Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Nat Commun ; 15(1): 3745, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702304

ABSTRACT

Early childhood tumours arise from transformed embryonic cells, which often carry large copy number alterations (CNA). However, it remains unclear how CNAs contribute to embryonic tumourigenesis due to a lack of suitable models. Here we employ female human embryonic stem cell (hESC) differentiation and single-cell transcriptome and epigenome analysis to assess the effects of chromosome 17q/1q gains, which are prevalent in the embryonal tumour neuroblastoma (NB). We show that CNAs impair the specification of trunk neural crest (NC) cells and their sympathoadrenal derivatives, the putative cells-of-origin of NB. This effect is exacerbated upon overexpression of MYCN, whose amplification co-occurs with CNAs in NB. Moreover, CNAs potentiate the pro-tumourigenic effects of MYCN and mutant NC cells resemble NB cells in tumours. These changes correlate with a stepwise aberration of developmental transcription factor networks. Together, our results sketch a mechanistic framework for the CNA-driven initiation of embryonal tumours.


Subject(s)
Cell Differentiation , DNA Copy Number Variations , N-Myc Proto-Oncogene Protein , Neural Crest , Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/pathology , Neural Crest/metabolism , Neural Crest/pathology , Female , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Chromosome Aberrations , Human Embryonic Stem Cells/metabolism , Transcriptome , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
2.
Nat Immunol ; 25(5): 847-859, 2024 May.
Article in English | MEDLINE | ID: mdl-38658806

ABSTRACT

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Subject(s)
Homeostasis , Janus Kinases , Macrophages , Mice, Knockout , STAT Transcription Factors , Signal Transduction , Animals , Mice , Macrophages/immunology , Macrophages/metabolism , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , Mice, Inbred C57BL , Interferon-Stimulated Gene Factor 3, gamma Subunit/metabolism , Interferon-Stimulated Gene Factor 3, gamma Subunit/genetics , TYK2 Kinase/metabolism , TYK2 Kinase/genetics , Gene Expression Regulation
3.
Nature ; 627(8004): 594-603, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383780

ABSTRACT

Although KDM5C is one of the most frequently mutated genes in X-linked intellectual disability1, the exact mechanisms that lead to cognitive impairment remain unknown. Here we use human patient-derived induced pluripotent stem cells and Kdm5c knockout mice to conduct cellular, transcriptomic, chromatin and behavioural studies. KDM5C is identified as a safeguard to ensure that neurodevelopment occurs at an appropriate timescale, the disruption of which leads to intellectual disability. Specifically, there is a developmental window during which KDM5C directly controls WNT output to regulate the timely transition of primary to intermediate progenitor cells and consequently neurogenesis. Treatment with WNT signalling modulators at specific times reveal that only a transient alteration of the canonical WNT signalling pathway is sufficient to rescue the transcriptomic and chromatin landscapes in patient-derived cells and to induce these changes in wild-type cells. Notably, WNT inhibition during this developmental period also rescues behavioural changes of Kdm5c knockout mice. Conversely, a single injection of WNT3A into the brains of wild-type embryonic mice cause anxiety and memory alterations. Our work identifies KDM5C as a crucial sentinel for neurodevelopment and sheds new light on KDM5C mutation-associated intellectual disability. The results also increase our general understanding of memory and anxiety formation, with the identification of WNT functioning in a transient nature to affect long-lasting cognitive function.


Subject(s)
Cognition , Embryo, Mammalian , Embryonic Development , Histone Demethylases , Wnt Signaling Pathway , Animals , Humans , Mice , Anxiety , Chromatin/drug effects , Chromatin/genetics , Chromatin/metabolism , Embryo, Mammalian/metabolism , Gene Expression Profiling , Histone Demethylases/genetics , Histone Demethylases/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Memory , Mice, Knockout , Mutation , Neurogenesis/genetics , Wnt Signaling Pathway/drug effects
4.
Nat Commun ; 15(1): 1792, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413586

ABSTRACT

Neutrophils are evolutionarily conserved innate immune cells playing pivotal roles in host defense. Zebrafish models have contributed substantially to our understanding of neutrophil functions but similarities to human neutrophil maturation have not been systematically characterized, which limits their applicability to studying human disease. Here we show, by generating and analysing transgenic zebrafish strains representing distinct neutrophil differentiation stages, a high-resolution transcriptional profile of neutrophil maturation. We link gene expression at each stage to characteristic transcription factors, including C/ebp-ß, which is important for late neutrophil maturation. Cross-species comparison of zebrafish, mouse, and human samples confirms high molecular similarity of immature stages and discriminates zebrafish-specific from pan-species gene signatures. Applying the pan-species neutrophil maturation signature to RNA-sequencing data from human neuroblastoma patients reveals association between metastatic tumor cell infiltration in the bone marrow and an overall increase in mature neutrophils. Our detailed neutrophil maturation atlas thus provides a valuable resource for studying neutrophil function at different stages across species in health and disease.


