Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 384(6692): eadk6200, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38574174

ABSTRACT

Males and females exhibit profound differences in immune responses and disease susceptibility. However, the factors responsible for sex differences in tissue immunity remain poorly understood. Here, we uncovered a dominant role for type 2 innate lymphoid cells (ILC2s) in shaping sexual immune dimorphism within the skin. Mechanistically, negative regulation of ILC2s by androgens leads to a reduction in dendritic cell accumulation and activation in males, along with reduced tissue immunity. Collectively, our results reveal a role for the androgen-ILC2-dendritic cell axis in controlling sexual immune dimorphism. Moreover, this work proposes that tissue immune set points are defined by the dual action of sex hormones and the microbiota, with sex hormones controlling the strength of local immunity and microbiota calibrating its tone.


Subject(s)
Androgens , Dendritic Cells , Immunity, Innate , Lymphocytes , Sex Characteristics , Skin , Female , Male , Androgens/metabolism , Dendritic Cells/immunology , Gonadal Steroid Hormones/metabolism , Lymphocytes/immunology , Skin/immunology , Animals , Mice , Mice, Inbred C57BL , Microbiota
2.
Mucosal Immunol ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38492746

ABSTRACT

Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103- conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103+ cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103+ cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3-/- mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103+ cDC2s.

3.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328052

ABSTRACT

The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8 + T cell response pre-emptively, in the absence of an infection 1 . However, the scope and purpose of this anti-commensal immune program are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable, and specific antibody response that is conserved in humans and non-human primates. A series of S. epidermidis cell-wall mutants revealed that the cell surface protein Aap is a predominant target. By colonizing mice with a strain of S. epidermidis in which the parallel ß-helix domain of Aap is replaced by tetanus toxin fragment C, we elicit a potent neutralizing antibody response that protects mice against a lethal challenge. A similar strain of S. epidermidis expressing an Aap-SpyCatcher chimera can be conjugated with recombinant immunogens; the resulting labeled commensal elicits high titers of antibody under conditions of physiologic colonization, including a robust IgA response in the nasal mucosa. Thus, immunity to a common skin colonist involves a coordinated T and B cell response, the latter of which can be redirected against pathogens as a novel form of topical vaccination.

4.
J Nanobiotechnology ; 21(1): 156, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208676

ABSTRACT

The development of vaccines based on outer membrane vesicles (OMV) that naturally bud off from bacteria is an evolving field in infectious diseases. However, the inherent inflammatory nature of OMV limits their use as human vaccines. This study employed an engineered vesicle technology to develop synthetic bacterial vesicles (SyBV) that activate the immune system without the severe immunotoxicity of OMV. SyBV were generated from bacterial membranes through treatment with detergent and ionic stress. SyBV induced less inflammatory responses in macrophages and in mice compared to natural OMV. Immunization with SyBV or OMV induced comparable antigen-specific adaptive immunity. Specifically, immunization with Pseudomonas aeruginosa-derived SyBV protected mice against bacterial challenge, and this was accompanied by significant reduction in lung cell infiltration and inflammatory cytokines. Further, immunization with Escherichia coli-derived SyBV protected mice against E. coli sepsis, comparable to OMV-immunized group. The protective activity of SyBV was driven by the stimulation of B-cell and T-cell immunity. Also, SyBV were engineered to display the SARS-CoV-2 S1 protein on their surface, and these vesicles induced specific S1 protein antibody and T-cell responses. Collectively, these results demonstrate that SyBV may be a safe and efficient vaccine platform for the prevention of bacterial and viral infections.


Subject(s)
Bacteremia , COVID-19 , Escherichia coli Infections , Vaccines , Mice , Animals , Humans , SARS-CoV-2 , Escherichia coli , COVID-19/prevention & control , Bacteria , Escherichia coli Infections/prevention & control , Bacterial Outer Membrane Proteins , Antibodies, Bacterial
5.
Cell ; 186(3): 607-620.e17, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36640762

ABSTRACT

Tissue immunity and responses to injury depend on the coordinated action and communication among physiological systems. Here, we show that, upon injury, adaptive responses to the microbiota directly promote sensory neuron regeneration. At homeostasis, tissue-resident commensal-specific T cells colocalize with sensory nerve fibers within the dermis, express a transcriptional program associated with neuronal interaction and repair, and promote axon growth and local nerve regeneration following injury. Mechanistically, our data reveal that the cytokine interleukin-17A (IL-17A) released by commensal-specific Th17 cells upon injury directly signals to sensory neurons via IL-17 receptor A, the transcription of which is specifically upregulated in injured neurons. Collectively, our work reveals that in the context of tissue damage, preemptive immunity to the microbiota can rapidly bridge biological systems by directly promoting neuronal repair, while also identifying IL-17A as a major determinant of this fundamental process.


