Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 22(4): 423-433, 2021 04.
Article in English | MEDLINE | ID: mdl-33767427

ABSTRACT

Individuals infected with human immunodeficiency virus type-1 (HIV-1) show metabolic alterations of CD4+ T cells through unclear mechanisms with undefined consequences. We analyzed the transcriptome of CD4+ T cells from patients with HIV-1 and revealed that the elevated oxidative phosphorylation (OXPHOS) pathway is associated with poor outcomes. Inhibition of OXPHOS by the US Food and Drug Administration-approved drug metformin, which targets mitochondrial respiratory chain complex-I, suppresses HIV-1 replication in human CD4+ T cells and humanized mice. In patients, HIV-1 peak viremia positively correlates with the expression of NLRX1, a mitochondrial innate immune receptor. Quantitative proteomics and metabolic analyses reveal that NLRX1 enhances OXPHOS and glycolysis during HIV-1-infection of CD4+ T cells to promote viral replication. At the mechanistic level, HIV infection induces the association of NLRX1 with the mitochondrial protein FASTKD5 to promote expression of mitochondrial respiratory complex components. This study uncovers the OXPHOS pathway in CD4+ T cells as a target for HIV-1 therapy.


Subject(s)
CD4-Positive T-Lymphocytes/virology , Genomics , HIV Infections/virology , HIV-1/growth & development , Metabolome , Metabolomics , Oxidative Phosphorylation , Proteome , Transcriptome , Virus Replication , Animals , Antiviral Agents/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Gene Regulatory Networks , HEK293 Cells , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/drug effects , HIV-1/immunology , HIV-1/metabolism , Host-Pathogen Interactions , Humans , Jurkat Cells , Male , Metformin/pharmacology , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation/drug effects , Proteomics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Viral Load , Virus Replication/drug effects
2.
J Exp Med ; 214(12): 3611-3626, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29030458

ABSTRACT

Recognition of pathogen-associated molecular patterns and danger-associated molecular patterns by host cells is an important step in innate immune activation. The DNA sensor cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) binds to DNA and produces cGAMP, which in turn binds to stimulator of interferon genes (STING) to activate IFN-I. Here we show that cGAMP has a noncanonical function in inflammasome activation in human and mouse cells. Inflammasome activation requires two signals, both of which are activated by cGAMP. cGAMP alone enhances expression of inflammasome components through IFN-I, providing the priming signal. Additionally, when combined with a priming signal, cGAMP activates the inflammasome through an AIM2, NLRP3, ASC, and caspase-1 dependent process. These two cGAMP-mediated functions, priming and activation, have differential requirements for STING. Temporally, cGAMP induction of IFN-I precedes inflammasome activation, which then occurs when IFN-I is waning. In mice, cGAS/cGAMP amplify both inflammasome and IFN-I to control murine cytomegalovirus. Thus, cGAMP activates the inflammasome in addition to IFN-I, and activation of both is needed to control infection by a DNA virus.


Subject(s)
Inflammasomes/metabolism , Nucleotides, Cyclic/metabolism , Animals , Cell Death/drug effects , DNA/metabolism , DNA-Binding Proteins/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Membrane Proteins/metabolism , Mice, Inbred C57BL , Muromegalovirus/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotidyltransferases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
J Biol Chem ; 287(39): 32791-9, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22843689

ABSTRACT

The interleukin (IL)-1ß-processing inflammasome has recently been identified as a target for pathogenic evasion of the inflammatory response by a number of bacteria and viruses. We postulated that the periodontal pathogen, Porphyromonas gingivalis may suppress the inflammasome as a mechanism for its low immunogenicity and pathogenic synergy with other, more highly immunogenic periodontal bacteria. Our results show that P. gingivalis lacks signaling capability for the activation of the inflammasome in mouse macrophages. Furthermore, P. gingivalis can suppress inflammasome activation by another periodontal bacterium, Fusobacterium nucleatum. This repression affects IL-1ß processing, as well as other inflammasome-mediated processes, including IL-18 processing and cell death, in both human and mouse macrophages. F. nucleatum activates IL-1ß processing through the Nlrp3 inflammasome; however, P. gingivalis repression is not mediated through reduced levels of inflammasome components. P. gingivalis can repress Nlrp3 inflammasome activation by Escherichia coli, and by danger-associated molecular patterns and pattern-associated molecular patterns that mediate activation through endocytosis. However, P. gingivalis does not suppress Nlrp3 inflammasome activation by ATP or nigericin. This suggests that P. gingivalis may preferentially suppress endocytic pathways toward inflammasome activation. To directly test whether P. gingivalis infection affects endocytosis, we assessed the uptake of fluorescent particles in the presence or absence of P. gingivalis. Our results show that P. gingivalis limits both the number of cells taking up beads and the number of beads taken up for bead-positive cells. These results provide a novel mechanism of pathogen-mediated inflammasome inhibition through the suppression of endocytosis.


