Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Methods Mol Biol ; 2768: 305-316, 2024.
Article in English | MEDLINE | ID: mdl-38502401

ABSTRACT

Interferon-gamma (IFNγ) ELISpot and FluoroSpot are widely used assays to detect functional cell responses in immunotherapy clinical studies. Recognized for their importance in vaccine development studies to quantitate immune responses, these assays have more recently risen to the forefront in cell and gene therapy as well as cancer immunotherapy fields where responses against cancer neoantigens are not easily detectable above assay background. Here, we test a new class of fetal bovine serum (FBS), CultraPure FBS, in ex vivo ELISpot and FluoroSpot assays and cultured FluoroSpot assays following in vitro expansion. Several CultraPure FBS lots that have been specially formulated through the process of lyophilization (lyo-FBS) were compared to liquid CultraPure FBS. We stimulated human PBMCs with antigen-specific peptide pools diluted in media supplemented with liquid CultraPure FBS or lyo-FBS and found equivalent cytokine production with negligible to no assay background with both liquid and lyo-FBS formats. Moreover, the lyo-FBS showed lot-to-lot consistency and 90-day refrigerated (4 °C) stability in both ex vivo direct and in vitro cultured assays. In addition, we present here a method using lyo-FBS for the expansion of low-frequency antigen-specific T cells, mimicking the low frequency seen with cancer neoantigens by utilizing a cultured FluoroSpot assay. Our results demonstrate the presence of Granzyme B, interferon-gamma (IFNγ), and tumor necrosis factor (TNF) production by antigen-specific polyfunctional T cells following a 9-day culture using media supplemented with lyo-FBS.


Subject(s)
Neoplasms , Vaccines , Humans , Serum Albumin, Bovine , Interferon-gamma , Immunity
2.
Diabetologia ; 62(9): 1601-1615, 2019 09.
Article in English | MEDLINE | ID: mdl-31203377

ABSTRACT

AIMS/HYPOTHESIS: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). METHODS: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. RESULTS: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean ± SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. CONCLUSIONS/INTERPRETATION: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.


Subject(s)
Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Aged , Blood Glucose/drug effects , Cohort Studies , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Female , Glucose/metabolism , Glucose Tolerance Test , Humans , Male , Metformin/therapeutic use , Middle Aged , Prediabetic State/blood , Prediabetic State/epidemiology , Prospective Studies
4.
Diabetes Care ; 42(1): 17-26, 2019 01.
Article in English | MEDLINE | ID: mdl-30455330

ABSTRACT

OBJECTIVE: Maturity-onset diabetes of the young (MODY) due to variants in HNF1A is the most common type of monogenic diabetes. Frequent misdiagnosis results in missed opportunity to use sulfonylureas as first-line treatment. A nongenetic biomarker could improve selection of subjects for genetic testing and increase diagnosis rates. We previously reported that plasma levels of antennary fucosylated N-glycans and high-sensitivity C-reactive protein (hs-CRP) are reduced in individuals with HNF1A-MODY. In this study, we examined the potential use of N-glycans and hs-CRP in discriminating individuals with damaging HNF1A alleles from those without HNF1A variants in an unselected population of young adults with nonautoimmune diabetes. RESEARCH DESIGN AND METHODS: We analyzed the plasma N-glycan profile, measured hs-CRP, and sequenced HNF1A in 989 individuals with diabetes diagnosed when younger than age 45, persistent endogenous insulin production, and absence of pancreatic autoimmunity. Systematic assessment of rare HNF1A variants was performed. RESULTS: We identified 29 individuals harboring 25 rare HNF1A alleles, of which 3 were novel, and 12 (in 16 probands) were considered pathogenic. Antennary fucosylated N-glycans and hs-CRP were able to differentiate subjects with damaging HNF1A alleles from those without rare HNF1A alleles. Glycan GP30 had a receiver operating characteristic curve area under the curve (AUC) of 0.90 (88% sensitivity, 80% specificity, cutoff 0.70%), whereas hs-CRP had an AUC of 0.83 (88% sensitivity, 69% specificity, cutoff 0.81 mg/L). CONCLUSIONS: Half of rare HNF1A sequence variants do not cause MODY. N-glycan profile and hs-CRP could both be used as tools, alone or as adjuncts to existing pathways, for identifying individuals at high risk of carrying a damaging HNF1A allele.