Subject(s)
Interleukin-17 , Microbiota , Nerve Regeneration , Th17 Cells , Axons , Nerve Regeneration/physiology , Sensory Receptor Cells , Animals , Mice , Th17 Cells/cytology
6.
Sci Immunol ; 7(73): eabc5500, 2022 07.
Article in English | MEDLINE | ID: mdl-35776804

ABSTRACT

T helper 17 (TH17) cells located at the Peyer's patch (PP) inductive site and at the lamina propria effector site of the intestinal immune system are responsive to both pathogenic and commensal bacteria. Their plasticity to convert into follicular helper T (TFH) cells has been proposed to be central to gut immunoglobulin A (IgA) responses. Here, we used an IL-17A fate reporter mouse and an MHC-II tetramer to analyze antigen-specific CD4+ T cell subsets and isolate them for single-cell RNA sequencing after oral immunization with cholera toxin and ovalbumin. We found a TFH-dominated response with only rare antigen-specific TH17 cells (<8%) in the PP. A clonotypic analysis provided little support that clonotypes were shared between TFH and TH17 cells, arguing against TH17 plasticity as a major contributor to TFH differentiation. Two mouse models of TH17 deficiency confirmed that gut IgA responses to oral immunization do not require TH17 cells, with CD4CreRorcfl/fl mice exhibiting normal germinal centers in PP and unperturbed total IgA production in the intestine.


Subject(s)
Immunoglobulin A , Peyer's Patches , Th17 Cells , Animals , Antigens/immunology , Cholera Toxin , Immunization , Immunoglobulin A/immunology , Mice , Peyer's Patches/cytology , Peyer's Patches/immunology , Th17 Cells/immunology , Vaccination
7.
J Extracell Vesicles ; 10(9): e12120, 2021 07.
Article in English | MEDLINE | ID: mdl-34262675

ABSTRACT

Bacterial outer membrane vesicles (OMV) have gained attention as a promising new cancer vaccine platform for efficiently provoking immune responses. However, OMV induce severe toxicity by activating the innate immune system. In this study, we applied a simple isolation approach to produce artificial OMV that we have named Synthetic Bacterial Vesicles (SyBV) that do not induce a severe toxic response. We also explored the potential of SyBV as an immunotherapy combined with tumour extracellular vesicles to induce anti-tumour immunity. Bacterial SyBV were produced with high yield by a protocol including lysozyme and high pH treatment, resulting in pure vesicles with very few cytosolic components and no RNA or DNA. These SyBV did not cause systemic pro-inflammatory cytokine responses in mice compared to naturally released OMV. However, SyBV and OMV were similarly effective in activation of mouse bone marrow-derived dendritic cells. Co-immunization with SyBV and melanoma extracellular vesicles elicited tumour regression in melanoma-bearing mice through Th-1 type T cell immunity and balanced antibody production. Also, the immunotherapeutic effect of SyBV was synergistically enhanced by anti-PD-1 inhibitor. Moreover, SyBV displayed significantly greater adjuvant activity than other classical adjuvants. Taken together, these results demonstrate a safe and efficient strategy for eliciting specific anti-tumour responses using immunotherapeutic bacterial SyBV.


