Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 338
Filter
2.
Am J Clin Exp Immunol ; 13(3): 133-139, 2024.
Article in English | MEDLINE | ID: mdl-39022794

ABSTRACT

To explore the characteristics of hematologic indicators and related risk factors of lower extremity deep vein thrombosis (LDVT) in patients with cerebral infarction. METHODS: This study retrospectively analyzed data from 174 patients with cerebral infarction admitted to The Rehabilitation Department of Shanghai Fifth Rehabilitation Hospital and Shanghai First People's Hospital from June 2022 to June 2023. Based on the results of lower limb venous color Doppler ultrasound examinations, patients were divided into two groups: the LDVT group (35 cases) and the non-LDVT group (139 cases). We compared the clinical data and hematologic indicators (D-dimer value, fibrinogen, white blood cells, platelets, uric acid, creatinine, etc.) of the two groups to identify the risk factors of cerebral infarction complicated with LDVT. RESULTS: Statistical analysis revealed that the D-dimer values of the LDVT group were significantly (P<0.05) higher than those of the non-LDVT group. The uric acid value of the LDVT group was significantly lower than that of the non-LDVT group, with statistical significance (P<0.05). The Brunnstrom staging in the LDVT group was significantly different from that in the non-LDVT group (P<0.05). Meanwhile, binary logistic regression analysis showed that LDVT complicated with cerebral infarction was associated with D-dimer level [OR=1.302, 95% CI (1.077, 1.575)], uric acid level [OR=0.995, 95% CI (0.990, 1.000)], and Brunnstrom staging [OR=3.005, 95% CI (1.312, 6.880)]. CONCLUSION: D-dimer value, uric acid value, and Brunnstrom stage I to II are closely related to the occurrence of LDVT in patients with cerebral infarction. High D-dimer value, low uric acid value, and Brunnstrom stage I to II are independent risk factors for LDVT in cerebral infarction. Early assessment of D-dimer value, uric acid value, and Brunnstrom stage of cerebral infarction should be considered in clinical practice.

3.
J Asian Nat Prod Res ; : 1-14, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958645

ABSTRACT

Breast cancer is the most common malignant tumor and a major cause of mortality among women worldwide. Atramacronoid A (AM-A) is a unique natural sesquiterpene lactone isolated from the rhizome of Atractylodes macrocephala Koidz (known as Baizhu in Chinese). Our study demonstrated that AM-A triggers a specific form of cell death resembling PANoptosis-like cell death. Further analysis indicated that AM-A-induced PANoptosis-like cell death is associated with the CASP-3/PARP-GSDMD-MLKL pathways, which are mediated by mitochondrial dysfunction. These results suggest the potential of AM-A as a lead compound and offer insights for the development of therapeutic agents for breast cancer from natural products.

4.
Adv Drug Deliv Rev ; 211: 115355, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849004

ABSTRACT

Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.


Subject(s)
Gene Transfer Techniques , Mitochondria , Nanostructures , Humans , Mitochondria/metabolism , Nanostructures/chemistry , Animals , Biological Transport , DNA, Mitochondrial/genetics , Gene Editing/methods
5.
Immunology ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934051

ABSTRACT

Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.

6.
Animal Model Exp Med ; 7(3): 234-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863309

ABSTRACT

BACKGROUND: According to traditional Chinese medicine (TCM), drugs supplementing the vital energy, Qi, can eliminate tumors by restoring host immunity. The objective of this study is to investigate the underlying immune mechanisms of anti-tumor activity associated with Qi-supplementing herbs, specifically the paired use of Huangqi and Danggui. METHODS: Analysis of compatibility regularity was conducted to screen the combination of Qi-supplementing TCMs. Using the MTT assay and a transplanted tumor mice model, the anti-tumor effects of combination TCMs were investigated in vitro and in vivo. High content analysis and flow cytometry were then used to evaluate cellular immunity, followed by network pharmacology and molecular docking to dissect the significant active compounds and potential mechanisms. Finally, the anti-tumor activity and the mechanism of the active ingredients were verified by molecular experiments. RESULTS: There is an optimal combination of Huangqi and Danggui that, administered as an aqueous extract, can activate immunity to suppress tumor and is more effective than each drug on its own in vitro and in vivo. Based on network pharmacology analysis, PIK3R1 is the core target for the anti-tumor immunity activity of combined Huangqi and Danggui. Molecular docking analysis shows 6 components of the combined Danggui and Huangqi extract (quercetin, jaranol, isorhamnetin, kaempferol, calycosin, and suchilactone) that bind to PIK3R1. Jaranol is the most important component against breast cancer. The suchilactone/jaranol combination and, especially, the suchilactone/kaempferol combination are key for immunity enhancement and the anti-tumor effects of the extract. CONCLUSIONS: The combination of Huangqi and Danggui can activate immunity to suppress breast cancer and is more effective than the individual drugs alone.