Subject(s)
C-Reactive Protein/metabolism , Diabetes Mellitus, Type 2/blood , Hepatocyte Nuclear Factor 1-alpha/blood , Polysaccharides/blood , Adolescent , Adult , Alleles , Biomarkers/blood , Cholesterol/blood , Diabetes Mellitus, Type 2/drug therapy , Female , Glycated Hemoglobin/metabolism , Humans , Insulin/blood , Insulin/therapeutic use , Male , Middle Aged , Sensitivity and Specificity , Sequence Analysis, DNA , Triglycerides/blood , Young Adult
5.
Nat Genet ; 50(8): 1122-1131, 2018 08.
Article in English | MEDLINE | ID: mdl-30054598

ABSTRACT

The molecular mechanisms underpinning susceptibility loci for type 2 diabetes (T2D) remain poorly understood. Coding variants in peptidylglycine α-amidating monooxygenase (PAM) are associated with both T2D risk and insulinogenic index. Here, we demonstrate that the T2D risk alleles impact negatively on overall PAM activity via defects in expression and catalytic function. PAM deficiency results in reduced insulin content and altered dynamics of insulin secretion in a human ß-cell model and primary islets from cadaveric donors. Thus, our results demonstrate a role for PAM in ß-cell function, and establish molecular mechanisms for T2D risk alleles at this locus.


Subject(s)
Amidine-Lyases/genetics , Diabetes Mellitus, Type 2/genetics , Insulin Secretion/genetics , Insulin-Secreting Cells/pathology , Mixed Function Oxygenases/genetics , Alleles , Animals , Cell Line , Genetic Predisposition to Disease , HEK293 Cells , Humans , Insulin/genetics , Mice , Polymorphism, Single Nucleotide
6.
Arthritis Rheumatol ; 70(12): 2087-2095, 2018 12.
Article in English | MEDLINE | ID: mdl-29956883

ABSTRACT

OBJECTIVE: B cells impact the progression of systemic sclerosis (SSc; scleroderma) through multiple pathogenic mechanisms. CD19 inhibition in mice reduced skin thickness, collagen production, and autoantibody levels, consistent with CD19 expression on plasma cells (PCs), the source of antibody production. PC depletion could effectively reduce collagen deposition and inflammation in SSc; therefore, we investigated the effects of PC depletion on SSc disease activity. METHODS: A PC gene signature was evaluated in SSc skin biopsy samples in 2 phase I clinical trials. We assessed microarray data from tissue from public studies of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), dermatomyositis (DM), systemic lupus erythematosus (SLE), and atopic dermatitis, as well as blood from a phase IIb clinical trial in SLE. RESULTS: The PC signature was elevated in SSc skin specimens compared to healthy donor skin (P = 2.28 × 10-6 ) and correlated with the baseline modified Rodnan skin thickness score (MRSS) (r = 0.64, P = 0.0004). Patients with a high PC signature at baseline showed greater improvement in the MRSS (mean ± SD change 35 ± 16%; P = 6.30 × 10-4 ) following anti-CD19 treatment with inebilizumab (MEDI-551) than did patients with a low PC signature at baseline (mean ± SD change 8 ± 12%; P = 0.104). The PC signature was overexpressed in tissue from patients with SLE, DM, COPD, interstitial lung disease, and IPF relative to controls (all fold change >2; P < 0.001). The PC signature also differed significantly between SLE patients with mild-to-moderate disease and those with severe disease (SLE Disease Activity Index cutoff at 10) (fold change 1.44; P = 3.90 × 10-3 ) and correlated significantly with the degree of emphysema in COPD (r = 0.53, P = 7.55 × 10-8 ). CONCLUSION: Our results support the notion that PCs have a role in the pathogenesis of SSc and other autoimmune or pulmonary indications. An elevated pretreatment PC signature was associated with increased benefit from MEDI-551 in SSc.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Plasma Cells/metabolism , Scleroderma, Systemic/drug therapy , Severity of Illness Index , Adult , Biopsy , Double-Blind Method , Female , Humans , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/pathology , Male , Plasma Cells/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Scleroderma, Systemic/pathology , Skin/pathology , Treatment Outcome
7.
PLoS One ; 13(1): e0189886, 2018.
Article in English | MEDLINE | ID: mdl-29293525