Subject(s)
Bacteroidaceae Infections/immunology , Endocytosis/immunology , Inflammasomes/immunology , Macrophage Activation/immunology , Macrophages/immunology , Porphyromonas gingivalis/immunology , Animals , Carrier Proteins/immunology , Cells, Cultured , Coculture Techniques , Escherichia coli/immunology , Fusobacterium/immunology , Humans , Macrophages/microbiology , Macrophages/pathology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein
4.
PLoS One ; 6(9): e24795, 2011.
Article in English | MEDLINE | ID: mdl-21966369

ABSTRACT

Plexins are cell surface receptors widely studied in the nervous system, where they mediate migration and morphogenesis though the Rho family of small GTPases. More recently, plexins have been implicated in immune processes including cell-cell interaction, immune activation, migration, and cytokine production. Plexin-B2 facilitates ligand induced cell guidance and migration in the nervous system, and induces cytoskeletal changes in overexpression assays through RhoGTPase. The function of Plexin-B2 in the immune system is unknown. This report shows that Plexin-B2 is highly expressed on cells of the innate immune system in the mouse, including macrophages, conventional dendritic cells, and plasmacytoid dendritic cells. However, Plexin-B2 does not appear to regulate the production of proinflammatory cytokines, phagocytosis of a variety of targets, or directional migration towards chemoattractants or extracellular matrix in mouse macrophages. Instead, Plxnb2(-/-) macrophages have greater cellular motility than wild type in the unstimulated state that is accompanied by more active, GTP-bound Rac and Cdc42. Additionally, Plxnb2(-/-) macrophages demonstrate faster in vitro wound closure activity. Studies have shown that a closely related family member, Plexin-B1, binds to active Rac and sequesters it from downstream signaling. The interaction of Plexin-B2 with Rac has only been previously confirmed in yeast and bacterial overexpression assays. The data presented here show that Plexin-B2 functions in mouse macrophages as a negative regulator of the GTPases Rac and Cdc42 and as a negative regulator of basal cell motility and wound healing.


Subject(s)
Cell Movement , Macrophages/metabolism , Nerve Tissue Proteins/metabolism , cdc42 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Blotting, Western , Bone Marrow Cells/metabolism , Cell Transplantation/methods , Cells, Cultured , Cytokines/metabolism , Female , Flow Cytometry , Humans , Leukocyte Common Antigens/metabolism , Liver/cytology , Liver/embryology , Liver/metabolism , Macrophages/cytology , Male , Mice , Mice, Congenic , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Phagocytosis , Protein Binding , Spleen/cytology , Spleen/metabolism
5.
J Biol Chem ; 286(22): 19605-16, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21487011

ABSTRACT

ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1ß. MAPK activation by pathogen was abrogated in Asc(-/-) but not Nlrp3(-/-), Nlrc4(-/-), or Casp1(-/-) macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.


Subject(s)
Chemokines/biosynthesis , Cytoskeletal Proteins/metabolism , Dual-Specificity Phosphatases/metabolism , Inflammasomes/metabolism , Macrophages/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Animals , Apoptosis Regulatory Proteins , CARD Signaling Adaptor Proteins , Cell Line , Chemokines/genetics , Cytoskeletal Proteins/genetics , Dual-Specificity Phosphatases/genetics , Enzyme Activation/physiology , Gene Knockdown Techniques , Humans , Inflammasomes/genetics , Macrophages/cytology , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics
6.
Methods Mol Biol ; 629: 141-58, 2010.
Article in English | MEDLINE | ID: mdl-20387148

ABSTRACT

Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery.


