neoplasms/enzymology , Fibroblasts/enzymology , Mitosis , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Aneuploidy , Animals , Apoptosis , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 8/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Fas-Associated Death Domain Protein/genetics , Fas-Associated Death Domain Protein/metabolism , Fibroblasts/pathology , HT29 Cells , Humans , Inflammation/enzymology , Inflammation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction , Polo-Like Kinase 1
17.
Nature ; 564(7736): 439-443, 2018 12.
Article in English | MEDLINE | ID: mdl-30405246

ABSTRACT

Stimulator of interferon genes (STING) is a receptor in the endoplasmic reticulum that propagates innate immune sensing of cytosolic pathogen-derived and self DNA1. The development of compounds that modulate STING has recently been the focus of intense research for the treatment of cancer and infectious diseases and as vaccine adjuvants2. To our knowledge, current efforts are focused on the development of modified cyclic dinucleotides that mimic the endogenous STING ligand cGAMP; these have progressed into clinical trials in patients with solid accessible tumours amenable to intratumoral delivery3. Here we report the discovery of a small molecule STING agonist that is not a cyclic dinucleotide and is systemically efficacious for treating tumours in mice. We developed a linking strategy to synergize the effect of two symmetry-related amidobenzimidazole (ABZI)-based compounds to create linked ABZIs (diABZIs) with enhanced binding to STING and cellular function. Intravenous administration of a diABZI STING agonist to immunocompetent mice with established syngeneic colon tumours elicited strong anti-tumour activity, with complete and lasting regression of tumours. Our findings represent a milestone in the rapidly growing field of immune-modifying cancer therapies.


Subject(s)
Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/immunology , Drug Design , Membrane Proteins/agonists , Animals , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Humans , Ligands , Membrane Proteins/immunology , Mice , Models, Molecular , Nucleotides, Cyclic/metabolism
18.
ACS Med Chem Lett ; 9(10): 1039-1044, 2018 Oct 11.
Article in English | MEDLINE | ID: mdl-30344914

ABSTRACT

RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 µM).

19.
Science ; 362(6418): 1064-1069, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30361383

ABSTRACT

Limited proteolysis of gasdermin D (GSDMD) generates an N-terminal pore-forming fragment that controls pyroptosis in macrophages. GSDMD is processed via inflammasome-activated caspase-1 or -11. It is currently unknown whether macrophage GSDMD can be processed by other mechanisms. Here, we describe an additional pathway controlling GSDMD processing. The inhibition of TAK1 or IκB kinase (IKK) by the Yersinia effector protein YopJ elicits RIPK1- and caspase-8-dependent cleavage of GSDMD, which subsequently results in cell death. GSDMD processing also contributes to the NLRP3 inflammasome-dependent release of interleukin-1ß (IL-1ß). Thus, caspase-8 acts as a regulator of GSDMD-driven cell death. Furthermore, this study establishes the importance of TAK1 and IKK activity in the control of GSDMD cleavage and cytotoxicity.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Caspase 8/metabolism , Host-Pathogen Interactions , I-kappa B Kinase/metabolism , MAP Kinase Kinase Kinases/metabolism , Plague/immunology , Animals , Bacterial Proteins/metabolism , Caspase 8/genetics , Cell Death , Humans , Inflammasomes/immunology , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Plague/enzymology , Plague/pathology , Proteolysis
20.
Nat Commun ; 9(1): 3910, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30254289

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC), composed of HOIP, HOIL-1 and SHARPIN, is required for optimal TNF-mediated gene activation and to prevent cell death induced by TNF. Here, we demonstrate that keratinocyte-specific deletion of HOIP or HOIL-1 (E-KO) results in severe dermatitis causing postnatal lethality. We provide genetic and pharmacological evidence that the postnatal lethal dermatitis in HoipE-KO and Hoil-1E-KO mice is caused by TNFR1-induced, caspase-8-mediated apoptosis that occurs independently of the kinase activity of RIPK1. In the absence of TNFR1, however, dermatitis develops in adulthood, triggered by RIPK1-kinase-activity-dependent apoptosis and necroptosis. Strikingly, TRAIL or CD95L can redundantly induce this disease-causing cell death, as combined loss of their respective receptors is required to prevent TNFR1-independent dermatitis. These findings may have implications for the treatment of patients with mutations that perturb linear ubiquitination and potentially also for patients with inflammation-associated disorders that are refractory to inhibition of TNF alone.


Subject(s)
Carrier Proteins/metabolism , Dermatitis/metabolism , Fas Ligand Protein/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Protein Ligases/metabolism , Animals , Animals, Newborn , Carrier Proteins/genetics , Cell Death/drug effects , Cell Death/genetics , Cells, Cultured , Dermatitis/genetics , Intracellular Signaling Peptides and Proteins , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Skin/drug effects , Skin/metabolism , Skin/pathology , Ubiquitin-Protein Ligases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...