Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Chest ; 163(3): 678-686, 2023 03.
Article in English | MEDLINE | ID: mdl-36243062

ABSTRACT

BACKGROUND: Elevated mean pulmonary artery pressure (mPAP) is common in patients with hypertrophic cardiomyopathy (HCM) and heart failure symptoms. However, dynamic left ventricular (LV) outflow tract obstruction may confound interpretation of pulmonary hypertension (PH) pathophysiologic features in HCM when relying on resting invasive hemodynamic data alone. RESEARCH QUESTION: Do structural changes to the lung vasculature clarify PH pathophysiologic features in patients with HCM with progressive heart failure? STUDY DESIGN AND METHODS: Clinical data and ultrarare lung autopsy specimens were acquired retrospectively from the National Institutes of Health (1975-1992). Patients were included based on the availability of lung tissue and recorded mPAP. Discarded tissue from rejected lung donors served as control specimens. Histomorphology was performed on pulmonary arterioles and veins. Comparisons were calculated using the Student t test and Mann-Whitney U test; Pearson correlation was used to assess association between morphometric measurements and HCM cardiac and hemodynamic measurements. RESULTS: The HCM cohort (n = 7; mean ± SD age, 43 ± 18 years; 71% men) showed maximum mean ± SD LV wall thickness of 25 ± 2.8 mm, mean ± SD outflow tract gradient of 90 ± 30 mm Hg, median mPAP of 25 mm Hg (interquartile range [IQR], 6 mm Hg), median pulmonary artery wedge pressure (PAWP) of 16 mm Hg (IQR, 4 mm Hg), and median pulmonary vascular resistance of 1.8 Wood units (WU; IQR, 2.4 WU). Compared with control samples (n = 5), patients with HCM showed greater indexed pulmonary arterial hypertrophy (20.7 ± 7.2% vs 49.7 ± 12%; P < .001) and arterial wall fibrosis (11.5 ± 3.4 mm vs 21.0 ± 4.7 mm; P < .0001), which correlated with mPAP (r = 0.84; P = .018), PAWP (r = 0.74; P = .05), and LV outflow tract gradient (r = 0.78; P = .035). Compared with control samples, pulmonary vein thickness was increased by 2.9-fold (P = .008) in the HCM group, which correlated with mPAP (r = 0.81; P = .03) and LV outflow tract gradient (r = 0.83; P = .02). INTERPRETATION: To the best of our knowledge, these data demonstrate for the first time that in patients with obstructive HCM, heart failure is associated with pathogenic pulmonary vascular remodeling even when mPAP is elevated only mildly. These observations clarify PH pathophysiologic features in HCM, with future implications for clinical strategies that mitigate outflow tract obstruction.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Failure , Hypertension, Pulmonary , Male , Humans , Adult , Middle Aged , Female , Hypertension, Pulmonary/complications , Retrospective Studies , Vascular Remodeling , Cardiomyopathy, Hypertrophic/complications , Heart Failure/complications
2.
Pulm Circ ; 12(2): e12071, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35599981

ABSTRACT

The pathobiology of in situ pulmonary thrombosis in acute respiratory distress syndrome (ARDS) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is incompletely characterized. In human pulmonary artery endothelial cells (HPAECs), hypoxia increases neural precursor cell expressed, developmentally downregulated 9 (NEDD9) and induces expression of a prothrombotic NEDD9 peptide (N9P) on the extracellular plasma membrane surface. We hypothesized that the SARS-CoV-2-ARDS pathophenotype involves increased pulmonary endothelial N9P. Paraffin-embedded autopsy lung specimens were acquired from patients with SARS-CoV-2-​​​​​​ARDS (n = 13), ARDS from other causes (n = 10), and organ donor controls (n = 5). Immunofluorescence characterized the expression of N9P, fibrin, and transcription factor 12 (TCF12), a putative binding target of SARS-CoV-2 and known transcriptional regulator of NEDD9. We performed RNA-sequencing on normal HPAECs treated with normoxia or hypoxia (0.2% O2) for 24 h. Immunoprecipitation-liquid chromatography-mass spectrometry (IP-LC-MS) profiled protein-protein interactions involving N9P relevant to thrombus stabilization. Hypoxia increased TCF12 messenger RNA significantly compared to normoxia in HPAECs in vitro (+1.19-fold, p = 0.001; false discovery rate = 0.005), and pulmonary endothelial TCF12 expression was increased threefold in SARS-CoV-2-ARDS versus donor control lungs (p < 0.001). Compared to donor controls, pulmonary endothelial N9P-fibrin colocalization was increased in situ in non-SARS-CoV-2-ARDS and SARS-CoV-2-ARDS decedents (3.7 ± 1.2 vs. 10.3 ± 3.2 and 21.8 ± 4.0 arb. units, p < 0.001). However, total pulmonary endothelial N9P was increased significantly only in SARS-CoV-2-ARDS versus donor controls (15 ± 4.2 vs. 6.3 ± 0.9 arb. units, p < 0.001). In HPAEC plasma membrane isolates, IP-LC-MS identified a novel protein-protein interaction between NEDD9 and the ß3-subunit of the αvß3-integrin, which regulates fibrin anchoring to endothelial cells. In conclusion, lethal SARS-CoV-2-ARDS is associated with increased pulmonary endothelial N9P expression and N9P-fibrin colocalization in situ. Further investigation is needed to determine the pathogenetic and potential therapeutic relevance of N9P to the thrombotic pathophenotype of SARS-CoV-2-ARDS.