ABSTRACT

Glucagon-like peptide 1 (GLP-1) stimulated insulin secretion has a considerable heritable component as estimated from twin studies, yet few genetic variants influencing this phenotype have been identified. We performed the first genome-wide association study (GWAS) of GLP-1 stimulated insulin secretion in non-diabetic individuals from the Netherlands Twin register (n = 126). This GWAS was enhanced using a tissue-specific protein-protein interaction network approach. We identified a beta-cell protein-protein interaction module that was significantly enriched for low gene scores based on the GWAS P-values and found support at the network level in an independent cohort from Tübingen, Germany (n = 100). Additionally, a polygenic risk score based on SNPs prioritized from the network was associated (P < 0.05) with glucose-stimulated insulin secretion phenotypes in up to 5,318 individuals in MAGIC cohorts. The network contains both known and novel genes in the context of insulin secretion and is enriched for members of the focal adhesion, extracellular-matrix receptor interaction, actin cytoskeleton regulation, Rap1 and PI3K-Akt signaling pathways. Adipose tissue is, like the beta-cell, one of the target tissues of GLP-1 and we thus hypothesized that similar networks might be functional in both tissues. In order to verify peripheral effects of GLP-1 stimulation, we compared the transcriptome profiling of ob/ob mice treated with liraglutide, a clinically used GLP-1 receptor agonist, versus baseline controls. Some of the upstream regulators of differentially expressed genes in the white adipose tissue of ob/ob mice were also detected in the human beta-cell network of genes associated with GLP-1 stimulated insulin secretion. The findings provide biological insight into the mechanisms through which the effects of GLP-1 may be modulated and highlight a potential role of the beta-cell expressed genes RYR2, GDI2, KIAA0232, COL4A1 and COL4A2 in GLP-1 stimulated insulin secretion.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Insulin/metabolism , Animals , Humans , Insulin Secretion , Mice
9.
Diabetes ; 66(8): 2296-2309, 2017 08.
Article in English | MEDLINE | ID: mdl-28490609

ABSTRACT

Understanding the physiological mechanisms by which common variants predispose to type 2 diabetes requires large studies with detailed measures of insulin secretion and sensitivity. Here we performed the largest genome-wide association study of first-phase insulin secretion, as measured by intravenous glucose tolerance tests, using up to 5,567 individuals without diabetes from 10 studies. We aimed to refine the mechanisms of 178 known associations between common variants and glycemic traits and identify new loci. Thirty type 2 diabetes or fasting glucose-raising alleles were associated with a measure of first-phase insulin secretion at P < 0.05 and provided new evidence, or the strongest evidence yet, that insulin secretion, intrinsic to the islet cells, is a key mechanism underlying the associations at the HNF1A, IGF2BP2, KCNQ1, HNF1B, VPS13C/C2CD4A, FAF1, PTPRD, AP3S2, KCNK16, MAEA, LPP, WFS1, and TMPRSS6 loci. The fasting glucose-raising allele near PDX1, a known key insulin transcription factor, was strongly associated with lower first-phase insulin secretion but has no evidence for an effect on type 2 diabetes risk. The diabetes risk allele at TCF7L2 was associated with a stronger effect on peak insulin response than on C-peptide-based insulin secretion rate, suggesting a possible additional role in hepatic insulin clearance or insulin processing. In summary, our study provides further insight into the mechanisms by which common genetic variation influences type 2 diabetes risk and glycemic traits.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/genetics , Genetic Variation/physiology , Insulin/genetics , Transcription Factor 7-Like 2 Protein/physiology , Alleles , C-Peptide/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/physiopathology , Genetic Variation/genetics , Genome-Wide Association Study , Genotype , Genotyping Techniques , Glucose Tolerance Test/methods , Humans , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Linear Models , Liver/metabolism
10.
Nat Genet ; 48(10): 1151-1161, 2016 10.
Article in English | MEDLINE | ID: mdl-27618447