Subject(s)
Bacterial Outer Membrane/immunology , Escherichia coli/immunology , Extracellular Vesicles/immunology , Immunotherapy , Melanoma, Experimental/immunology , Adjuvants, Immunologic/metabolism , Animals , Artificial Cells/immunology , Bacterial Outer Membrane/metabolism , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells , Extracellular Vesicles/metabolism , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunization , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Th1 Cells/immunology
8.
Mucosal Immunol ; 14(2): 523-536, 2021 03.
Article in English | MEDLINE | ID: mdl-32807838

ABSTRACT

This is a proof-of-principle study demonstrating that the combination of a cholera toxin derived adjuvant, CTA1-DD, and lipid nanoparticles (LNP) can significantly improve the immunogenicity and protective capacity of an intranasal vaccine. We explored the self-adjuvanted universal influenza vaccine candidate, CTA1-3M2e-DD (FPM2e), linked to LNPs. We found that the combined vector greatly enhanced survival against a highly virulent PR8 strain of influenza virus as compared to when mice were immunized with FPM2e alone. The combined vaccine vector enhanced early endosomal processing and peptide presentation in dendritic cells and upregulated co-stimulation. The augmenting effect was CTA1-enzyme dependent. Whereas systemic anti-M2e antibody and CD4+ T-cell responses were comparable to those of the soluble protein, the local respiratory tract IgA and the specific Th1 and Th17 responses were strongly enhanced. Surprisingly, the lung tissue did not exhibit gross pathology upon recovery from infection and M2e-specific lung resident CD4+ T cells were threefold higher than in FPM2e-immunized mice. This study conveys optimism as to the protective ability of a combination vaccine based on LNPs and various forms of the CTA1-DD adjuvant platform, in general, and, more specifically, an important way forward to develop a universal vaccine against influenza.


Subject(s)
Cholera Toxin/immunology , Influenza A virus/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Liposomes/immunology , Lung/immunology , Orthomyxoviridae Infections/immunology , Recombinant Fusion Proteins/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Administration, Intranasal , Animals , Antigen Presentation , Cells, Cultured , Cholera Toxin/metabolism , Humans , Immunogenicity, Vaccine , Immunoglobulin A/metabolism , Influenza Vaccines/metabolism , Liposomes/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/metabolism , Peptides, Cyclic , Recombinant Fusion Proteins/metabolism , Vaccination
9.
Mucosal Immunol ; 13(3): 545-557, 2020 05.
Article in English | MEDLINE | ID: mdl-31959882

ABSTRACT

Vaccination of neonates and young infants is hampered by the relative immaturity of their immune systems and the lack of safe and efficacious vaccine adjuvants. Immaturity of the follicular dendritic cells (FDCs), in particular, appears to play a critical role for the inability to stimulate immune responses. Using the CD21mT/mG mouse model we found that at 7 days of life, FDCs exhibited a mature phenotype only in the Peyer´s patches (PP), but our unique adjuvant, CTA1-DD, effectively matured FDCs also in peripheral lymph nodes following systemic, as well as mucosal immunizations. This was a direct effect of complement receptor 2-binding to the FDC and a CTA1-enzyme-dependent enhancing effect on gene transcription, among which CR2, IL-6, ICAM-1, IL-1ß, and CXCL13 encoding genes were upregulated. This way we achieved FDC maturation, increased germinal center B-cell- and Tfh responses, and enhanced specific antibody levels close to adult magnitudes. Oral priming immunization of neonates against influenza infection with CTA1-3M2e-DD effectively promoted anti-M2e-immunity and significantly reduced morbidity against a live virus challenge infection. To the best of our knowledge, this is the first study to demonstrate direct effects of an adjuvant on FDC gene transcriptional functions and the subsequent enhancement of neonatal immune responses.


Subject(s)
Adjuvants, Immunologic , Cholera Toxin/immunology , Dendritic Cells, Follicular/immunology , Germinal Center/immunology , Immunization , Recombinant Fusion Proteins/immunology , Animals , Animals, Newborn , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Dendritic Cells, Follicular/metabolism , Gene Expression , Germinal Center/metabolism , Immunophenotyping , Influenza Vaccines/administration & dosage , Influenza Vaccines/immunology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Mice , Peyer's Patches/immunology , Peyer's Patches/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
10.
Mucosal Immunol ; 12(6): 1268-1279, 2019 11.
Article in English | MEDLINE | ID: mdl-31501516