4.
Am J Respir Crit Care Med ; 203(12): 1533-1545, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33523764

ABSTRACT

Rationale: Data on the molecular mechanisms that regulate platelet-pulmonary endothelial adhesion under conditions of hypoxia are lacking, but may have important therapeutic implications. Objectives: To identify a hypoxia-sensitive, modifiable mediator of platelet-pulmonary artery endothelial cell adhesion and thrombotic remodeling. Methods: Network medicine was used to profile protein-protein interactions in hypoxia-treated human pulmonary artery endothelial cells. Data from liquid chromatography-mass spectrometry and microscale thermophoresis informed the development of a novel antibody (Ab) to inhibit platelet-endothelial adhesion, which was tested in cells from patients with chronic thromboembolic pulmonary hypertension (CTEPH) and three animal models in vivo. Measurements and Main Results: The protein NEDD9 was identified in the hypoxia thrombosome network in silico. Compared with normoxia, hypoxia (0.2% O2) for 24 hours increased HIF-1α (hypoxia-inducible factor-1α)-dependent NEDD9 upregulation in vitro. Increased NEDD9 was localized to the plasma-membrane surface of cells from control donors and patients with CTEPH. In endarterectomy specimens, NEDD9 colocalized with the platelet surface adhesion molecule P-selectin. Our custom-made anti-NEDD9 Ab targeted the NEDD9-P-selectin interaction and inhibited the adhesion of activated platelets to pulmonary artery endothelial cells from control donors in vitro and from patients with CTEPH ex vivo. Compared with control mice, platelet-pulmonary endothelial aggregates and pulmonary hypertension induced by ADP were decreased in NEDD9-/- mice or wild-type mice treated with the anti-NEDD9 Ab, which also decreased chronic pulmonary thromboembolic remodeling in vivo. Conclusions: The NEDD9-P-selectin protein-protein interaction is a modifiable target with which to inhibit platelet-pulmonary endothelial adhesion and thromboembolic vascular remodeling, with potential therapeutic implications for patients with disorders of increased hypoxia signaling pathways, including CTEPH.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Adhesion/physiology , Hypoxia/physiopathology , Pulmonary Circulation/physiology , Pulmonary Embolism/physiopathology , Signal Transduction/physiology , Animals , Blood Platelets/physiology , Cells, Cultured/physiology , Endothelial Cells/physiology , Female , Humans , Male , Mice , Middle Aged , Models, Animal
6.
Circulation ; 139(19): 2238-2255, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30759996

ABSTRACT

BACKGROUND: Deficiencies of iron-sulfur (Fe-S) clusters, metal complexes that control redox state and mitochondrial metabolism, have been linked to pulmonary hypertension (PH), a deadly vascular disease with poorly defined molecular origins. BOLA3 (BolA Family Member 3) regulates Fe-S biogenesis, and mutations in BOLA3 result in multiple mitochondrial dysfunction syndrome, a fatal disorder associated with PH. The mechanistic role of BOLA3 in PH remains undefined. METHODS: In vitro assessment of BOLA3 regulation and gain- and loss-of-function assays were performed in human pulmonary artery endothelial cells using siRNA and lentiviral vectors expressing the mitochondrial isoform of BOLA3. Polymeric nanoparticle 7C1 was used for lung endothelium-specific delivery of BOLA3 siRNA oligonucleotides in mice. Overexpression of pulmonary vascular BOLA3 was performed by orotracheal transgene delivery of adeno-associated virus in mouse models of PH. RESULTS: In cultured hypoxic pulmonary artery endothelial cells, lung from human patients with Group 1 and 3 PH, and multiple rodent models of PH, endothelial BOLA3 expression was downregulated, which involved hypoxia inducible factor-2α-dependent transcriptional repression via histone deacetylase 1-mediated histone deacetylation. In vitro gain- and loss-of-function studies demonstrated that BOLA3 regulated Fe-S integrity, thus modulating lipoate-containing 2-oxoacid dehydrogenases with consequent control over glycolysis and mitochondrial respiration. In contexts of siRNA knockdown and naturally occurring human genetic mutation, cellular BOLA3 deficiency downregulated the glycine cleavage system protein H, thus bolstering intracellular glycine content. In the setting of these alterations of oxidative metabolism and glycine levels, BOLA3 deficiency increased endothelial proliferation, survival, and vasoconstriction while decreasing angiogenic potential. In vivo, pharmacological knockdown of endothelial BOLA3 and targeted overexpression of BOLA3 in mice demonstrated that BOLA3 deficiency promotes histological and hemodynamic manifestations of PH. Notably, the therapeutic effects of BOLA3 expression were reversed by exogenous glycine supplementation. CONCLUSIONS: BOLA3 acts as a crucial lynchpin connecting Fe-S-dependent oxidative respiration and glycine homeostasis with endothelial metabolic reprogramming critical to PH pathogenesis. These results provide a molecular explanation for the clinical associations linking PH with hyperglycinemic syndromes and mitochondrial disorders. These findings also identify novel metabolic targets, including those involved in epigenetics, Fe-S biogenesis, and glycine biology, for diagnostic and therapeutic development.