Subject(s)
Breast Neoplasms , Drugs, Chinese Herbal , Mice, Inbred BALB C , Molecular Docking Simulation , Drugs, Chinese Herbal/pharmacology , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Mice , Humans , Astragalus propinquus , Cell Line, Tumor , Up-Regulation/drug effects
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 852-856, 2024 Jun.
Article in Chinese | MEDLINE | ID: mdl-38926979

ABSTRACT

OBJECTIVE: To investigate the intervention effect and mechanism of regulating miR-155 on young rats with dysfunction of blood coagulation. METHODS: Twenty-six healthy and clean SD male rats were selected to establish the coagulopathy models. Twenty-four rats successfully established models and were randomly divided into three groups: model group, up-regulated miR-155 group and down-regulated miR-155 group, with 8 rats in each group. The expression of miR-155 was detected by real-time fluorescence quantitative polymerase chain reaction. The changes of coagulation factors and coagulation indicators were observed. Liver pathological tissues were observed by HE staining. The expressions of HMGB1-RAGE/TLRs-NF-κB signaling pathway related proteins were detected by Western blot. RESULTS: Compared with model group, the expressions of HMGB1, RAGE, TLR2, TLR4 and NF-κB were significantly increased in up-regulated miR-155 group (all P < 0.05), while decreased in down-regulated miR-155 group (all P < 0.05). Compared with model group, the expressions of coagulation factor Ⅱ, Ⅶ, Ⅸ, and Ⅹ were significantly decreased in up-regulated miR-155 group (all P < 0.05), while increased in down-regulated miR-155 group (P < 0.05). There was no significant difference in the expression of coagulation factor Ⅺ among the three groups (P >0.05). Compared with model group, the levels of prothrombin time (PT) and activated partial thromboplastin time (APTT) were lower and fibrinogen (FIB) was higher in up-regulated miR-155 group (all P < 0.05), while in the down-regulated miR-155 group they were opposite. CONCLUSION: Down-regulation of miR-155 can effectively improve coagulation factors and coagulation indexes and inhibit inflammation in young rats with dysfunction of blood coagulopathy, and the mechanism may be related to HMGB1-RAGE/TLRs-NF-κB signaling pathway.


Subject(s)
Blood Coagulation , HMGB1 Protein , MicroRNAs , NF-kappa B , Rats, Sprague-Dawley , Signal Transduction , Animals , Rats , Male , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Blood Coagulation Disorders , Down-Regulation , Toll-Like Receptor 4/metabolism , Blood Coagulation Factors/metabolism , Toll-Like Receptor 2/metabolism
8.
BMC Pediatr ; 24(1): 352, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778342