ABSTRACT

High blood pressure is a major risk factor for cardiovascular disease and premature death. However, there is limited knowledge on specific causal genes and pathways. To better understand the genetics of blood pressure, we genotyped 242,296 rare, low-frequency and common genetic variants in up to 192,763 individuals and used ∼155,063 samples for independent replication. We identified 30 new blood pressure- or hypertension-associated genetic regions in the general population, including 3 rare missense variants in RBM47, COL21A1 and RRAS with larger effects (>1.5 mm Hg/allele) than common variants. Multiple rare nonsense and missense variant associations were found in A2ML1, and a low-frequency nonsense variant in ENPEP was identified. Our data extend the spectrum of allelic variation underlying blood pressure traits and hypertension, provide new insights into the pathophysiology of hypertension and indicate new targets for clinical intervention.


Subject(s)
Blood Pressure/genetics , Genetic Variation , Hypertension/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans
11.
Nat Genet ; 48(9): 1055-1059, 2016 09.
Article in English | MEDLINE | ID: mdl-27500523

ABSTRACT

Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10(-14)) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Glucose Transporter Type 2/genetics , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable , Blood Glucose/analysis , Body Mass Index , Diabetes Mellitus, Type 2/drug therapy , Genome-Wide Association Study , Glycated Hemoglobin/analysis , Humans , White People
12.
PLoS Genet ; 11(7): e1005230, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26132169

ABSTRACT

Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the first large-scale meta-analysis of genome-wide association studies (GWAS), supplemented by 1000G imputation, for four quantitative glycaemic and obesity-related traits, in up to 87,048 individuals of European ancestry. We identified two loci for body mass index (BMI) at genome-wide significance, and two for fasting glucose (FG), none of which has been previously reported in larger meta-analysis efforts to combine GWAS of European ancestry. Through conditional analysis, we also detected multiple distinct signals of association mapping to established loci for waist-hip ratio adjusted for BMI (RSPO3) and FG (GCK and G6PC2). The index variant for one association signal at the G6PC2 locus is a low-frequency coding allele, H177Y, which has recently been demonstrated to have a functional role in glucose regulation. Fine-mapping analyses revealed that the non-coding variants most likely to drive association signals at established and novel loci were enriched for overlap with enhancer elements, which for FG mapped to promoter and transcription factor binding sites in pancreatic islets, in particular. Our study demonstrates that 1000G imputation and genetic fine-mapping of common and low-frequency variant association signals at GWAS loci, integrated with genomic annotation in relevant tissues, can provide insight into the functional and regulatory mechanisms through which their effects on glycaemic and obesity-related traits are mediated.