Subject(s)
Neutrophils , Zebrafish , Animals , Humans , Mice , Zebrafish/genetics , Zebrafish/metabolism , Animals, Genetically Modified , Bone Marrow/metabolism , Gene Expression Profiling
5.
Blood ; 142(9): 827-845, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249233

ABSTRACT

The nuclear factor of activated T cells (NFAT) family of transcription factors plays central roles in adaptive immunity in murine models; however, their contribution to human immune homeostasis remains poorly defined. In a multigenerational pedigree, we identified 3 patients who carry germ line biallelic missense variants in NFATC1, presenting with recurrent infections, hypogammaglobulinemia, and decreased antibody responses. The compound heterozygous NFATC1 variants identified in these patients caused decreased stability and reduced the binding of DNA and interacting proteins. We observed defects in early activation and proliferation of T and B cells from these patients, amenable to rescue upon genetic reconstitution. Stimulation induced early T-cell activation and proliferation responses were delayed but not lost, reaching that of healthy controls at day 7, indicative of an adaptive capacity of the cells. Assessment of the metabolic capacity of patient T cells revealed that NFATc1 dysfunction rendered T cells unable to engage in glycolysis after stimulation, although oxidative metabolic processes were intact. We hypothesized that NFATc1-mutant T cells could compensate for the energy deficit due to defective glycolysis by using enhanced lipid metabolism as an adaptation, leading to a delayed, but not lost, activation responses. Indeed, we observed increased 13C-labeled palmitate incorporation into citrate, indicating higher fatty acid oxidation, and we demonstrated that metformin and rosiglitazone improved patient T-cell effector functions. Collectively, enabled by our molecular dissection of the consequences of loss-of-function NFATC1 mutations and extending the role of NFATc1 in human immunity beyond receptor signaling, we provide evidence of metabolic plasticity in the context of impaired glycolysis observed in patient T cells, alleviating delayed effector responses.


Subject(s)
NFATC Transcription Factors , T-Lymphocytes , Humans , Mice , Animals , T-Lymphocytes/metabolism , NFATC Transcription Factors/metabolism , CD8-Positive T-Lymphocytes , Glycolysis/genetics , Mutation
6.
Cancer Lett ; 554: 216028, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36462556

ABSTRACT

Ewing sarcoma is a pediatric bone and soft tissue cancer with an urgent need for new therapies to improve disease outcome. To identify effective drugs, phenotypic drug screening has proven to be a powerful method, but achievable throughput in mouse xenografts, the preclinical Ewing sarcoma standard model, is limited. Here, we explored the use of xenografts in zebrafish for high-throughput drug screening to discover new combination therapies for Ewing sarcoma. We subjected xenografts in zebrafish larvae to high-content imaging and subsequent automated tumor size analysis to screen single agents and compound combinations. We identified three drug combinations effective against Ewing sarcoma cells: Irinotecan combined with either an MCL-1 or an BCL-XL inhibitor and in particular dual inhibition of the anti-apoptotic proteins MCL-1 and BCL-XL, which efficiently eradicated tumor cells in zebrafish xenografts. We confirmed enhanced efficacy of dual MCL-1/BCL-XL inhibition compared to single agents in a mouse PDX model. In conclusion, high-content screening of small compounds on Ewing sarcoma zebrafish xenografts identified dual MCL-1/BCL-XL targeting as a specific vulnerability and promising therapeutic strategy for Ewing sarcoma, which warrants further investigation towards clinical application.