ABSTRACT

BACKGROUND: Galactosemia is an autosomal recessive disorder resulting from an enzyme defect in the galactose metabolic pathway. The most severe manifestation of classic galactosemia is caused by galactose-1-phosphate uridylyltransferase (GALT) deficiency, and this condition can be fatal during infancy if left untreated. It also may result in long-term complications in affected individuals. CASE PRESENTATION: This report describes a patient whose initial clinical symptoms were jaundice and liver dysfunction. The patient's liver and coagulation functions did not improve after multiple admissions and treatment with antibiotics, hepatoprotective and choleretic agents and blood transfusion. Genetic analysis revealed the presence of two variants in the GALT gene in the compound heterozygous state: c.377 + 2dup and c.368G > C (p.Arg123Pro). Currently, the variant locus (c.377 + 2dup) in the GALT gene has not been reported in the Human Gene Mutation Database (HGMD), while c.368G > C (p.Arg123Pro) has not been reported in the Genome Aggregation Database (GnomAD) nor the HGMD in East Asian population. We postulated that the two variants may contribute to the development of classical galactosemia. CONCLUSIONS: Applications of whole-exome sequencing to detect the two variants can improve the detection and early diagnosis of classical galactosemia and, more specifically, may identify individuals who are compound heterozygous with variants in the GALT gene. Variants in the GALT gene have a potential therapeutic significance for classical galactosemia.


Subject(s)
Galactosemias , UTP-Hexose-1-Phosphate Uridylyltransferase , Humans , Galactosemias/genetics , Galactosemias/diagnosis , UTP-Hexose-1-Phosphate Uridylyltransferase/genetics , Male , Female , Mutation , Infant
9.
Int J Biol Macromol ; 270(Pt 1): 132066, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705323

ABSTRACT

A comprehensive multiscale analysis was conducted to explore the effects of different ratios of these materials on its properties. The results show that KC played a crucial role in controlling solution viscosity and gel and sol temperatures. The dissolution time at high water temperatures primarily decreased with an increase in SA content. Higher KC and CS content increased tensile strength (TS) and elongation at break (ε), while also exhibiting better thermal stability. Water vapor transmission (WVT) and permeability (PV) initially decreased, then increased with the increase of SA and CS contents. Finally, an SA:KC:CS ratio of 1:3:2 showed optimal comprehensive properties, with a dissolution time of about 60.0 ± 3.8 s, TS of 23.80 ± 0.29 MPa, ε of 18.61 ± 0.34 %, WVT of 21.74 ± 0.62 g/m2·24h, and PV of 5.39 ± 0.17 meq/kg. Meanwhile, the SA:KC:CS edible food packaging only introduced minimal effects on food after dissolution, and the total bacterial count met regulatory standards.


Subject(s)
Edible Films , Food Packaging , Permeability , Water , Food Packaging/methods , Water/chemistry , Polysaccharides/chemistry , Solubility , Hot Temperature , Viscosity , Tensile Strength , Steam , Mechanical Phenomena , Fast Foods/analysis
10.
Biosens Bioelectron ; 258: 116370, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38744115

ABSTRACT

Protein phosphorylation is a significant post-translational modification that plays a decisive role in the occurrence and development of diseases. However, the rapid and accurate identification of phosphoproteins remains challenging. Herein, a high-throughput sensor array has been constructed based on a magnetic bimetallic nanozyme (Fe3O4@ZNP@UiO-66) for the identification and discrimination of phosphoproteins. Attributing to the formation of Fe-Zr bimetallic dual active centers, the as-prepared Fe3O4@ZNP@UiO-66 exhibits enhanced peroxidase-mimicking catalytic activity, which promotes the electron transfer from Zr center to Fe(II)/Fe(III). The catalytic activity of Fe3O4@ZNP@UiO-66 can be selectively inhibited by phosphoproteins due to the strong interaction between phosphate groups and Zr centers, as well as the ultra-robust antifouling capability of zwitterionic dopamine nanoparticle (ZNP). Considering the diverse binding affinities between various proteins with the nanozyme, the catalytic activity of Fe3O4@ZNP@UiO-66 can be changed to various degree, leading to the different absorption responses at 420 nm in the hydrogen peroxide (H2O2) - 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) system. By simply extracting different absorbance intensities at various time points, a sensor array based on reaction kinetics for the discrimination of phosphoproteins from other proteins is constructed through linear discriminant analysis (LDA). Besides, the quantitative determination of phosphoproteins and identification of protein mixtures have been realized. Further, based on the differential level of phosphoproteins in cells, the differentiation of cancer cells from normal cells can also be implemented by utilizing the proposed sensor array, showing great potential in disease diagnosis.