Subject(s)
Chromosome Mapping , Genetic Predisposition to Disease , Glycemic Index/genetics , Obesity/genetics , Quantitative Trait Loci/genetics , Body Mass Index , Gene Frequency/genetics , Genome-Wide Association Study , Germinal Center Kinases , Glucose-6-Phosphatase/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics , Thrombospondins/genetics
13.
PLoS Genet ; 11(1): e1004876, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25625282

ABSTRACT

Genome wide association studies (GWAS) for fasting glucose (FG) and insulin (FI) have identified common variant signals which explain 4.8% and 1.2% of trait variance, respectively. It is hypothesized that low-frequency and rare variants could contribute substantially to unexplained genetic variance. To test this, we analyzed exome-array data from up to 33,231 non-diabetic individuals of European ancestry. We found exome-wide significant (P<5×10-7) evidence for two loci not previously highlighted by common variant GWAS: GLP1R (p.Ala316Thr, minor allele frequency (MAF)=1.5%) influencing FG levels, and URB2 (p.Glu594Val, MAF = 0.1%) influencing FI levels. Coding variant associations can highlight potential effector genes at (non-coding) GWAS signals. At the G6PC2/ABCB11 locus, we identified multiple coding variants in G6PC2 (p.Val219Leu, p.His177Tyr, and p.Tyr207Ser) influencing FG levels, conditionally independent of each other and the non-coding GWAS signal. In vitro assays demonstrate that these associated coding alleles result in reduced protein abundance via proteasomal degradation, establishing G6PC2 as an effector gene at this locus. Reconciliation of single-variant associations and functional effects was only possible when haplotype phase was considered. In contrast to earlier reports suggesting that, paradoxically, glucose-raising alleles at this locus are protective against type 2 diabetes (T2D), the p.Val219Leu G6PC2 variant displayed a modest but directionally consistent association with T2D risk. Coding variant associations for glycemic traits in GWAS signals highlight PCSK1, RREB1, and ZHX3 as likely effector transcripts. These coding variant association signals do not have a major impact on the trait variance explained, but they do provide valuable biological insights.


Subject(s)
Blood Glucose/genetics , Diabetes Mellitus, Type 2/genetics , Glucose-6-Phosphatase/genetics , Insulin/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/pathology , Exome/genetics , Gene Frequency , Genome-Wide Association Study , Glucagon-Like Peptide-1 Receptor , Glycemic Index/genetics , Humans , Insulin/genetics , Polymorphism, Single Nucleotide , Receptors, Glucagon/genetics
14.
PLoS One ; 9(6): e98608, 2014.
Article in English | MEDLINE | ID: mdl-24926958

ABSTRACT

INTRODUCTION: Most studies seeking common variant associations with type 2 diabetes (T2D) have focused on individuals of European ancestry. These discoveries need to be evaluated in other major ancestral groups, to understand ethnic differences in predisposition, and establish whether these contribute to variation in T2D prevalence and presentation. This study aims to establish whether common variants conferring T2D-risk in Europeans contribute to T2D-susceptibility in the South Asian population of Sri Lanka. METHODOLOGY: Lead single nucleotide polymorphism (SNPs) at 37 T2D-risk loci attaining genome-wide significance in Europeans were genotyped in 878 T2D cases and 1523 normoglycaemic controls from Sri Lanka. Association testing was performed by logistic regression adjusting for age and sex and by the Cochran-Mantel-Haenszel test after stratifying according to self-identified ethnolinguistic subgroup. A weighted genetic risk score was generated to examine the combined effect of these SNPs on T2D-risk in the Sri Lankan population. RESULTS: Of the 36 SNPs passing quality control, sixteen showed nominal (p<0.05) association in Sri Lankan samples, fifteen of those directionally-consistent with the original signal. Overall, these association findings were robust to analyses that accounted for membership of ethnolinguistic subgroups. Overall, the odds ratios for 31 of the 36 SNPs were directionally-consistent with those observed in Europeans (p = 3.2×10(-6)). Allelic odds ratios and risk allele frequencies in Sri Lankan subjects were not systematically different to those reported in Europeans. Genetic risk score and risk of T2D were strongly related in Sri Lankans (per allele OR 1.10 [95%CI 1.08-1.13], p = 1.2×10(-17)). CONCLUSION: Our data indicate that most T2D-risk variants identified in Europeans have similar effects in South Asians from Sri Lanka, and that systematic difference in common variant associations are unlikely to explain inter-ethnic differences in prevalence or presentation of T2D.