Subject(s)
Endothelium, Vascular/physiology , Glycine/metabolism , Hypertension, Pulmonary/genetics , Mitochondrial Proteins/metabolism , Adolescent , Adult , Animals , Cell Respiration , Cells, Cultured , Child , Child, Preschool , Disease Models, Animal , Female , Humans , Hypertension, Pulmonary/metabolism , Infant , Iron-Sulfur Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/genetics , Mutation/genetics , Oxidation-Reduction , RNA, Small Interfering/genetics , Young Adult
7.
Sci Transl Med ; 10(445)2018 06 13.
Article in English | MEDLINE | ID: mdl-29899023

ABSTRACT

Germline mutations involving small mothers against decapentaplegic-transforming growth factor-ß (SMAD-TGF-ß) signaling are an important but rare cause of pulmonary arterial hypertension (PAH), which is a disease characterized, in part, by vascular fibrosis and hyperaldosteronism (ALDO). We developed and analyzed a fibrosis protein-protein network (fibrosome) in silico, which predicted that the SMAD3 target neural precursor cell expressed developmentally down-regulated 9 (NEDD9) is a critical ALDO-regulated node underpinning pathogenic vascular fibrosis. Bioinformatics and microscale thermophoresis demonstrated that oxidation of Cys18 in the SMAD3 docking region of NEDD9 impairs SMAD3-NEDD9 protein-protein interactions in vitro. This effect was reproduced by ALDO-induced oxidant stress in cultured human pulmonary artery endothelial cells (HPAECs), resulting in impaired NEDD9 proteolytic degradation, increased NEDD9 complex formation with Nk2 homeobox 5 (NKX2-5), and increased NKX2-5 binding to COL3A1 Up-regulation of NEDD9-dependent collagen III expression corresponded to changes in cell stiffness measured by atomic force microscopy. HPAEC-derived exosomal signaling targeted NEDD9 to increase collagen I/III expression in human pulmonary artery smooth muscle cells, identifying a second endothelial mechanism regulating vascular fibrosis. ALDO-NEDD9 signaling was not affected by treatment with a TGF-ß ligand trap and, thus, was not contingent on TGF-ß signaling. Colocalization of NEDD9 with collagen III in HPAECs was observed in fibrotic pulmonary arterioles from PAH patients. Furthermore, NEDD9 ablation or inhibition prevented fibrotic vascular remodeling and pulmonary hypertension in animal models of PAH in vivo. These data identify a critical TGF-ß-independent posttranslational modification that impairs SMAD3-NEDD9 binding in HPAECs to modulate vascular fibrosis and promote PAH.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Collagen Type III/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Lung/metabolism , Lung/pathology , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Collagen Type III/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , Lung/physiopathology , Male , Phosphoproteins/genetics , Protein Binding , Pulmonary Artery/pathology , Rats , Rats, Sprague-Dawley , Smad3 Protein/genetics , Smad3 Protein/metabolism , Systems Biology/methods
8.
J Clin Invest ; 126(9): 3313-35, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27548520

ABSTRACT

Dysregulation of vascular stiffness and cellular metabolism occurs early in pulmonary hypertension (PH). However, the mechanisms by which biophysical properties of the vascular extracellular matrix (ECM) relate to metabolic processes important in PH remain undefined. In this work, we examined cultured pulmonary vascular cells and various types of PH-diseased lung tissue and determined that ECM stiffening resulted in mechanoactivation of the transcriptional coactivators YAP and TAZ (WWTR1). YAP/TAZ activation modulated metabolic enzymes, including glutaminase (GLS1), to coordinate glutaminolysis and glycolysis. Glutaminolysis, an anaplerotic pathway, replenished aspartate for anabolic biosynthesis, which was critical for sustaining proliferation and migration within stiff ECM. In vitro, GLS1 inhibition blocked aspartate production and reprogrammed cellular proliferation pathways, while application of aspartate restored proliferation. In the monocrotaline rat model of PH, pharmacologic modulation of pulmonary vascular stiffness and YAP-dependent mechanotransduction altered glutaminolysis, pulmonary vascular proliferation, and manifestations of PH. Additionally, pharmacologic targeting of GLS1 in this model ameliorated disease progression. Notably, evaluation of simian immunodeficiency virus-infected nonhuman primates and HIV-infected subjects revealed a correlation between YAP/TAZ-GLS activation and PH. These results indicate that ECM stiffening sustains vascular cell growth and migration through YAP/TAZ-dependent glutaminolysis and anaplerosis, and thereby link mechanical stimuli to dysregulated vascular metabolism. Furthermore, this study identifies potential metabolic drug targets for therapeutic development in PH.