Subject(s)
Biosensing Techniques , Hydrogen Peroxide , Neoplasms , Phosphoproteins , Zirconium , Biosensing Techniques/methods , Humans , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Hydrogen Peroxide/chemistry , Zirconium/chemistry , Peroxidase/chemistry , Dopamine/chemistry , Limit of Detection , Biomimetic Materials/chemistry , Catalysis
11.
J Hazard Mater ; 470: 134226, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38593665

ABSTRACT

Contaminants may induce immune response polarization, leading to immune diseases, such as allergic diseases. Evidence concerning the effects of chlorinated paraffins (CPs), an emerging persistent organic pollutant, on immune system is scarce, particularly for epidemiological evidence. This study explores the association between CPs exposure and allergic diseases (allergic rhinitis, atopic eczema, and allergic conjunctivitis) in children and adolescents in the Pearl River Delta (PRD) in China. Herein, 131,304 children and adolescents from primary and secondary schools in the PRD were included and completed the questionnaire survey. The particulate matter (PM) samples were collected in the PRD and the PM2.5-bound CP concentrations were analyzed. In the multivarious adjustment mixed effect model (MEM), an IQR increase in ∑CPs was significantly associated with allergic diseases (rhinitis, eczema, and conjunctivitis) with the estimated odds ratios (ORs) for 1.11 (95% CI: 1.10, 1.13), 1.17 (95% CI: 1.15, 1.19), and 1.82 (95% CI: 1.76, 1.88), respectively. Interaction analysis indicated that overweight and obese individuals might have greater risk. Similar effect estimates were observed in several sensitivity analyses. This study provided epidemiological evidence on the immunotoxicity of CPs. More studies to confirm our findings and investigate mechanisms are needed.


Subject(s)
Paraffin , Humans , Adolescent , Child , Male , Female , China/epidemiology , Paraffin/toxicity , Paraffin/analysis , Hypersensitivity/epidemiology , Environmental Exposure/adverse effects , Hydrocarbons, Chlorinated/toxicity , Hydrocarbons, Chlorinated/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/chemically induced , Rhinitis, Allergic/epidemiology , Rhinitis, Allergic/chemically induced
12.
J Org Chem ; 89(9): 6416-6427, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38616352

ABSTRACT

A novel conversion of 1,5-diynols into sulfonylated benzo[b]fluorenes is reported by a TFA-promoted cascade cyclization with sodium sulfinates under mild conditions. This strategy provides an efficient and practical approach for accessing various sulfonated benzo[b]fluorenes in moderate to excellent yields under metal-free conditions. On the basis of the control experimental results and density functional theory calculations, a possible cascade transformation mechanism consisting of the dehydration of propargylic alcohols, sulfonylation, allenylation, and Schmittel-type cyclization is proposed. It is worth noting that TFA played an important role in this cascade cyclization, which promoted C-SO2R bond cleavage in a propargylic sulfone intermediate to form allenyl sulfones, followed by Schmittel-type cyclization to give the target product.

13.
J Asian Nat Prod Res ; 26(1): 26-37, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38196236

ABSTRACT

Eight new caffeoyl derivatives, elephantomentosides A-H (1 - 8), together with ten known ones (9 - 18), were isolated from the whole plant of Elephantopos tomentosus L. Their structures were elucidated using detailed spectroscopic analysis. Structurally, compounds 1 - 8 are composed of ß-D-glucopyranose, and almost all of the substituent positions are at the C-1' and C-4' of glucopyranose. The anti-inflammatory and antioxidant activities of all isolated compounds were evaluated in vitro. Compounds 9-10, 13-15, and 17-18 exhibited significant DPPH scavenging capacity with IC50 values in the range of 10.01-25.07 µM, in comparison with Vc (IC50, 17.98 µM).


