Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Adv Sci (Weinh) ; : e2400955, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885422

ABSTRACT

A spiral-artificial basilar membrane (S-ABM) sensor is reported that mimics the basilar membrane (BM) of the human cochlea and can detect sound by separating it into 24 sensing channels based on the frequency band. For this, an analytical function is proposed to design the width of the BM so that the frequency bands are linearly located along the length of the BM. To fabricate the S-ABM sensor, a spiral-shaped polyimide film is used as a vibrating membrane, with maximum displacement at locations corresponding to specific frequency bands of sound, and attach piezoelectric sensor modules made of poly(vinylidene fluoride-trifluoroethylene) film on top of the polyimide film to measure the vibration amplitude at each channel location. As the result, the S-ABM sensor implements a characteristic frequency band of 96-12,821 Hz and 24-independent critical bands. Using real-time signals from discriminate channels, it is demonstrated that the sensor can rapidly identify the operational noises from equipment processes as well as vehicle sounds from environmental noises on the road. The sensor can be used in a variety of applications, including speech recognition, dangerous situation recognition, hearing aids, and cochlear implants, and more.

2.
Sensors (Basel) ; 24(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38400221

ABSTRACT

The challenge of precise dynamic positioning for mobile robots is addressed through the development of a multi-inertial navigation system (M-INSs). The inherent cumulative sensor errors prevalent in traditional single inertial navigation systems (INSs) under dynamic conditions are mitigated by a novel algorithm, integrating multiple INS units in a predefined planar configuration, utilizing fixed distances between the units as invariant constraints. An extended Kalman filter (EKF) is employed to significantly enhance the positioning accuracy. Dynamic experimental validation of the proposed 3INS EKF algorithm reveals a marked improvement over individual INS units, with the positioning errors reduced and stability increased, resulting in an average accuracy enhancement rate exceeding 60%. This advancement is particularly critical for mobile robot applications that demand high precision, such as autonomous driving and disaster search and rescue. The findings from this study not only demonstrate the potential of M-INSs to improve dynamic positioning accuracy but also to provide a new research direction for future advancements in robotic navigation systems.

3.
Asian J Pharm Sci ; 18(3): 100815, 2023 May.
Article in English | MEDLINE | ID: mdl-37304227

ABSTRACT

Corrugated surface microparticles comprising levofloxacin (LEV), chitosan and organic acid were prepared using the 3-combo spray drying method. The amount and the boiling point of the organic acid affected the degree of roughness. In this study, we tried to improve the aerodynamic performance and increase aerosolization by corrugated surface microparticle for lung drug delivery efficiency as dry powder inhaler. HMP175 L20 prepared with 175 mmol propionic acid solution was corrugated more than HMF175 L20 prepared with 175 mmol formic acid solution. The ACI and PIV results showed a significant increase in aerodynamic performance of corrugated microparticles. The FPF value of HMP175 L20 was 41.3% ± 3.9% compared with 25.6% ± 7.7% of HMF175 L20. Corrugated microparticles also showed better aerosolization, decreased x-axial velocity, and variable angle. Rapid dissolution of drug formulations was observed in vivo. Low doses administered to the lungs achieved higher LEV concentrations in the lung fluid than high doses administered orally. Surface modification in the polymer-based formulation was achieved by controlling the evaporation rate and improving the inhalation efficiency of DPIs.

4.
Adv Sci (Weinh) ; 10(16): e2301037, 2023 06.
Article in English | MEDLINE | ID: mdl-37026619

ABSTRACT

In vivo, the membrane potential of the excitable cell working by ion gradients plays a significant role in bioelectricity generation and nervous system operation. Conventional bioinspired power systems generally have adopted ion gradients, but overlook the functions of ion channels and Donnan effect to generate efficient ion flow in the cell. Here, cell-inspired ionic power device implementing the Donnan effect using multi-ions and monovalent ion exchange membranes as artificial ion channels is realized. Different ion-rich electrolytes on either side of the selective membrane generate the ion gradient potentials with high ionic currents and reduce the osmotic imbalance of the membrane. Based on this device, the artificial neuronal signaling is presented by the mechanical switching system of the ion selectivity like mechanosensitive ion channels in a sensory neuron. Compared with reverse electrodialysis, which requires a low concentration, a high-power device with ten times the current and 8.5 times the power density is fabricated. This device activates grown muscle cells by increasing power through serial connection like an electric eel, and shows the possibility of an ion-based artificial nervous system.