Subject(s)
Gene Knockdown Techniques/methods , RNA, Small Interfering/chemical synthesis , RNA, Small Interfering/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Adhesion , Cell Line , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-1beta/metabolism , Lentivirus/physiology , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Transduction, Genetic , Virus Assembly
7.
Immunity ; 30(4): 556-65, 2009 Apr 17.
Article in English | MEDLINE | ID: mdl-19362020

ABSTRACT

The nucleotide-binding domain and leucine-rich-repeat-containing (NLR) family of pattern-recognition molecules mediate host immunity to various pathogenic stimuli. However, in vivo evidence for the involvement of NLR proteins in viral sensing has not been widely investigated and remains controversial. As a test of the physiologic role of the NLR molecule NLRP3 during RNA viral infection, we explored the in vivo role of NLRP3 inflammasome components during influenza virus infection. Mice lacking Nlrp3, Pycard, or caspase-1, but not Nlrc4, exhibited dramatically increased mortality and a reduced immune response after exposure to the influenza virus. Utilizing analogs of dsRNA (poly(I:C)) and ssRNA (ssRNA40), we demonstrated that an NLRP3-mediated response could be activated by RNA species. Mechanistically, NLRP3 inflammasome activation by the influenza virus was dependent on lysosomal maturation and reactive oxygen species (ROS). Inhibition of ROS induction eliminated IL-1beta production in animals during influenza infection. Together, these data place the NLRP3 inflammasome as an essential component in host defense against influenza infection through the sensing of viral RNA.


Subject(s)
Carrier Proteins/physiology , Exosomes/immunology , Immunity, Innate , Influenza A virus/immunology , Orthomyxoviridae Infections/immunology , RNA, Viral , Virus Diseases/immunology , Animals , Carrier Proteins/genetics , Cell Line , Humans , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza, Human/immunology , Mice , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein
8.
J Immunol ; 182(4): 2395-404, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19201894

ABSTRACT

Periodontal disease is a chronic inflammatory disorder that leads to the destruction of tooth-supporting tissue and affects 10-20 million people in the U.S. alone. The oral pathogen Porphyromonas gingivalis causes inflammatory host response leading to periodontal and other secondary inflammatory diseases. To identify molecular components that control host response to P. gingivalis in humans, roles for the NLR (NBD-LRR) protein, NLRP3 (cryopyrin, NALP3), and its adaptor apoptotic speck protein containing a C-terminal caspase recruitment domain (ASC) were studied. P. gingivalis strain A7436 induces cell death in THP1 monocytic cells and in human primary peripheral blood macrophages. This process is ASC and NLRP3 dependent and can be replicated by P. gingivalis LPS and Escherichia coli. P. gingivalis-induced cell death is caspase and IL-1 independent and exhibits morphological features consistent with necrosis including loss of membrane integrity and release of cellular content. Intriguingly, P. gingivalis-induced cell death is accompanied by the formation of ASC aggregation specks, a process not previously described during microbial infection. ASC specks are observed in P. gingivalis-infected primary human mononuclear cells and are dependent on NLRP3. This work shows that P. gingivalis causes ASC- and NLRP3-dependent necrosis, accompanied by ASC speck formation.


Subject(s)
Bacteroidaceae Infections/metabolism , Carrier Proteins/metabolism , Cytoskeletal Proteins/metabolism , Macrophages/microbiology , Monocytes/microbiology , Necrosis/metabolism , Bacteroidaceae Infections/immunology , Bacteroidaceae Infections/pathology , Blotting, Western , CARD Signaling Adaptor Proteins , Carrier Proteins/immunology , Cytoskeletal Proteins/immunology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Humans , Macrophages/immunology , Macrophages/metabolism , Microscopy, Electron, Transmission , Monocytes/immunology , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Necrosis/immunology , Necrosis/microbiology , Porphyromonas gingivalis , Reverse Transcriptase Polymerase Chain Reaction
9.
Acad Psychiatry ; 32(5): 414-9, 2008.
Article in English | MEDLINE | ID: mdl-18945981

ABSTRACT

OBJECTIVE: The American Academy of Child and Adolescent Psychiatry (AACAP) has partnered with the Harvard Macy Program for Healthcare Educators so that selected child and adolescent psychiatry academic faculty might enhance their teaching expertise in order to possibly enhance recruitment of medical students into child and adolescent psychiatry. METHODS: Thirteen child psychiatry faculty have graduated from the AACAP-Harvard Macy Teaching Scholars Program (HMTSP). There are 10 additional child and adolescent psychiatry faculty members in the process of completing the program. A survey was created to broadly assess the effect of the AACAP-HMTSP training on the first 13 graduates of the program as a pilot to guide future study of the program. Three teaching scholars who are the first authors of this article (JH, DS, MH) conducted this survey and the data interpretation for this study. RESULTS: Thirteen of the scholars submitted responses to the survey. All participants indicated a high degree of satisfaction with the HMTSP and with the overall usefulness of the concepts learned. All but one of the scholars reported that the program enhanced their teaching effectiveness. The scholars reported increased teaching of medical students (9 of 13) and psychiatry residents (6 of 13) after the HMTSP. CONCLUSION: The AACAP-Harvard Macy Teaching Scholars reported high levels of satisfaction with the overall program. Whether the reported increase in medical student and psychiatry resident mentoring and teaching will eventually lead to increased medical student recruitment into child and adolescent psychiatry remains to be determined.