Subject(s)
Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , White People/ethnology , Asia, Southeastern/ethnology , Case-Control Studies , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Logistic Models , Sri Lanka/ethnology , White People/genetics
15.
PLoS One ; 9(1): e87335, 2014.
Article in English | MEDLINE | ID: mdl-24498077

ABSTRACT

INTRODUCTION: Polycystic Ovary Syndrome (PCOS) has a strong genetic background and the majority of patients with PCOS have elevated BMI levels. The aim of this study was to determine to which extent BMI-increasing alleles contribute to risk of PCOS when contemporaneous BMI is taken into consideration. METHODS: Patients with PCOS and controls were recruited from the United Kingdom (563 cases and 791 controls) and The Netherlands (510 cases and 2720 controls). Cases and controls were of similar BMI. SNPs mapping to 12 BMI-associated loci which have been extensively replicated across different ethnicities, i.e., BDNF, FAIM2, ETV5, FTO, GNPDA2, KCTD15, MC4R, MTCH2, NEGR1, SEC16B, SH2B1, and TMEM18, were studied in association with PCOS within each cohort using the additive genetic model followed by a combined analysis. A genetic allelic count risk score model was used to determine the risk of PCOS for individuals carrying increasing numbers of BMI-increasing alleles. RESULTS: None of the genetic variants, including FTO and MC4R, was associated with PCOS independently of BMI in the meta-analysis. Moreover, no differences were observed between cases and controls in the number of BMI-risk alleles present and no overall trend across the risk score groups was observed. CONCLUSION: In this combined analysis of over 4,000 BMI-matched individuals from the United Kingdom and the Netherlands, we observed no association of BMI risk alleles with PCOS independent of BMI.


Subject(s)
Body Mass Index , Genetic Predisposition to Disease/genetics , Polycystic Ovary Syndrome/genetics , Polymorphism, Single Nucleotide , Alleles , Body Weight/genetics , Case-Control Studies , Female , Gene Frequency , Genotype , Humans , Netherlands , Obesity/genetics , Overweight/genetics , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Risk Factors , United Kingdom
16.
Arthritis Rheumatol ; 66(1): 173-84, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24431284

ABSTRACT

OBJECTIVE: Production of pathogenic autoantibodies by self-reactive plasma cells (PCs) is a hallmark of autoimmune diseases. We undertook this study to investigate the prevalence of PCs and their relationship to known pathogenic pathways to increase our understanding of the role of PCs in disease progression and treatment response. METHODS: We developed a sensitive gene expression-based method to overcome the challenges of measuring PCs using flow cytometry. Whole-genome microarray analysis of sorted cellular fractions identified a panel of genes, IGHA1, IGJ, IGKC, IGKV4-1, and TNFRSF17, expressed predominantly in PCs. The sensitivity of the PC signature score created from the combined expression levels of these genes was assessed through ex vivo experiments with sorted cells. This PC gene expression signature was used for monitoring changes in PC levels following anti-CD19 therapy, for evaluating the relationship between PCs and other autoimmune disease-related genes, and for estimating PC levels in affected blood and tissue from patients with multiple autoimmune diseases. RESULTS: The PC signature was highly sensitive and capable of detecting a change in as few as 360 PCs. The PC signature was reduced more than 90% in scleroderma patients following anti-CD19 treatment, and this reduction was highly correlated (r = 0.80) with inhibition of collagen gene expression. Evaluation of multiple autoimmune diseases revealed that 30-35% of lupus and rheumatoid arthritis patients had increased levels of PCs. CONCLUSION: This newly developed PC signature provides a robust and accurate method of measuring PC levels in the clinic. Our results highlight subsets of patients across multiple autoimmune diseases who may benefit from PC-depleting therapy.