Subject(s)
Ion Channels , Action Potentials , Ion Channels/metabolism , Ions/metabolism
5.
Medicine (Baltimore) ; 102(12): e33246, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36961152

ABSTRACT

BACKGROUND: Upper limb robotic rehabilitation can be beneficial to the patients when applied appropriately. HEXO-UR30A is a novel exoskeletal type upper limb rehabilitation robot that provides continuous passive motion to the shoulder joint. OBJECTIVE: The purpose of this study is to evaluate the effectiveness of HEXO-UR30A on the patient's functional change, spasticity, and range of motion (ROM). METHODS: We included stroke patients with upper limb hemiparesis of age > 19 years with spasticity grading of modified Ashworth scale < 3 and Brunnstrom recovery stage ≥ 4. The efficacy of the robot was investigated based on a rehabilitation program for 3 weeks. Patient's functions were compared before vs after treatment and between the HEXO group vs control. We conducted the Fugl-Meyer Assessment of the Upper Extremity, modified Barthel index, modified Ashworth scale, ROM, and Motricity Index upper limb. Patients' satisfaction was evaluated using a questionnaire after every 10 sessions of training. RESULTS: In the HEXO group, the Fugl-Meyer assessment for shoulder improved significantly (P value = .006*) compared with the control group (P value = .075). Both groups showed significant improvement (P value < .05) in Motricity Index upper limb after treatment. There were some improvements in the passive and active ROM. Patients in the HEXO group reported high satisfaction with upper limb rehabilitation. CONCLUSION: These results show that HEXO-UR30A can improve functional ability in chronic stroke patients. Moreover, the high satisfaction in patients might promote active involvement in upper limb rehabilitation.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Humans , Young Adult , Adult , Stroke Rehabilitation/methods , Robotics/methods , Treatment Outcome , Brain Damage, Chronic , Upper Extremity , Muscle Spasticity , Recovery of Function
6.
Materials (Basel) ; 15(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36363170

ABSTRACT

Due to its high strength and good plasticity, dual-phase (DP) steel is widely used for manufacturing the structural and reinforcement components of automobiles. Therefore, it is urgent to investigate the mechanical properties and microstructure variation in DP steel after deformation, especially those subjected to hot-forming processes. In this study, the mechanical properties and microstructure of laser-formed DP980 steel plates under different laser parameters were investigated by means of monotonic tensile tests, microhardness tests, and metallographic tests. The results showed that both yield strength and tensile strength increased with increasing laser line energy in the range of 5~19 J/mm due to the increasing volume content of martensite laths. Elongation was slightly improved after the laser-forming process due to the existence of residual austenite. The average microhardness of the heat-affected zone also increased with an increase in laser line energy and reached a maximum of 412.8 HV0.2-an improvement of 23.5% compared to that of the parent material.

7.
Int J Nanomedicine ; 17: 3405-3419, 2022.
Article in English | MEDLINE | ID: mdl-35945926

ABSTRACT

Introduction: Dry powder inhalations are an attractive pharmaceutical dosage form. They are environmentally friendly, portable, and physicochemical stable compared to other inhalation forms like pressurized metered-dose inhalers and nebulizers. Sufficient drug deposition of DPIs into the deep lung is required to enhance the therapeutic activity. Nanoscale surface roughness in microparticles could improve aerosolization and aerodynamic performance. This study aimed to prepare microspheres with nanoscale dimples and confirm the effect of roughness on inhalation efficiency. Methods: The dimpled-surface on microspheres (MSs) was achieved by oil in water (O/W) emulsion-solvent evaporation by controlling the stirring rate. The physicochemical properties of MSs were characterized. Also, in vitro aerodynamic performance of MSs was evaluated by particle image velocimetry and computational fluid dynamics. Results: The particle image velocimetry results showed that dimpled-surface MSs had better aerosolization, about 20% decreased X-axial velocity, and a variable angle, which could improve the aerodynamic performance. Furthermore, it was confirmed that the dimpled surface of MSs could cause movement away from the bronchial surface, which helps the MSs travel into the deep lung using computational fluid dynamics. Conclusion: The dimpled-surface MSs showed a higher fine particle fraction value compared to smooth-surface MSs in the Andersen Cascade Impactor, and surface roughness like dimples on microspheres could improve aerosolization and lung deposition.