Subject(s)
Sarcoma, Ewing , Humans , Animals , Mice , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sarcoma, Ewing/metabolism , Zebrafish/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Drug Evaluation, Preclinical , Heterografts , Apoptosis , bcl-X Protein/genetics , bcl-X Protein/metabolism , Cell Line, Tumor
7.
Elife ; 112022 09 26.
Article in English | MEDLINE | ID: mdl-36154671

ABSTRACT

The neural crest (NC) is an important multipotent embryonic cell population and its impaired specification leads to various developmental defects, often in an anteroposterior (A-P) axial level-specific manner. The mechanisms underlying the correct A-P regionalisation of human NC cells remain elusive. Recent studies have indicated that trunk NC cells, the presumed precursors of childhood tumour neuroblastoma, are derived from neuromesodermal-potent progenitors of the postcranial body. Here we employ human embryonic stem cell differentiation to define how neuromesodermal progenitor (NMP)-derived NC cells acquire a posterior axial identity. We show that TBXT, a pro-mesodermal transcription factor, mediates early posterior NC/spinal cord regionalisation together with WNT signalling effectors. This occurs by TBXT-driven chromatin remodelling via its binding in key enhancers within HOX gene clusters and other posterior regulator-associated loci. This initial posteriorisation event is succeeded by a second phase of trunk HOX gene control that marks the differentiation of NMPs toward their TBXT-negative NC/spinal cord derivatives and relies predominantly on FGF signalling. Our work reveals a previously unknown role of TBXT in influencing posterior NC fate and points to the existence of temporally discrete, cell type-dependent modes of posterior axial identity control.


Subject(s)
Mesoderm , Neural Crest , Cell Differentiation/genetics , Humans , Transcription Factors/metabolism , Wnt Signaling Pathway
8.
Blood Adv ; 6(3): 970-975, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34619771

ABSTRACT

Langerhans cell histiocytosis (LCH) is a neoplasm marked by the accumulation of CD1A+CD207+ cells. It is most commonly driven by a somatic, activating mutation in the BRAF serine-threonine kinase (BRAFV600E). Multisystem disease with risk-organ involvement requires myelotoxic chemotherapy, making BRAF-inhibitors an attractive treatment option. Here, we present a comprehensive analysis of the course of an LCH patient treated with the combination of vemurafenib and salvage chemotherapy who achieved sustained clinical and molecular remission. We show that there is no relationship between peripheral blood BRAFV600E levels and clinical presentation during treatment with vemurafenib, but that vemurafenib leads to a fast, efficient, but reversible inhibition of clinical manifestations of systemic inflammation. In line, serum levels of inflammatory cytokines exactly mirror vemurafenib administration. Genotyping analysis identified the BRAFV600E mutation in multiple hematopoietic cell types, including NK cells and granulocytes. Single-cell transcriptome analyses of peripheral blood and bone marrow cells at time of diagnosis and during treatment indicate that RAF-inhibition abrogates the expression of inflammatory cytokines previously implicated in LCH such as IL1B and CXCL8. Together, our data suggest that while the CD1A+CD207+ histiocytes are the hallmark of LCH, other BRAF-mutated cell populations may contribute significantly to morbidity in patients with multisystem LCH.


Subject(s)
Histiocytosis, Langerhans-Cell , Proto-Oncogene Proteins B-raf , Cytokines , Histiocytosis, Langerhans-Cell/complications , Histiocytosis, Langerhans-Cell/drug therapy , Histiocytosis, Langerhans-Cell/genetics , Humans , Inflammation/drug therapy , Proto-Oncogene Proteins B-raf/genetics , Vemurafenib/therapeutic use
9.
Blood Adv ; 6(7): 2444-2451, 2022 04 12.
Article in English | MEDLINE | ID: mdl-34920454

ABSTRACT

Helios, encoded by IKZF2, is a member of the Ikaros family of transcription factors with pivotal roles in T-follicular helper, NK- and T-regulatory cell physiology. Somatic IKZF2 mutations are frequently found in lymphoid malignancies. Although germline mutations in IKZF1 and IKZF3 encoding Ikaros and Aiolos have recently been identified in patients with phenotypically similar immunodeficiency syndromes, the effect of germline mutations in IKZF2 on human hematopoiesis and immunity remains enigmatic. We identified germline IKZF2 mutations (one nonsense (p.R291X)- and 4 distinct missense variants) in six patients with systemic lupus erythematosus, immune thrombocytopenia or EBV-associated hemophagocytic lymphohistiocytosis. Patients exhibited hypogammaglobulinemia, decreased number of T-follicular helper and NK cells. Single-cell RNA sequencing of PBMCs from the patient carrying the R291X variant revealed upregulation of proinflammatory genes associated with T-cell receptor activation and T-cell exhaustion. Functional assays revealed the inability of HeliosR291X to homodimerize and bind target DNA as dimers. Moreover, proteomic analysis by proximity-dependent Biotin Identification revealed aberrant interaction of 3/5 Helios mutants with core components of the NuRD complex conveying HELIOS-mediated epigenetic and transcriptional dysregulation.