Subject(s)
Adolescent Psychiatry/education , Child Psychiatry/education , Program Development , Teaching/methods , Humans , Personal Satisfaction , Surveys and Questionnaires , Time Factors
10.
J Virol ; 79(22): 13993-4003, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16254335

ABSTRACT

Most Epstein-Barr virus (EBV)-positive tumor cells contain one of the latent forms of viral infection. The role of lytic viral gene expression in EBV-associated malignancies is unknown. Here we show that EBV mutants that cannot undergo lytic viral replication are defective in promoting EBV-mediated lymphoproliferative disease (LPD). Early-passage lymphoblastoid cell lines (LCLs) derived from EBV mutants with a deletion of either viral immediate-early gene grew similarly to wild-type (WT) virus LCLs in vitro but were deficient in producing LPD when inoculated into SCID mice. Restoration of lytic EBV gene expression enhanced growth in SCID mice. Acyclovir, which prevents lytic viral replication but not expression of early lytic viral genes, did not inhibit the growth of WT LCLs in SCID mice. Early-passage LCLs derived from the lytic-defective viruses had substantially decreased expression of the cytokine interleukin-6 (IL-6), and restoration of lytic gene expression reversed this defect. Expression of cellular IL-10 and viral IL-10 was also diminished in lytic-defective LCLs. These results suggest that lytic EBV gene expression contributes to EBV-associated lymphoproliferative disease, potentially through induction of paracrine B-cell growth factors.


Subject(s)
Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/pathogenicity , Lymphoproliferative Disorders/virology , Animals , Apoptosis , Base Sequence , Cell Division , DNA Primers , Disease Models, Animal , Herpesvirus 4, Human/genetics , Humans , Lymphoproliferative Disorders/pathology , Mice , Mice, SCID , Reverse Transcriptase Polymerase Chain Reaction
11.
J Virol ; 79(2): 745-55, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15613302

ABSTRACT

The Epstein-Barr virus (EBV) BMRF1 gene encodes an early lytic protein that functions not only as the viral DNA polymerase processivity factor but also as a transcriptional activator. BMRF1 has been previously shown to activate transcription of an EBV early promoter, BHLF1, though a GC-rich motif which binds to SP1 and ZBP-89, although the exact mechanism for this effect is not known (D. J. Law, S. A. Tarle, and J. L. Merchant, Mamm. Genome 9:165-167, 1998). Here we demonstrate that BMRF1 activates transcription of the cellular gastrin gene in telomerase-immortalized keratinocytes. Furthermore, BMRF1 activated a reporter gene construct driven by the gastrin promoter in a variety of cell types, and this effect was mediated by two SP1/ZBP-89 binding sites in the gastrin promoter. ZBP-89 has been previously shown to negatively regulate the gastrin promoter. However, ZBP-89 can function as either a negative or positive regulator of transcription, depending upon the promoter and perhaps other, as-yet-unidentified factors. BMRF1 increased the binding of ZBP-89 to the gastrin promoter, and a ZBP-89-GAL4 fusion protein was converted into a positive transcriptional regulator by cotransfection with BMRF1. BMRF1 also enhanced the transcriptional activity of an SP1-GAL4 fusion protein. These results suggest that BMRF1 activates target promoters through its effect on both the SP1 and ZBP-89 transcription factors. Furthermore, as the EBV genome is present in up to 10% of gastric cancers, and the different forms of gastrin are growth factors for gastrointestinal epithelium, our results suggest a mechanism by which lytic EBV infection could promote the growth of gastric cells.


Subject(s)
Antigens, Viral/physiology , Gastrins/genetics , Gene Expression Regulation , Binding Sites , DNA-Binding Proteins/metabolism , Humans , Promoter Regions, Genetic , Sp1 Transcription Factor/metabolism , Transcription Factors/metabolism , Transcription, Genetic
12.
J Biol Chem ; 279(39): 40358-61, 2004 Sep 24.
Article in English | MEDLINE | ID: mdl-15286084