Subject(s)
Budesonide , Dry Powder Inhalers , Administration, Inhalation , Aerosols/chemistry , Microspheres , Particle Size , Powders/chemistry
8.
ACS Nano ; 16(7): 10509-10516, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35820202

ABSTRACT

We report a graphene oxide (GO)-based composite, featuring GO/cross-linking agent (CA) nanoparticles, inspired by a nacre-like hierarchical structure present in nature. The as-prepared GO/CA composite was powdered to nanoscale particles and then mixed with pure GO to be GO/CA/GO (GCG) composite forming hierarchical GO/CA nanoasperities on the GO surface. The strength and toughness of the nacre-inspired GCG composite films were simultaneously improved by adjusting the nanoparticle concentration and hierarchical level of the GO-based films. Compared to pristine GO films and GO/CA composites, which exhibit a low level of hierarchy in their structures, the tensile strength and toughness of the GCG composites with higher hierarchy were enhanced 3.1 and 1.6 times and 47.6 and 10.9 times, respectively. Furthermore, a plausible mechanism of increasing mechanical properties based on nanoscale asperities and homogeneous interactions between GO and CA has been discussed.

9.
Article in English | MEDLINE | ID: mdl-35536180

ABSTRACT

We present a new type of stretchable dichroic film in which Au and Ag alloy nanoparticles (NPs) are dispersed in polydimethylsiloxane (PDMS). The alloy NPs are synthesized with different atomic compositions and sizes to modulate their plasmonic resonance frequencies and absorption and scattering cross sections. The PDMS dichroic film in which 100 nm alloy NPs with a Au/Ag ratio of 7:3 are dispersed shows exotic optical properties under tensile strain. When 40% tensile strain is applied, the film exhibits a strain-sensitive transmission and strain-insensitive reflection behavior in which the transmittance is increased up to 2.6 times, whereas the reflectance remains unchanged. Moreover, we demonstrate a stretchable anticounterfeiting film and a flexible dichroic sculpture fabricated with the PDMS composite. This work demonstrates a new type of plasmonic application that has great potential in various applications, such as special-purpose optical films, security patterns, and smart windows.

10.
Sci Rep ; 12(1): 3881, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273244

ABSTRACT

Walking is an important activity that supports the health-related quality of life, and for those who need assistance, robotic devices are available to help. Recent progress in wearable robots has identified the importance of customizing the assistance provided by the robot to the individual, resulting in robot adaptation to the human. However, current implementations minimize the role of human adaptation to the robot, for example, by the users modifying their movements based on the provided robot assistance. This study investigated the effect of visual feedback to guide the users in adapting their movements in response to wearable robot assistance. The visual feedback helped the users reduce their metabolic cost of walking without any changes in robot assistance in a given time. In a case with the initially metabolic expensive (IMExp) exoskeleton condition, both training methods helped reduce the metabolic cost of walking. The results suggest that visual feedback training is helpful to use the exoskeleton for various conditions. Without feedback, the training is helpful only for the IMExp exoskeleton condition. This result suggests visual feedback training can be useful to facilitate the use of non-personalized, generic assistance, where the assistance is not tuned for each user, in a relatively short time.


Subject(s)
Exoskeleton Device , Adaptation, Physiological , Biomechanical Phenomena , Gait/physiology , Humans , Quality of Life , Walking/physiology
11.
Adv Mater ; 34(16): e2110082, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35178764

ABSTRACT

The human cutaneous sensory organ is a highly evolved biosensor that is efficient, sensitive, selective, and adaptable. Recently, with the development of various materials and structures inspired by sensory organs, artificial cutaneous sensors have been widely studied. In this study, the acquisition of biophysical signals is demonstrated at one point on the body using a wearable all-gel-integrated multimodal sensor composed of four element sensors, inspired by the slow/rapid adapting functions of the skin sensory receptors. The gel-type sensors ensure flexibility, compactness, portability, adherence, and integrity. The wearable all-gel multimodal sensor is easily attached to the wrist and simultaneously gathers blood pressure (BP), electrocardiogram (ECG), electromyogram (EMG), and mechanomyogram (MMG) signals related to cardiac and muscle health. Human activity causes muscle contraction, which affects blood flow; therefore, the relationship between the muscle and heart is crucial for screening and predicting heart health. Cardiac health is monitored by obtaining the two types of phase time differences (i.e., Δtbe : BP and ECG, Δtem : ECG and MMG) generated during muscle movement. The suggested multimodal sensor has potential applicability in monitoring biophysical conditions and diagnosing cardiac-related health problems.