Subject(s)
Germ-Line Mutation , Proteomics , Germ Cells , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , T-Lymphocytes, Regulatory/metabolism
10.
Sci Immunol ; 6(65): eabe3981, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34826259

ABSTRACT

Helios, a member of the Ikaros family of transcription factors, is predominantly expressed in developing thymocytes, activated T cells, and regulatory T cells (Tregs). Studies in mice have emphasized its role in maintenance of Treg immunosuppressive functions by stabilizing Foxp3 expression and silencing the Il2 locus. However, its contribution to human immune homeostasis and the precise mechanisms by which Helios regulates other T cell subsets remain unresolved. Here, we investigated a patient with recurrent respiratory infections and hypogammaglobulinemia and identified a germline homozygous missense mutation in IKZF2 encoding Helios (p.Ile325Val). We found that HeliosI325V retains DNA binding and dimerization properties but loses interaction with several partners, including epigenetic remodelers. Whereas patient Tregs showed increased IL-2 production, patient conventional T cells had decreased accessibility of the IL2 locus and consequently reduced IL-2 production. Reduced chromatin accessibility was not exclusive to the IL2 locus but involved a variety of genes associated with T cell activation. Single-cell RNA sequencing of peripheral blood mononuclear cells revealed gene expression signatures indicative of a shift toward a proinflammatory, effector-like status in patient CD8+ T cells. Moreover, patient CD4+ T cells exhibited a pronounced defect in proliferation with delayed expression of surface checkpoint inhibitors, suggesting an impaired onset of the T cell activation program. Collectively, we identified a previously uncharacterized, germline-encoded inborn error of immunity and uncovered a cell-specific defect in Helios-dependent epigenetic regulation. Binding of Helios with specific partners mediates this regulation, which is ultimately necessary for the transcriptional programs that enable T cell homeostasis in health and disease.


Subject(s)
Germ Cells/immunology , Ikaros Transcription Factor/immunology , Adolescent , Epigenesis, Genetic/genetics , Epigenesis, Genetic/immunology , Humans , Ikaros Transcription Factor/genetics , Interleukin-2/biosynthesis , Male , Mutation, Missense , T-Lymphocytes, Regulatory/immunology
11.
Cancers (Basel) ; 13(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34503120

ABSTRACT

While the bone marrow attracts tumor cells in many solid cancers leading to poor outcome in affected patients, comprehensive analyses of bone marrow metastases have not been performed on a single-cell level. We here set out to capture tumor heterogeneity and unravel microenvironmental changes in neuroblastoma, a solid cancer with bone marrow involvement. To this end, we employed a multi-omics data mining approach to define a multiplex imaging panel and developed DeepFLEX, a pipeline for subsequent multiplex image analysis, whereby we constructed a single-cell atlas of over 35,000 disseminated tumor cells (DTCs) and cells of their microenvironment in the metastatic bone marrow niche. Further, we independently profiled the transcriptome of a cohort of 38 patients with and without bone marrow metastasis. Our results revealed vast diversity among DTCs and suggest that FAIM2 can act as a complementary marker to capture DTC heterogeneity. Importantly, we demonstrate that malignant bone marrow infiltration is associated with an inflammatory response and at the same time the presence of immuno-suppressive cell types, most prominently an immature neutrophil/granulocytic myeloid-derived suppressor-like cell type. The presented findings indicate that metastatic tumor cells shape the bone marrow microenvironment, warranting deeper investigations of spatio-temporal dynamics at the single-cell level and their clinical relevance.