Subject(s)
Antioxidants , Asteraceae , Molecular Structure , Antioxidants/pharmacology , Antioxidants/chemistry , Asteraceae/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
14.
Biochem Pharmacol ; 219: 115965, 2024 01.
Article in English | MEDLINE | ID: mdl-38043719

ABSTRACT

Atherosclerosis is the main underlying pathology of many cardiovascular diseases and is marked by plaque formation in the artery wall. It has posed a serious threat to the health of people all over the world. CD36 acts as a significant regulator of lipid homeostasis, which is closely associated with the onset and progression of atherosclerosis and may be a new therapeutic target. The abnormal overexpression of CD36 facilitates lipid accumulation, foam cell formation, inflammation, endothelial apoptosis, and thrombosis. Numerous natural products and lipid-lowering agents are found to target the suppression of CD36 or inhibit the upregulation of CD36 to prevent and treat atherosclerosis. Here, the structure, expression regulation and function of CD36 in atherosclerosis and its related pharmacological therapies are reviewed. This review highlights the importance of drugs targeting CD36 suppression in the treatment and prevention of atherosclerosis, in order to develop new therapeutic strategies and potential anti-atherosclerotic drugs both preclinically and clinically.


Subject(s)
Atherosclerosis , Humans , Atherosclerosis/metabolism , Foam Cells/metabolism , Up-Regulation , Inflammation/metabolism , Lipids , Lipoproteins, LDL/metabolism
15.
Front Microbiol ; 14: 1207125, 2023.
Article in English | MEDLINE | ID: mdl-37799610

ABSTRACT

Coumarin-3-carboxylic acid (3-CCA), previously screened from natural coumarins, was found to possess strong antibacterial activity against Acidovorax citrulli (Ac). In order to further evaluate the activity of this compound against plant bacterial pathogens and explore its potential value as a bactericidal lead compound, the activity of 3-CCA against 14 plant pathogenic bacteria in vitro and in vivo was tested. Results showed that 3-CCA exhibited strong in vitro activities against Ac, Ralstonia solanacearum, Xanthomonas axonopodis pv. manihotis, X. oryzae pv. oryzae, and Dickeya zeae with EC50 values ranging from 26.64 µg/mL to 40.73 µg/mL. Pot experiment results showed that 3-CCA had powerful protective and curative effects against Ac. In addition, the protective efficiency of 3-CCA was almost equivalent to that of thiodiazole copper at the same concentration. The results of SEM and TEM observation and conductivity tests showed that 3-CCA disrupted the integrity of the cell membrane and inhibited polar flagella growth. Furthermore, 3-CCA resulted in reductions in motility and extracellular exopolysaccharide (EPS) production of Ac while inhibiting the biofilm formation of Ac. These findings indicate that 3-CCA could be a promising natural lead compound against plant bacterial pathogens to explore novel antibacterial agents.

16.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4711-4721, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802810

ABSTRACT

This study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.


Subject(s)
Gastrointestinal Microbiome , NF-E2-Related Factor 2 , Rats , Animals , NF-E2-Related Factor 2/metabolism , Chromatography, Liquid , Multilocus Sequence Typing , Tandem Mass Spectrometry , Oxidative Stress , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Femur , Bile Acids and Salts , DNA, Ribosomal , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
17.
Front Microbiol ; 14: 1235620, 2023.
Article in English | MEDLINE | ID: mdl-37869659

ABSTRACT

Seneca Valley virus (SVV), a member of the Picornaviridae family, may cause serious water blister diseases in pregnant sows and acute death in newborn piglets, which have resulted in economic losses in pig production. The 3C protease is a vital enzyme for SVV maturation and is capable of regulating protein cleavage and RNA replication of the virus. Additionally, this protease can impede the host's innate immune response by targeting the interferon pathway's principal factor and enhance virus replication by modulating the host's RNA metabolism while simultaneously triggering programmed cell death. This article reviews recent studies on SVV 3C functions, which include viral replication promotion, cell apoptosis modulation and host immune response evasion, and provides a theoretical basis for research on preventing and controlling SVV infection.