Subject(s)
Extracellular Matrix/metabolism , Hypertension, Pulmonary/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Vascular Stiffness , Adolescent , Adult , Aged , Animals , Child , Collagen/metabolism , Endothelial Cells/metabolism , Female , Glutamic Acid/metabolism , Humans , Infant , Male , Mechanotransduction, Cellular , Middle Aged , Myocytes, Smooth Muscle/metabolism , Phosphoproteins/metabolism , Rats , Rats, Sprague-Dawley , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Young Adult
9.
Sci Rep ; 5: 18277, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26667495

ABSTRACT

The molecular origins of fibrosis affecting multiple tissue beds remain incompletely defined. Previously, we delineated the critical role of the control of extracellular matrix (ECM) stiffening by the mechanosensitive microRNA-130/301 family, as activated by the YAP/TAZ co-transcription factors, in promoting pulmonary hypertension (PH). We hypothesized that similar mechanisms may dictate fibrosis in other tissue beds beyond the pulmonary vasculature. Employing an in silico combination of microRNA target prediction, transcriptomic analysis of 137 human diseases and physiologic states, and advanced gene network modeling, we predicted the microRNA-130/301 family as a master regulator of fibrotic pathways across a cohort of seemingly disparate diseases and conditions. In two such diseases (pulmonary fibrosis and liver fibrosis), inhibition of microRNA-130/301 prevented the induction of ECM modification, YAP/TAZ, and downstream tissue fibrosis. Thus, mechanical forces act through a central feedback circuit between microRNA-130/301 and YAP/TAZ to sustain a common fibrotic phenotype across a network of human physiologic and pathophysiologic states. Such re-conceptualization of interconnections based on shared systems of disease and non-disease gene networks may have broad implications for future convergent diagnostic and therapeutic strategies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , Phosphoproteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Benzoates/pharmacology , Benzylamines/pharmacology , Disease Models, Animal , Extracellular Matrix , Fibrosis , Humans , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Intracellular Signaling Peptides and Proteins/genetics , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Phosphoproteins/genetics , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
10.
Cell Rep ; 13(5): 1016-32, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26565914

ABSTRACT

Pulmonary hypertension (PH) is a deadly vascular disease with enigmatic molecular origins. We found that vascular extracellular matrix (ECM) remodeling and stiffening are early and pervasive processes that promote PH. In multiple pulmonary vascular cell types, such ECM stiffening induced the microRNA-130/301 family via activation of the co-transcription factors YAP and TAZ. MicroRNA-130/301 controlled a PPAR?-APOE-LRP8 axis, promoting collagen deposition and LOX-dependent remodeling and further upregulating YAP/TAZ via a mechanoactive feedback loop. In turn, ECM remodeling controlled pulmonary vascular cell crosstalk via such mechanotransduction, modulation of secreted vasoactive effectors, and regulation of associated microRNA pathways. In vivo, pharmacologic inhibition of microRNA-130/301, APOE, or LOX activity ameliorated ECM remodeling and PH. Thus, ECM remodeling, as controlled by the YAP/TAZ-miR-130/301 feedback circuit, is an early PH trigger and offers combinatorial therapeutic targets for this devastating disease.


Subject(s)
Extracellular Matrix/metabolism , Feedback, Physiological , Hypertension, Pulmonary/metabolism , Mechanotransduction, Cellular , MicroRNAs/genetics , Transcription Factors/metabolism , Animals , Apolipoproteins E/metabolism , Extracellular Matrix/pathology , Humans , Hydrogen-Ion Concentration , Hypertension, Pulmonary/pathology , LDL-Receptor Related Proteins/metabolism , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , Rats , Rats, Sprague-Dawley , Transcription Factors/genetics
11.
EMBO Mol Med ; 7(6): 695-713, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25825391

ABSTRACT

Iron-sulfur (Fe-S) clusters are essential for mitochondrial metabolism, but their regulation in pulmonary hypertension (PH) remains enigmatic. We demonstrate that alterations of the miR-210-ISCU1/2 axis cause Fe-S deficiencies in vivo and promote PH. In pulmonary vascular cells and particularly endothelium, hypoxic induction of miR-210 and repression of the miR-210 targets ISCU1/2 down-regulated Fe-S levels. In mouse and human vascular and endothelial tissue affected by PH, miR-210 was elevated accompanied by decreased ISCU1/2 and Fe-S integrity. In mice, miR-210 repressed ISCU1/2 and promoted PH. Mice deficient in miR-210, via genetic/pharmacologic means or via an endothelial-specific manner, displayed increased ISCU1/2 and were resistant to Fe-S-dependent pathophenotypes and PH. Similar to hypoxia or miR-210 overexpression, ISCU1/2 knockdown also promoted PH. Finally, cardiopulmonary exercise testing of a woman with homozygous ISCU mutations revealed exercise-induced pulmonary vascular dysfunction. Thus, driven by acquired (hypoxia) or genetic causes, the miR-210-ISCU1/2 regulatory axis is a pathogenic lynchpin causing Fe-S deficiency and PH. These findings carry broad translational implications for defining the metabolic origins of PH and potentially other metabolic diseases sharing similar underpinnings.