12.
Mol Cancer ; 20(1): 124, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34583709

ABSTRACT

BACKGROUND: In early-stage mycosis fungoides (MF), the most common primary cutaneous T-cell lymphoma, limited skin involvement with patches and plaques is associated with a favorable prognosis. Nevertheless, approximately 20-30% of cases progress to tumors or erythroderma, resulting in poor outcome. At present, factors contributing to this switch from indolent to aggressive disease are only insufficiently understood. METHODS: In patients with advanced-stage MF, we compared patches with longstanding history to newly developed plaques and tumors by using single-cell RNA sequencing, and compared results with early-stage MF as well as nonlesional MF and healthy control skin. RESULTS: Despite considerable inter-individual variability, lesion progression was uniformly associated with downregulation of the tissue residency markers CXCR4 and CD69, the heat shock protein HSPA1A, the tumor suppressors and immunoregulatory mediators ZFP36 and TXNIP, and the interleukin 7 receptor (IL7R) within the malignant clone, but not in benign T cells. This phenomenon was not only found in conventional TCR-αß MF, but also in a case of TCR-γδ MF, suggesting a common mechanism across MF subtypes. Conversely, malignant cells in clinically unaffected skin from MF patients showed upregulation of these markers. CONCLUSIONS: Our data reveal a specific panel of biomarkers that might be used for monitoring MF disease progression. Altered expression of these genes may underlie the switch in clinical phenotype observed in advanced-stage MF.


Subject(s)
Biomarkers , Gene Expression Regulation, Neoplastic , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/pathology , RNA-Seq , Single-Cell Analysis , Adult , Aged , Biopsy , Computational Biology/methods , Disease Progression , Female , Humans , Immunohistochemistry , Male , Middle Aged , Mycosis Fungoides/genetics , Mycosis Fungoides/pathology , Phenotype , Sequence Analysis, RNA , Single-Cell Analysis/methods
13.
Blood ; 138(23): 2347-2359, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34320169

ABSTRACT

The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions, but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia, and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.


Subject(s)
Hematopoietic Stem Cells/pathology , Leukemia/pathology , Neoplastic Stem Cells/pathology , STAT5 Transcription Factor/metabolism , Signal Transduction , Tetraspanin 29/metabolism , Animals , Cell Self Renewal , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia/metabolism , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Tumor Cells, Cultured
14.
Nat Commun ; 12(1): 3804, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155196

ABSTRACT

In mammalian genomes, differentially methylated regions (DMRs) and histone marks including trimethylation of histone 3 lysine 27 (H3K27me3) at imprinted genes are asymmetrically inherited to control parentally-biased gene expression. However, neither parent-of-origin-specific transcription nor imprints have been comprehensively mapped at the blastocyst stage of preimplantation development. Here, we address this by integrating transcriptomic and epigenomic approaches in mouse preimplantation embryos. We find that seventy-one genes exhibit previously unreported parent-of-origin-specific expression in blastocysts (nBiX: novel blastocyst-imprinted expressed). Uniparental expression of nBiX genes disappears soon after implantation. Micro-whole-genome bisulfite sequencing (µWGBS) of individual uniparental blastocysts detects 859 DMRs. We further find that 16% of nBiX genes are associated with a DMR, whereas most are associated with parentally-biased H3K27me3, suggesting a role for Polycomb-mediated imprinting in blastocysts. nBiX genes are clustered: five clusters contained at least one published imprinted gene, and five clusters exclusively contained nBiX genes. These data suggest that early development undergoes a complex program of stage-specific imprinting involving different tiers of regulation.


Subject(s)
Blastocyst/metabolism , Genomic Imprinting/genetics , Histones/metabolism , Alleles , Animals , Blastocyst/cytology , DNA Methylation , Embryonic Development/genetics , Female , Gene Expression , Germ Cells/metabolism , Germ Layers/metabolism , Haploidy , Male , Methylation , Mice , Mouse Embryonic Stem Cells/metabolism , Multigene Family , Transcription Initiation Site
15.
Sci Immunol ; 6(57)2021 03 04.
Article in English | MEDLINE | ID: mdl-33664060

ABSTRACT

CD8+ T cell immunity to SARS-CoV-2 has been implicated in COVID-19 severity and virus control. Here, we identified nonsynonymous mutations in MHC-I-restricted CD8+ T cell epitopes after deep sequencing of 747 SARS-CoV-2 virus isolates. Mutant peptides exhibited diminished or abrogated MHC-I binding in a cell-free in vitro assay. Reduced MHC-I binding of mutant peptides was associated with decreased proliferation, IFN-γ production and cytotoxic activity of CD8+ T cells isolated from HLA-matched COVID-19 patients. Single cell RNA sequencing of ex vivo expanded, tetramer-sorted CD8+ T cells from COVID-19 patients further revealed qualitative differences in the transcriptional response to mutant peptides. Our findings highlight the capacity of SARS-CoV-2 to subvert CD8+ T cell surveillance through point mutations in MHC-I-restricted viral epitopes.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 , Epitopes, T-Lymphocyte , HLA-A Antigens/immunology , Immunity, Cellular , Mutation , SARS-CoV-2 , CD8-Positive T-Lymphocytes/pathology , COVID-19/genetics , COVID-19/immunology , COVID-19/pathology , Cell Proliferation , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , High-Throughput Nucleotide Sequencing , Humans , Interferon-gamma/immunology , Peptides/genetics , Peptides/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology
16.
Mol Cell ; 81(5): 969-982.e13, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33482114