Subject(s)
Plasma Cells/metabolism , Scleroderma, Systemic/genetics , Transcriptome/genetics , Autoantibodies/biosynthesis , Autoimmune Diseases/genetics , B-Cell Maturation Antigen/genetics , Humans , Immunoglobulin J-Chains/genetics , Immunoglobulin kappa-Chains/genetics , Immunoglobulins/genetics , Tissue Array Analysis
17.
J Nutr ; 143(3): 345-53, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23343670

ABSTRACT

Favorable associations between magnesium intake and glycemic traits, such as fasting glucose and insulin, are observed in observational and clinical studies, but whether genetic variation affects these associations is largely unknown. We hypothesized that single nucleotide polymorphisms (SNPs) associated with either glycemic traits or magnesium metabolism affect the association between magnesium intake and fasting glucose and insulin. Fifteen studies from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium provided data from up to 52,684 participants of European descent without known diabetes. In fixed-effects meta-analyses, we quantified 1) cross-sectional associations of dietary magnesium intake with fasting glucose (mmol/L) and insulin (ln-pmol/L) and 2) interactions between magnesium intake and SNPs related to fasting glucose (16 SNPs), insulin (2 SNPs), or magnesium (8 SNPs) on fasting glucose and insulin. After adjustment for age, sex, energy intake, BMI, and behavioral risk factors, magnesium (per 50-mg/d increment) was inversely associated with fasting glucose [ß = -0.009 mmol/L (95% CI: -0.013, -0.005), P < 0.0001] and insulin [-0.020 ln-pmol/L (95% CI: -0.024, -0.017), P < 0.0001]. No magnesium-related SNP or interaction between any SNP and magnesium reached significance after correction for multiple testing. However, rs2274924 in magnesium transporter-encoding TRPM6 showed a nominal association (uncorrected P = 0.03) with glucose, and rs11558471 in SLC30A8 and rs3740393 near CNNM2 showed a nominal interaction (uncorrected, both P = 0.02) with magnesium on glucose. Consistent with other studies, a higher magnesium intake was associated with lower fasting glucose and insulin. Nominal evidence of TRPM6 influence and magnesium interaction with select loci suggests that further investigation is warranted.


Subject(s)
Blood Glucose/metabolism , Genetic Loci , Insulin/blood , Magnesium/pharmacology , Polymorphism, Single Nucleotide , Trace Elements/pharmacology , Blood Glucose/genetics , Female , Humans , Insulin/genetics , Magnesium/administration & dosage , Magnesium/metabolism , Male , TRPM Cation Channels/genetics , Trace Elements/administration & dosage , Trace Elements/metabolism
18.
Am J Epidemiol ; 177(2): 103-15, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23255780

ABSTRACT

Whether loci that influence fasting glucose (FG) and fasting insulin (FI) levels, as identified by genome-wide association studies, modify associations of diet with FG or FI is unknown. We utilized data from 15 U.S. and European cohort studies comprising 51,289 persons without diabetes to test whether genotype and diet interact to influence FG or FI concentration. We constructed a diet score using study-specific quartile rankings for intakes of whole grains, fish, fruits, vegetables, and nuts/seeds (favorable) and red/processed meats, sweets, sugared beverages, and fried potatoes (unfavorable). We used linear regression within studies, followed by inverse-variance-weighted meta-analysis, to quantify 1) associations of diet score with FG and FI levels and 2) interactions of diet score with 16 FG-associated loci and 2 FI-associated loci. Diet score (per unit increase) was inversely associated with FG (ß = -0.004 mmol/L, 95% confidence interval: -0.005, -0.003) and FI (ß = -0.008 ln-pmol/L, 95% confidence interval: -0.009, -0.007) levels after adjustment for demographic factors, lifestyle, and body mass index. Genotype variation at the studied loci did not modify these associations. Healthier diets were associated with lower FG and FI concentrations regardless of genotype at previously replicated FG- and FI-associated loci. Studies focusing on genomic regions that do not yield highly statistically significant associations from main-effect genome-wide association studies may be more fruitful in identifying diet-gene interactions.