ABSTRACT

Epstein-Barr virus (EBV) encodes a set of core replication factors used during lytic infection in human cells that parallels the factors used in many other systems. These include a DNA polymerase and its accessory factor, a helicase/primase, and a single strand binding protein. The EBV polymerase accessory factor has been identified as the product of the BMRF1 gene and has been shown by functional assays to increase the activity and processivity of the polymerase. Unlike other members of this class of factors, BMRF1 is also a transcription factor regulating certain EBV genes. Although several polymerase accessory factors, including eukaryotic proliferating cell nuclear antigen, Escherichia coli beta protein, and T4 gene 45 protein have been shown to form oligomeric rings termed sliding clamps, nothing is known about the oligomeric state of BMRF1 or whether it forms a ring. In this work, BMRF1 was purified directly from human cells infected with an adenovirus vector expressing the BMRF1 gene product. The protein was purified to near homogeneity, and examination by negative staining electron microscopy revealed large, flat, ring-shaped molecules with a diameter of 15.5 +/- 0.8 nm and a distinct 5.3-nm diameter hole in the center. The size of these rings is consistent with an oligomer of 6 monomers, nearly twice as large as the trimeric proliferating cell nuclear antigen ring. Unlike the herpes simplex virus UL42 homologue, BMRF1 was found to self-associate in solution. These findings extend the theme of polymerase accessory factors adopting ring-shaped structures and provide an example in which the ring is significantly larger than any previously described sliding clamp.


Subject(s)
Antigens, Viral/chemistry , Adenoviridae/genetics , Antigens, Viral/metabolism , Blotting, Western , Cell Line , Cell Nucleus/metabolism , DNA-Directed DNA Polymerase/chemistry , Dimerization , Escherichia coli/metabolism , Glutathione/metabolism , Glutathione Transferase/metabolism , HeLa Cells , Humans , Microscopy, Electron , Plasmids/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Protein Conformation , Recombinant Fusion Proteins/metabolism , Transcription, Genetic
13.
J Virol ; 76(24): 12543-52, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12438580

ABSTRACT

The Epstein-Barr virus (EBV) immediate-early protein BZLF1 mediates the switch between the latent and lytic forms of EBV infection and has been previously shown to induce a G(1)/S block in cell cycle progression in some cell types. To examine the effect of BZLF1 on cellular gene expression, we performed microarray analysis on telomerase-immortalized human keratinocytes that were mock infected or infected with a control adenovirus vector (AdLacZ) or a vector expressing the EBV BZLF1 protein (AdBZLF1). Cellular genes activated by BZLF1 expression included E2F-1, cyclin E, Cdc25A, and a number of other genes involved in cell cycle progression. Immunoblot analysis confirmed that BZLF1 induced expression of E2F-1, cyclin E, Cdc25A, and stem loop binding protein (a protein known to be primarily expressed during S phase) in telomerase-immortalized keratinocytes. Similarly, BZLF1 increased expression of E2F-1, cyclin E, and stem loop binding protein (SLBP) in primary tonsil keratinocytes. In contrast, BZLF1 did not induce E2F-1 expression in normal human fibroblasts. Cell cycle analysis revealed that while BZLF1 dramatically blocked G(1)/S progression in normal human fibroblasts, it did not significantly affect cell cycle progression in primary human tonsil keratinocytes. Furthermore, in EBV-infected gastric carcinoma cells, the BZLF1-positive cells had an increased number of cells in S phase compared to the BZLF1-negative cells. Thus, in certain cell types (but not others), BZLF1 enhances expression of cellular proteins associated with cell cycle progression, which suggests that an S-phase-like environment may be advantageous for efficient lytic EBV replication in some cell types.


Subject(s)
Cell Cycle Proteins , DNA-Binding Proteins/physiology , Keratinocytes/metabolism , Trans-Activators/physiology , Transcription Factors/biosynthesis , Viral Proteins , Adenoviridae/genetics , Apoptosis , B-Lymphocytes/cytology , B-Lymphocytes/virology , Cells, Cultured , Cyclin E/biosynthesis , E2F Transcription Factors , E2F1 Transcription Factor , G1 Phase , Humans , Keratinocytes/cytology , Oligonucleotide Array Sequence Analysis , S Phase , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Telomerase/genetics , Tumor Suppressor Protein p53/analysis
14.
J Virol ; 76(19): 10030-7, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12208981

ABSTRACT

The Epstein-Barr virus immediate-early protein BZLF1 is a transcriptional activator that mediates the switch from latent to lytic infection. Here we demonstrate that BZLF1 induces both a G(2) block and a mitotic block in HeLa cells and inhibits chromosome condensation. While the G(2) block is associated with decreased cyclin B1 in host cells and can be rescued by overexpression of cyclin B1, the mechanism for the mitotic defect is as yet undetermined.


Subject(s)
DNA-Binding Proteins/physiology , G2 Phase , Mitosis , Trans-Activators/physiology , Viral Proteins , Cyclin B/physiology , Cyclin B1 , HeLa Cells , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...