ABSTRACT

Many genes are regulated by multiple enhancers that often simultaneously activate their target gene. However, how individual enhancers collaborate to activate transcription is not well understood. Here, we dissect the functions and interdependencies of five enhancer elements that together activate Fgf5 expression during exit from naive murine pluripotency. Four intergenic elements form a super-enhancer, and most of the elements contribute to Fgf5 induction at distinct time points. A fifth, poised enhancer located in the first intron contributes to Fgf5 expression at every time point by amplifying overall Fgf5 expression levels. Despite low individual enhancer activity, together these elements strongly induce Fgf5 expression in a super-additive fashion that involves strong accumulation of RNA polymerase II at the intronic enhancer. Finally, we observe a strong anti-correlation between RNA polymerase II levels at enhancers and their distance to the closest promoter, and we identify candidate elements with properties similar to the intronic enhancer.


Subject(s)
Enhancer Elements, Genetic , Fibroblast Growth Factor 5/genetics , Gene Expression Regulation, Developmental , Mouse Embryonic Stem Cells/metabolism , Promoter Regions, Genetic , RNA Polymerase II/genetics , Animals , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Exons , Fibroblast Growth Factor 5/metabolism , Gene Knockout Techniques , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Histones/genetics , Histones/metabolism , Introns , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , RNA Polymerase II/metabolism , Sequence Analysis, RNA , Signal Transduction , Single-Cell Analysis , Transcription, Genetic , Red Fluorescent Protein
17.
Mol Psychiatry ; 25(1): 22-36, 2020 01.
Article in English | MEDLINE | ID: mdl-31735910

ABSTRACT

The evolution of human diets led to preferences toward polyunsaturated fatty acid (PUFA) content with 'Western' diets enriched in ω-6 PUFAs. Mounting evidence points to ω-6 PUFA excess limiting metabolic and cognitive processes that define longevity in humans. When chosen during pregnancy, ω-6 PUFA-enriched 'Western' diets can reprogram maternal bodily metabolism with maternal nutrient supply precipitating the body-wide imprinting of molecular and cellular adaptations at the level of long-range intercellular signaling networks in the unborn fetus. Even though unfavorable neurological outcomes are amongst the most common complications of intrauterine ω-6 PUFA excess, cellular underpinnings of life-long modifications to brain architecture remain unknown. Here, we show that nutritional ω-6 PUFA-derived endocannabinoids desensitize CB1 cannabinoid receptors, thus inducing epigenetic repression of transcriptional regulatory networks controlling neuronal differentiation. We found that cortical neurons lose their positional identity and axonal selectivity when mouse fetuses are exposed to excess ω-6 PUFAs in utero. Conversion of ω-6 PUFAs into endocannabinoids disrupted the temporal precision of signaling at neuronal CB1 cannabinoid receptors, chiefly deregulating Stat3-dependent transcriptional cascades otherwise required to execute neuronal differentiation programs. Global proteomics identified the immunoglobulin family of cell adhesion molecules (IgCAMs) as direct substrates, with DNA methylation and chromatin accessibility profiling uncovering epigenetic reprogramming at >1400 sites in neurons after prolonged cannabinoid exposure. We found anxiety and depression-like behavioral traits to manifest in adult offspring, which is consistent with genetic models of reduced IgCAM expression, to suggest causality for cortical wiring defects. Overall, our data uncover a regulatory mechanism whose disruption by maternal food choices could limit an offspring's brain function for life.