ABSTRACT

Our understanding of how class-switch recombination (CSR) to IgA occurs in the gut is still incomplete. Earlier studies have indicated that Tregs are important for IgA CSR and these cells were thought to transform into follicular helper T cells (Tfh), responsible for germinal center formation in the Peyer's patches (PP). Following adoptive transfer of T-cell receptor-transgenic (TCR-Tg) CD4 T cells into nude mice, we unexpectedly found that oral immunization did not require an adjuvant to induce strong gut IgA and systemic IgG responses, suggesting an altered regulatory environment in the PP. After sorting of splenic TCR-Tg CD4 T cells into CD25+ or CD25- cells we observed that none of these fractions supported a gut IgA response, while IgG responses were unperturbed in mice receiving the CD25- cell fraction. Hence, while Tfh functions resided in the CD25- fraction the IgA CSR function in the PP was dependent on CD25+ Foxp3+ Tregs, which were found to be Helios+ neuropilin-1+ thymus-derived Tregs. This is the first study to demonstrate that Tfh and IgA CSR functions are indeed, unique, and separate functions in the PP with the former being TCR-dependent while the latter appeared to be antigen independent.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin A/genetics , Immunoglobulin Class Switching , Peyer's Patches/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Thymus Gland/immunology , Adjuvants, Immunologic/administration & dosage , Adoptive Transfer , Animals , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Cells, Cultured , Cholera Toxin/administration & dosage , Coculture Techniques , DNA-Binding Proteins/immunology , DNA-Binding Proteins/metabolism , Immunization , Immunoglobulin A/immunology , Immunoglobulin A/metabolism , Immunoglobulin Class Switching/drug effects , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Mice, SCID , Mice, Transgenic , Neuropilin-1/immunology , Neuropilin-1/metabolism , Ovalbumin/administration & dosage , Peyer's Patches/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/transplantation , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Thymus Gland/drug effects , Thymus Gland/metabolism , Transcription Factors/immunology , Transcription Factors/metabolism
11.
Stem Cell Res Ther ; 10(1): 231, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31370884

ABSTRACT

BACKGROUND: Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved. METHODS: NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2 × 109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging. RESULTS: Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6 h. CONCLUSIONS: Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients.


Subject(s)
Bacterial Outer Membrane/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Interleukin-10/metabolism , Nanostructures/chemistry , Sepsis/prevention & control , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Disease Models, Animal , Endocytosis , Escherichia coli/metabolism , Extracellular Vesicles/chemistry , Interleukin-10/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Monocytes/cytology , Monocytes/immunology , Neutrophil Infiltration , Peritoneum/metabolism , Peritoneum/pathology , Proteome/analysis , RAW 264.7 Cells , Sepsis/pathology , Tissue Distribution
12.
Front Immunol ; 10: 646, 2019.
Article in English | MEDLINE | ID: mdl-30984200

ABSTRACT

Adjuvanted whole inactivated virus (WIV) influenza vaccines show promise as broadly protective influenza vaccine candidates. Using WIV as basis we assessed the relative efficacy of different adjuvants by carrying out a head-to-head comparison of the liposome-based adjuvants CAF01 and CAF09 and the protein-based adjuvants CTA1-DD and CTA1-3M2e-DD and evaluated whether one or more of the adjuvants could induce broadly protective immunity. Mice were immunized with WIV prepared from A/Puerto Rico/8/34 (H1N1) virus intramuscularly with or without CAF01 or intranasally with or without CAF09, CTA1-DD, or CTA1-3M2e-DD, followed by challenge with homologous, heterologous or heterosubtypic virus. In general, intranasal immunizations were significantly more effective than intramuscular immunizations in inducing virus-specific serum-IgG, mucosal-IgA, and splenic IFNγ-producing CD4 T cells. Intranasal immunizations with adjuvanted vaccines afforded strong cross-protection with milder clinical symptoms and better control of virus load in lungs. Mechanistic studies indicated that non-neutralizing IgG antibodies and CD4 T cells were responsible for the improved cross-protection while IgA antibodies were dispensable. The role of CD4 T cells was particularly pronounced for CTA1-3M2e-DD adjuvanted vaccine as evidenced by CD4 T cell-dependent reduction of lung virus titers and clinical symptoms. Thus, intranasally administered WIV in combination with effective mucosal adjuvants appears to be a promising broadly protective influenza vaccine candidate.


Subject(s)
Adjuvants, Immunologic , Cross Protection , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines , Orthomyxoviridae Infections/prevention & control , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/pharmacology , Administration, Intranasal , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Female , Immunoglobulin G/immunology , Influenza Vaccines/chemistry , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/pathology , Vaccines, Inactivated/chemistry , Vaccines, Inactivated/immunology , Vaccines, Inactivated/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...