Subject(s)
Genetic Predisposition to Disease , Hypertension, Pulmonary/genetics , Hypoxia/complications , Iron Deficiencies , Iron-Sulfur Proteins/genetics , MicroRNAs/genetics , Sulfur/deficiency , Animals , Cells, Cultured , Endothelial Cells/physiology , Female , Humans , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/pathology , Mice
12.
Horm Cancer ; 5(5): 284-98, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25069840

ABSTRACT

Lymphangioleiomyomatosis (LAM) is a female-predominant lung disease that can lead to respiratory failure. LAM cells typically have inactivating tuberous sclerosis 2 (TSC2) mutations, leading to mTORC1 hyperactivation. The gender specificity of LAM suggests that female hormones contribute to disease progression. Clinical findings indicate that estradiol exacerbates LAM behaviors and symptoms. Although hormonal therapy with progesterone has been employed, the benefit in LAM improvement has not been achieved. We have previously found that estradiol promotes the survival and lung metastasis of cells lacking tuberin in a preclinical model of LAM. In this study, we hypothesize that progesterone alone or in combination with estradiol promotes metastatic behaviors of TSC2-deficient cells. In cell culture models of TSC2-deficient LAM patient-derived and rat uterine leiomyoma-derived cells, we found that progesterone treatment or progesterone plus estradiol resulted in increased phosphorylation of Protein Kinase B (Akt) and Extracellular signal-regulated kinases1/2 (ERK1/2), induced the proliferation, and enhanced the migration and invasiveness. In addition, treatment of progesterone plus estradiol synergistically decreased the levels of reactive oxygen species and enhanced cell survival under oxidative stress. In a murine model of LAM, treatment of progesterone plus estradiol promoted the growth of xenograft tumors; however, progesterone treatment did not affect the development of xenograft tumors of Tsc2-deficient cells. Importantly, treatment of progesterone plus estradiol resulted in alteration of lung morphology and significantly increased the number of lung micrometastases of Tsc2-deficient cells compared with estradiol treatment alone. Collectively, these data indicate that progesterone increases the metastatic potential of Tsc2-deficient LAM patient-derived cells in vitro and lung metastasis in vivo. Thus, targeting progesterone-mediated signaling events may have therapeutic benefit for LAM and possibly other hormonally dependent cancers.


Subject(s)
Estradiol/pharmacology , Lung Neoplasms/secondary , Lymphangioleiomyomatosis/genetics , Lymphangioleiomyomatosis/pathology , Progesterone/pharmacology , Tumor Suppressor Proteins/deficiency , Animals , Cell Death/drug effects , Cell Death/genetics , Cell Line, Transformed , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Disease Models, Animal , Drug Synergism , Enzyme Activation/drug effects , Estradiol/metabolism , Female , Humans , Lymphangioleiomyomatosis/metabolism , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Progesterone/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/pathology , Rats , Reactive Oxygen Species/metabolism , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Xenograft Model Antitumor Assays
13.
J Clin Invest ; 124(8): 3514-28, 2014 08.
Article in English | MEDLINE | ID: mdl-24960162

ABSTRACT

Development of the vascular disease pulmonary hypertension (PH) involves disparate molecular pathways that span multiple cell types. MicroRNAs (miRNAs) may coordinately regulate PH progression, but the integrative functions of miRNAs in this process have been challenging to define with conventional approaches. Here, analysis of the molecular network architecture specific to PH predicted that the miR-130/301 family is a master regulator of cellular proliferation in PH via regulation of subordinate miRNA pathways with unexpected connections to one another. In validation of this model, diseased pulmonary vessels and plasma from mammalian models and human PH subjects exhibited upregulation of miR-130/301 expression. Evaluation of pulmonary arterial endothelial cells and smooth muscle cells revealed that miR-130/301 targeted PPARγ with distinct consequences. In endothelial cells, miR-130/301 modulated apelin-miR-424/503-FGF2 signaling, while in smooth muscle cells, miR-130/301 modulated STAT3-miR-204 signaling to promote PH-associated phenotypes. In murine models, induction of miR-130/301 promoted pathogenic PH-associated effects, while miR-130/301 inhibition prevented PH pathogenesis. Together, these results provide insight into the systems-level regulation of miRNA-disease gene networks in PH with broad implications for miRNA-based therapeutics in this disease. Furthermore, these findings provide critical validation for the evolving application of network theory to the discovery of the miRNA-based origins of PH and other diseases.