Subject(s)
Brain/drug effects , Diet, Western/adverse effects , Epigenesis, Genetic/drug effects , Animals , Anxiety , Brain/metabolism , DNA Methylation/drug effects , Depression , Diet , Dietary Supplements , Endocannabinoids/metabolism , Epigenesis, Genetic/genetics , Epigenomics/methods , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Fatty Acids, Unsaturated/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Pregnancy , Receptor, Cannabinoid, CB1/drug effects
18.
Cancer Discov ; 9(10): 1406-1421, 2019 10.
Article in English | MEDLINE | ID: mdl-31345789

ABSTRACT

Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It occupies a hybrid position between cancers and inflammatory diseases, which makes it an attractive model for studying cancer development. To explore the molecular mechanisms underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, including putative LCH progenitor cells and several subsets of differentiated LCH cells. We confirmed the presence of proliferative LCH cells in all analyzed biopsies using IHC, and we defined an epigenomic and gene-regulatory basis of the different LCH-cell subsets by chromatin-accessibility profiling. In summary, our single-cell analysis of LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity among LCH cells, indicative of complex developmental hierarchies in LCH lesions. SIGNIFICANCE: This study sketches a molecular portrait of LCH lesions by combining single-cell transcriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings provide new insights and hypotheses for advancing LCH research and a starting point for personalizing therapy.See related commentary by Gruber et al., p. 1343.This article is highlighted in the In This Issue feature, p. 1325.


Subject(s)
Epigenesis, Genetic , Epigenomics , Histiocytosis, Langerhans-Cell/genetics , Biomarkers , Biopsy , Disease Susceptibility , Epigenomics/methods , Gene Expression Profiling , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Histiocytosis, Langerhans-Cell/diagnosis , Histiocytosis, Langerhans-Cell/metabolism , Humans , Immunohistochemistry , Radiography , Single-Cell Analysis
19.
EMBO J ; 37(21)2018 11 02.
Article in English | MEDLINE | ID: mdl-30275266

ABSTRACT

Self-renewal of embryonic stem cells (ESCs) cultured in LIF/fetal calf serum (FCS) is incomplete with some cells initiating differentiation. While this is reflected in heterogeneous expression of naive pluripotency transcription factors (TFs), the link between TF heterogeneity and differentiation is not fully understood. Here, we purify ESCs with distinct TF expression levels from LIF/FCS cultures to uncover early events during commitment from naïve pluripotency. ESCs carrying fluorescent Nanog and Esrrb reporters show Esrrb downregulation only in Nanoglow cells. Independent Esrrb reporter lines demonstrate that Esrrbnegative ESCs cannot effectively self-renew. Upon Esrrb loss, pre-implantation pluripotency gene expression collapses. ChIP-Seq identifies different regulatory element classes that bind both OCT4 and NANOG in Esrrbpositive cells. Class I elements lose NANOG and OCT4 binding in Esrrbnegative ESCs and associate with genes expressed preferentially in naïve ESCs. In contrast, Class II elements retain OCT4 but not NANOG binding in ESRRB-negative cells and associate with more broadly expressed genes. Therefore, mechanistic differences in TF function act cumulatively to restrict potency during exit from naïve pluripotency.


Subject(s)
Cell Differentiation , Down-Regulation , Mouse Embryonic Stem Cells/metabolism , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Receptors, Estrogen/metabolism , Animals , Cell Line , Mice , Mouse Embryonic Stem Cells/cytology , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , Receptors, Estrogen/genetics
20.
Cell Stem Cell ; 23(2): 276-288.e8, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30033119

ABSTRACT

Enhancers are genetic elements that regulate spatiotemporal gene expression. Enhancer function requires transcription factor (TF) binding and correlates with histone modifications. However, the extent to which TF binding and histone modifications functionally define active enhancers remains unclear. Here, we combine chromatin immunoprecipitation with a massively parallel reporter assay (ChIP-STARR-seq) to identify functional enhancers in human embryonic stem cells (ESCs) genome-wide in a quantitative unbiased manner. Although active enhancers associate with TFs, only a minority of regions marked by NANOG, OCT4, H3K27ac, and H3K4me1 function as enhancers, with activity markedly changing under naive versus primed culture conditions. We identify an enhancer set associated with functions extending to non-ESC-specific processes. Moreover, although transposable elements associate with putative enhancers, only some exhibit activity. Similarly, within super-enhancers, large tracts are non-functional, with activity restricted to small sub-domains. This catalog of validated enhancers provides a valuable resource for further functional dissection of the regulatory genome.


Subject(s)
Enhancer Elements, Genetic , Human Embryonic Stem Cells/metabolism , Cells, Cultured , Chromatin Immunoprecipitation , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...