Subject(s)
Blood Glucose/metabolism , Carbohydrate Metabolism/genetics , Diet , Gene-Environment Interaction , Genotype , Homeostasis/genetics , Insulin/blood , Biomarkers/blood , Blood Glucose/genetics , Diet Surveys , Fasting , Genetic Markers , Genome-Wide Association Study , Homeostasis/physiology , Humans , Insulin/genetics , Linear Models , Polymorphism, Single Nucleotide
19.
Nat Genet ; 43(2): 117-20, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21186350

ABSTRACT

Metformin is the most commonly used pharmacological therapy for type 2 diabetes. We report a genome-wide association study for glycemic response to metformin in 1,024 Scottish individuals with type 2 diabetes with replication in two cohorts including 1,783 Scottish individuals and 1,113 individuals from the UK Prospective Diabetes Study. In a combined meta-analysis, we identified a SNP, rs11212617, associated with treatment success (n = 3,920, P = 2.9 × 10(-9), odds ratio = 1.35, 95% CI 1.22-1.49) at a locus containing ATM, the ataxia telangiectasia mutated gene. In a rat hepatoma cell line, inhibition of ATM with KU-55933 attenuated the phosphorylation and activation of AMP-activated protein kinase in response to metformin. We conclude that ATM, a gene known to be involved in DNA repair and cell cycle control, plays a role in the effect of metformin upstream of AMP-activated protein kinase, and variation in this gene alters glycemic response to metformin.


Subject(s)
Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Metformin/pharmacology , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics , Animals , Ataxia Telangiectasia Mutated Proteins , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Dose-Response Relationship, Drug , Genome-Wide Association Study , Humans , Hypoglycemic Agents/pharmacology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Polymorphism, Single Nucleotide , Protein Kinases/metabolism , Rats , Scotland
20.
Diabetes Care ; 33(12): 2684-91, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20693352

ABSTRACT

OBJECTIVE: Whole-grain foods are touted for multiple health benefits, including enhancing insulin sensitivity and reducing type 2 diabetes risk. Recent genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) associated with fasting glucose and insulin concentrations in individuals free of diabetes. We tested the hypothesis that whole-grain food intake and genetic variation interact to influence concentrations of fasting glucose and insulin. RESEARCH DESIGN AND METHODS: Via meta-analysis of data from 14 cohorts comprising ∼ 48,000 participants of European descent, we studied interactions of whole-grain intake with loci previously associated in GWAS with fasting glucose (16 loci) and/or insulin (2 loci) concentrations. For tests of interaction, we considered a P value <0.0028 (0.05 of 18 tests) as statistically significant. RESULTS: Greater whole-grain food intake was associated with lower fasting glucose and insulin concentrations independent of demographics, other dietary and lifestyle factors, and BMI (ß [95% CI] per 1-serving-greater whole-grain intake: -0.009 mmol/l glucose [-0.013 to -0.005], P < 0.0001 and -0.011 pmol/l [ln] insulin [-0.015 to -0.007], P = 0.0003). No interactions met our multiple testing-adjusted statistical significance threshold. The strongest SNP interaction with whole-grain intake was rs780094 (GCKR) for fasting insulin (P = 0.006), where greater whole-grain intake was associated with a smaller reduction in fasting insulin concentrations in those with the insulin-raising allele. CONCLUSIONS: Our results support the favorable association of whole-grain intake with fasting glucose and insulin and suggest a potential interaction between variation in GCKR and whole-grain intake in influencing fasting insulin concentrations.


Subject(s)
Blood Glucose/metabolism , Edible Grain , Fasting/blood , Genetic Loci/genetics , Insulin/blood , Adult , Aged , Blood Glucose/genetics , Female , Genome-Wide Association Study , Genotype , Humans , Insulin/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...