Subject(s)
Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , MicroRNAs/genetics , Animals , Apelin , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Computer Simulation , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Fibroblast Growth Factor 2/metabolism , Gene Regulatory Networks , Humans , Hypertension, Pulmonary/pathology , Hypoxia/complications , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Models, Biological , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Octamer Transcription Factor-3/metabolism , PPAR gamma/metabolism , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , STAT3 Transcription Factor/metabolism , Signal Transduction , Systems Theory , Up-Regulation
14.
J Clin Invest ; 123(12): 5212-30, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24200693

ABSTRACT

Chronic obstructive pulmonary disease (COPD) involves aberrant airway inflammatory responses to cigarette smoke (CS) that are associated with epithelial cell dysfunction, cilia shortening, and mucociliary clearance disruption. Exposure to CS reduced cilia length and induced autophagy in vivo and in differentiated mouse tracheal epithelial cells (MTECs). Autophagy-impaired (Becn1+/- or Map1lc3B-/-) mice and MTECs resisted CS-induced cilia shortening. Furthermore, CS increased the autophagic turnover of ciliary proteins, indicating that autophagy may regulate cilia homeostasis. We identified cytosolic deacetylase HDAC6 as a critical regulator of autophagy-mediated cilia shortening during CS exposure. Mice bearing an X chromosome deletion of Hdac6 (Hdac6-/Y) and MTECs from these mice had reduced autophagy and were protected from CS-induced cilia shortening. Autophagy-impaired Becn1-/-, Map1lc3B-/-, and Hdac6-/Y mice or mice injected with an HDAC6 inhibitor were protected from CS-induced mucociliary clearance (MCC) disruption. MCC was preserved in mice given the chemical chaperone 4-phenylbutyric acid, but was disrupted in mice lacking the transcription factor NRF2, suggesting that oxidative stress and altered proteostasis contribute to the disruption of MCC. Analysis of human COPD specimens revealed epigenetic deregulation of HDAC6 by hypomethylation and increased protein expression in the airways. We conclude that an autophagy-dependent pathway regulates cilia length during CS exposure and has potential as a therapeutic target for COPD.


Subject(s)
Autophagy/physiology , Cilia/physiology , Histone Deacetylases/physiology , Pulmonary Disease, Chronic Obstructive/enzymology , Tobacco Smoke Pollution/adverse effects , Animals , Apoptosis Regulatory Proteins/deficiency , Beclin-1 , Cells, Cultured , Cilia/ultrastructure , Cytosol/enzymology , Epithelial Cells/ultrastructure , Female , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Scanning , Microtubule-Associated Proteins/deficiency , Mucus , NF-E2-Related Factor 2/deficiency , NF-E2-Related Factor 2/physiology , Phenotype , Phenylbutyrates/pharmacology , Proteasome Endopeptidase Complex/metabolism , Protein Processing, Post-Translational , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/pathology , Sirtuin 1/deficiency , Sirtuin 1/physiology , Tobacco Products , Trachea/cytology , Ubiquitination
15.
Drug Metab Dispos ; 41(2): 305-11, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23209192

ABSTRACT

Maternal cigarette smoking during pregnancy is associated with increased risk of perinatal morbidity and mortality. However, the mechanisms underlying adverse birth outcomes following prenatal exposure to cigarette smoke remain unknown due, in part, to the absence or unreliability of information regarding maternal cigarette smoke exposure during pregnancy. Our goal was to determine if placental cotinine could be a reliable biomarker of fetal cigarette smoke exposure during pregnancy. Cotinine levels were determined in placentas from 47 women who reported smoking during pregnancy and from 10 women who denied cigarette smoke exposure. Cotinine levels were significantly higher in placentas from women reporting cigarette smoking (median = 27.2 ng/g) versus women who reported no smoke exposure (2.3 ng/g, P < 0.001). Receiver operating characteristic curve analysis identified an optimal cut point of 7.5 ng/g (sensitivity = 78.7%, specificity = 100%) to classify placenta samples from mothers who smoked versus those from mothers who did not. Among 415 placentas for which maternal cigarette smoking status was unavailable, 167 had cotinine levels > 7.5 ng/g and would be considered positive for cigarette smoke exposure. Data from quantitative reverse-transcription polymerase chain reaction analyses demonstrated that in utero cigarette smoke exposure predicted by cotinine in placenta is associated with changes in the expression of xenobiotic-metabolizing enzymes in fetal tissues. CYP1A1 mRNA in fetal lung and liver tissue and CYP1B1 mRNA in fetal lung tissue were significantly induced when cotinine was detected in placenta. These findings indicate that cotinine in placenta is a reliable biomarker for fetal exposure and response to maternal cigarette smoking during pregnancy.