18.
J Liposome Res ; : 1-10, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37621197

ABSTRACT

Psoriasis is a chronic, immune-mediated skin disease with no cure. Intravenous arsenic trioxide (ATO) has been used to treat psoriasis in animal studies. However, the high toxicity of ATO limits its application to clinics for systemic administration. The aim of this study was to fabricate sustained-release ATO liposome gels (ATO-Lip-Gels) to be used for the treatment of psoriasis. The ATO Liposomes were prepared using a zinc acetate gradient method. ATO concentrations were analyzed by HPLC-HG-AFS. The ATO-Lip-Gels were characterized with respect to size, zeta potential, and entrapment efficiency. Stability, in vitro drug release, and in vivo efficacy were also evaluated. The optimal formulation of ATO-Lip was ATO (0.45%), S100 (9%), and cholesterol (1.5%) (W/V) in 0.3 mol/L zinc acetate and incubated for 10 min. In the in vitro drug release study, ATO-Lip-Gels exhibited a slower release profile of ATO than that from Gels only. Compared with the model group, ATO-Lip-Gels-H significantly reduced PASI scores after psoriasis in mice and was superior to tacrolimus at day 5. HE staining showed that the pathological changes caused by psoriasis in mice were significantly improved in the treatment groups, and ATO-Lip-Gels-H had the best effect among the treatment groups. ATO-Lip-Gels applied topologically to imiquimote-induced psoriatic plaque models significantly reduced the levels of key psoriatic cytokines such as IL-6 and TNF-α. We have developed ATO-Lip-Gels for the treatment of psoriasis, which demonstrated higher efficacy with the benchmark, Tacrolimus, and can be an alternative to the conventional treatment with Tacrolimus.

19.
Eur J Med Res ; 28(1): 279, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37559152

ABSTRACT

BACKGROUND: Although the number of patients with bladder cancer and lung metastasis is increasing there is no accurate model for predicting survival in these patients. METHODS: Patients enrolled in the Surveillance, Epidemiology, and End Results database between 2010 and 2015 were selected for the study. Univariate and multivariate Cox regression were used to determine independent prognostic factors, followed by development of a nomogram based on the multivariate Cox regression models. The consistency index, receiver operating characteristic curve, and calibration curve were used to validate the prognostic nomogram. RESULTS: 506 eligible bladder cancer patients with lung metastasis were enrolled in the study and then divided randomly into training and validation sets (n = 356 vs. n = 150). Multivariate Cox regression analysis indicated that age at diagnosis, primary site, histological type, surgery of the primary site, chemotherapy, bone metastasis, and liver metastasis were prognostic factors for overall survival (OS) in patients with lung metastasis in the training set. The C-index of the nomogram OS was 0.699 and 0.747 in the training and validation sets, respectively. ROC curve estimation of the nomogram in the training and validation sets showed acceptable accuracy for classifying 1-year survival, with an area under the curve (AUC) of 0.766 and 0.717, respectively. More importantly, the calibration plot showed the nomogram had favorable predictive accuracy in both the training and validation sets. CONCLUSIONS: The prognostic nomogram created in our study provides an individualized diagnosis, remedy, and risk evaluation for survival in patients with bladder cancer and lung metastasis. The nomogram would therefore enable clinicians to make more precise treatment decisions for patients with bladder cancer and lung metastasis.


Subject(s)
Liver Neoplasms , Lung Neoplasms , Urinary Bladder Neoplasms , Humans , Nomograms , Area Under Curve
20.
Bioanalysis ; 15(18): 1147-1156, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37650495

ABSTRACT

Aim: This study aimed to establish a method to determine tigecycline (TGC) in the cerebrospinal fluid (CSF) and serum of 12 patients with multidrug-resistant Acinetobacter baumannii (MDRAB) central nervous system infection (CNSI) and evaluate the correlation of TGC in CSF and serum samples. Materials & methods: TGC in CSF and serum was detected by high-performance liquid chromatography with tandem mass spectrometry. Results: In all 12 patients, the CSF-to-serum ratio of TGC at a steady-state trough concentration ranged from 21.46 to 44.46%, and the mean value was 31.61 ± 8.13%. The correlation of TGC in CSF and serum was 0.5065. Conclusion: CNSI might have no potential to increase the penetration ability of TGC into the CSF. The correlation between the concentrations of TGC in CSF and serum at steady state was demonstrated to be positive.


Subject(s)
Acinetobacter baumannii , Central Nervous System Infections , Humans , Tigecycline , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...