Subject(s)
Cotinine/metabolism , Fetus/drug effects , Gene Expression Regulation, Developmental/drug effects , Maternal Behavior , Placenta/drug effects , Smoking/adverse effects , Animals , Aryl Hydrocarbon Hydroxylases/biosynthesis , Aryl Hydrocarbon Hydroxylases/genetics , Biomarkers/metabolism , Case-Control Studies , Cotinine/blood , Cytochrome P-450 CYP1A1/biosynthesis , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1 , Enzyme Induction , Female , Fetus/metabolism , Gestational Age , Humans , Liver/drug effects , Liver/embryology , Liver/enzymology , Lung/drug effects , Lung/embryology , Lung/enzymology , Male , Mice , Mice, Inbred C57BL , Models, Animal , Placenta/metabolism , Predictive Value of Tests , Pregnancy , RNA, Messenger/biosynthesis , ROC Curve , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Smoking/metabolism , Up-Regulation
16.
Respir Res ; 13: 42, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22651576

ABSTRACT

BACKGROUND: Maternal smoking is a risk factor for pediatric lung disease, including asthma. Animal models suggest that maternal smoking causes defective alveolarization in the offspring. Retinoic acid signaling modulates both lung development and postnatal immune function. Thus, abnormalities in this pathway could mediate maternal smoking effects. We tested whether maternal smoking disrupts retinoic acid pathway expression and functioning in a murine model. METHODS: Female C57Bl/6 mice with/without mainstream cigarette smoke exposure (3 research cigarettes a day, 5 days a week) were mated to nonsmoking males. Cigarette smoke exposure continued throughout the pregnancy and after parturition. Lung tissue from the offspring was examined by mean linear intercept analysis and by quantitative PCR. Cell culture experiments using the type II cell-like cell line, A549, tested whether lipid-soluble cigarette smoke components affected binding and activation of retinoic acid response elements in vitro. RESULTS: Compared to tobacco-naïve mice, juvenile mice with tobacco toxin exposure had significantly (P < 0.05) increased mean linear intercepts, consistent with an alveolarization defect. Tobacco toxin exposure significantly (P < 0.05) decreased mRNA and protein expression of retinoic acid signaling pathway elements, including retinoic acid receptor alpha and retinoic acid receptor beta, with the greatest number of changes observed between postnatal days 3-5. Lipid-soluble cigarette smoke components significantly (P < 0.05) decreased retinoic acid-induced binding and activation of the retinoic acid receptor response element in A549 cells. CONCLUSIONS: A murine model of maternal cigarette smoking causes abnormal alveolarization in association with altered retinoic acid pathway element expression in the offspring. An in vitro cell culture model shows that lipid-soluble components of cigarette smoke decrease retinoic acid response element activation. It is feasible that disruption of retinoic acid signaling contributes to the pediatric lung dysfunction caused by maternal smoking.


Subject(s)
Lung/drug effects , Lung/growth & development , Maternal-Fetal Exchange , Prenatal Exposure Delayed Effects/metabolism , Retinoids/metabolism , Signal Transduction/drug effects , Smoking/adverse effects , Animals , Cell Line , Female , Male , Mice , Mice, Inbred C57BL , Pregnancy , Receptors, Retinoic Acid/biosynthesis , Receptors, Retinoic Acid/genetics , Response Elements/genetics , Retinoic Acid Receptor alpha , Signal Transduction/genetics
17.
Circulation ; 125(12): 1520-32, 2012 Mar 27.
Article in English | MEDLINE | ID: mdl-22371328

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is driven by diverse pathogenic etiologies. Owing to their pleiotropic actions, microRNA molecules are potential candidates for coordinated regulation of these disease stimuli. METHODS AND RESULTS: Using a network biology approach, we identify microRNA associated with multiple pathogenic pathways central to PH. Specifically, microRNA-21 (miR-21) is predicted as a PH-modifying microRNA, regulating targets integral to bone morphogenetic protein (BMP) and Rho/Rho-kinase signaling as well as functional pathways associated with hypoxia, inflammation, and genetic haploinsufficiency of BMP receptor type 2. To validate these predictions, we have found that hypoxia and BMP receptor type 2 signaling independently upregulate miR-21 in cultured pulmonary arterial endothelial cells. In a reciprocal feedback loop, miR-21 downregulates BMP receptor type 2 expression. Furthermore, miR-21 directly represses RhoB expression and Rho-kinase activity, inducing molecular changes consistent with decreased angiogenesis and vasodilation. In vivo, miR-21 is upregulated in pulmonary tissue from several rodent models of PH and in humans with PH. On induction of disease in miR-21-null mice, RhoB expression and Rho-kinase activity are increased, accompanied by exaggerated manifestations of PH. CONCLUSIONS: A network-based bioinformatic approach coupled with confirmatory in vivo data delineates a central regulatory role for miR-21 in PH. Furthermore, this study highlights the unique utility of network biology for identifying disease-modifying microRNA in PH.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks/genetics , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , MicroRNAs/physiology , Signal Transduction/genetics , Animals , Cells, Cultured , Humans , Hypertension, Pulmonary/pathology , Mice , Mice, Knockout , Mice, Transgenic , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Rats , Rats, Sprague-Dawley
18.
Am J Physiol Lung Cell Mol Physiol ; 301(5): L693-701, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21803869

ABSTRACT

Intrauterine smoke exposure (IUS) is a strong risk factor for development of airways responsiveness and asthma in childhood. Runt-related transcription factors (RUNX1-3) have critical roles in immune system development and function. We hypothesized that genetic variations in RUNX1 would be associated with airway responsiveness in asthmatic children and that this association would be modified by IUS. Family-based association testing analysis in the Childhood Asthma Management Program genome-wide genotype data showed that 17 of 100 RUNX1 single-nucleotide polymorphisms (SNPs) were significantly (P < 0.03-0.04) associated with methacholine responsiveness. The association between methacholine responsiveness and one of the SNPs was significantly modified by a history of IUS exposure. Quantitative PCR analysis of immature human lung tissue with and without IUS suggested that IUS increased RUNX1 expression at the pseudoglandular stage of lung development. We examined these associations by subjecting murine neonatal lung tissue with and without IUS to quantitative PCR (N = 4-14 per group). Our murine model showed that IUS decreased RUNX expression at postnatal days (P)3 and P5 (P < 0.05). We conclude that 1) SNPs in RUNX1 are associated with airway responsiveness in asthmatic children and these associations are modified by IUS exposure, 2) IUS tended to increase the expression of RUNX1 in early human development, and 3) a murine IUS model showed that the effects of developmental cigarette smoke exposure persisted for at least 2 wk after birth. We speculate that IUS exposure-altered expression of RUNX transcription factors increases the risk of asthma in children with IUS exposure.


Subject(s)
Asthma/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Polymorphism, Single Nucleotide , Prenatal Exposure Delayed Effects/genetics , Smoking/adverse effects , Tobacco Smoke Pollution/adverse effects , Animals , Asthma/etiology , Asthma/pathology , Asthma/physiopathology , Child , Core Binding Factor Alpha 2 Subunit/analysis , Female , Fetus , Gene Expression , Genetic Testing , Humans , Male , Methacholine Chloride/analysis , Mice , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Real-Time Polymerase Chain Reaction , Risk Factors
19.
N Engl J Med ; 364(19): 1795-806, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21561345

ABSTRACT

BACKGROUND: Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS: Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS: Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS: Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).


Subject(s)
Lung/cytology , Stem Cells/physiology , Adult , Animals , Clone Cells , Female , Humans , Lung/embryology , Lung/physiology , Mice , Mice, Inbred C57BL , Pluripotent Stem Cells , Proto-Oncogene Proteins c-kit/analysis , Regeneration , Stem Cell Transplantation , Stem Cells/chemistry
20.
Am J Physiol Lung Cell Mol Physiol ; 294(2): L214-24, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18055844

ABSTRACT

The ontogeny of the C-C chemokines eotaxin-1, eotaxin-2, and eotaxin-3 has not been fully elucidated in human lung. We explored a possible role for eotaxin in developing lung by determining the ontogeny of eotaxin-1 (CCL11), eotaxin-2 (CCL24), eotaxin-3 (CCL26), and the eotaxin receptor, CCR3. We tested discarded surgical samples of developing human lung tissue using quantitative RT-PCR (QRT-PCR) and immunostaining for expression of CCL11, CCL24, CCL26, and CCR3. We assessed possible functionality of the eotaxin-CCR3 system by treating lung explant cultures with exogenous CCL11 and analyzing the cultures for evidence of changes in proliferation and activation of ERK1/2, a signaling pathway associated with CCR3. QRT-PCR analyses of 22 developing lung tissue samples with gestational ages 10-23 wk demonstrated that eotaxin-1 mRNA is most abundant in developing lung, whereas mRNAs for eotaxin-2 and eotaxin-3 are minimally detectable. CCL11 mRNA levels correlated with gestational age (P < 0.05), and immunoreactivity was localized predominantly to airway epithelial cells. QRT-PCR analysis detected CCR3 expression in 16 of 19 developing lung samples. Supporting functional capacity in the immature lung, CCL11 treatment of lung explant cultures resulted in significantly increased (P < 0.05) cell proliferation and activation of the ERK signaling pathway, which is downstream from CCR3, suggesting that proliferation was due to activation of CCR3 receptors by CCL11. We conclude that developing lung expresses the eotaxins and functional CCR3 receptor. CCL11 may promote airway epithelial proliferation in the developing lung.


Subject(s)
Chemokines, CC/genetics , Chemokines, CC/metabolism , Lung/embryology , Lung/metabolism , Cell Proliferation/drug effects , Chemokine CCL11/genetics , Chemokine CCL11/metabolism , Chemokine CCL11/pharmacology , Chemokine CCL24/genetics , Chemokine CCL24/metabolism , Chemokine CCL26 , Enzyme Activation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gene Expression Regulation, Developmental/drug effects , Gestational Age , Humans , In Vitro Techniques , Lung/cytology , Lung/enzymology , Pregnancy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR3/genetics , Receptors, CCR3/metabolism , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...