Subject(s)
Wearable Electronic Devices , Electrocardiography , Heart , Humans , Monitoring, Physiologic , Wrist
12.
ACS Sens ; 6(6): 2411-2418, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34100591

ABSTRACT

Recently, wearable triboelectric sensors capable of self-powering, which can be widely used in artificial skin and robotics, have received much attention. Herein, we develop a stretchable triboelectric pressure sensor with a new pattern by superimposing two patterns using both polystyrene beads and UV-ozone treatment. This patterned structure works more sensitively to pressure than a general planar and one-kind patterned structure. The sensor is constructed by sandwiching styrene butadiene rubber (SBR) and poly(dimethylsiloxane) (PDMS). It demonstrates a high sensitivity of 0.078 kPa-1 (0-20 kPa), a low detection limit (1.2 kPa), and pressure sensitivity maintained under 40% strain. The detection behavior of the strain-insensitive triboelectric sensor against pressure is very consistent with the simulation based on the theory. In applications, we successfully detect various human motions, not only small motions such as bending fingers but also large motions such as standing up and raising arms.


Subject(s)
Wearable Electronic Devices , Humans , Polystyrenes
13.
ACS Sens ; 6(5): 1940-1948, 2021 05 28.
Article in English | MEDLINE | ID: mdl-34004113

ABSTRACT

Mechanoreceptors in human skin are important and efficient cutaneous sensors that are highly sensitive, selective, and adaptive to the environment. Among these, Merkel disk (MD) and cilia are capable of sensing an external mechanical force through a receptor with a sharp pillar-like structure at its end. Then, the signal of the action potential is generated by pumping Na+ ions through ion channels. In this study, a self-powered, stretchable, and wearable gel mechanoreceptor sensor is developed inspired by the structural features of the MD and cilia with sharp tips and the signaling characteristics of mechanoreceptor ion migration. Poly(vinylidene fluoride-co-trifluoroethylene) gel is used to implement a self-powered system, and polyvinylchloride-based elastic gel is utilized to detect sensing signals based on charge transfer and distribution. The surface of all gels is that of a conical structure to achieve high sensor sensitivity and conformal contact with a target surface. In addition, using the developed sensors, various biological signals related to pressure/strain occurring in the human body (e.g., blood pressure (BP), muscle movement, and motion) are acquired. Furthermore, the behavior of arterial BP was investigated during the contraction and relaxation of the muscles.


Subject(s)
Wearable Electronic Devices , Gels , Humans , Ions , Mechanical Phenomena , Mechanoreceptors
14.
Drug Dev Ind Pharm ; 47(5): 685-693, 2021 May.
Article in English | MEDLINE | ID: mdl-33866911

ABSTRACT

As an active pharmaceutical ingredient, dapagliflozin propanediol monohydrate (D-PD) has been used in the solvated form consisting of dapagliflozin compounded with (S)-propylene glycol and monohydrate at a 1:1:1 ratio. However, dapagliflozin propanediol loses the solvent's reduced lattice structure at slightly higher temperatures. Due to its sensitive solid-state stability, the temperature and humidity are strictly controlled during the production and storage of dapagliflozin. Thus, crystalline molecular complexes containing pharmaceutical salts, solvates, monohydrates, and cocrystals have recently been developed as alternative strategies. This study investigated the dapagliflozin free base (D-FB), D-PD, and dapagliflozin l-proline cocrystals (D-LP). Their solid-state behavior was also evaluated in stress stability studies. The compounds were analyzed using scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FT-IR) spectroscopy, dynamic vapor sorption (DVS), and powder rheology testing. In addition, Carr's index, the Hausner ratio, contact angle, and intrinsic dissolution rate were calculated. Dapagliflozin exhibited distinct physical properties depending upon the differences in solid form and also showed significant differences in solid-state behavior in the stress stability test. In conclusion, D-LP was superior to D-FB or D-PD in physicochemical and mechanical properties.


Subject(s)
Glucosides , Benzhydryl Compounds , Calorimetry, Differential Scanning , Powder Diffraction , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Sensors (Basel) ; 20(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171796

ABSTRACT

This study presents a computational method called economical auto moment limiter (eAML) that prevents a mobile cargo crane from being overloaded. The eAML detects and controls, in real time, crane overload without using boom stroke sensors and load cells, which are expensive items inevitable to existing AML systems, hence, being competitive in price. It replaces these stroke sensors and load cells that are used for the crane overload measurement with a set of mathematical formula and control logics that calculates the lifting load being handled under crane operation and the maximum lifting load. By calculating iterative them using only a pressure sensor attached under the derrick cylinder and the boom angle sensor, the mathematical model identifies the maximum descendible angle of the boom. The control logic presents the control method for preventing the crane overload by using the descendible angle obtained by the mathematical model. Both the mathematical model and the control logic are validated by rigorous simulation experiments using MATLAB on two case instances each of which eAML is used and not used, while changing the pressures on the derrick cylinder and the boom angle. The effectiveness and validity of the method are confirmed by comparing the outputs obtained by the controlled experiments performed by using a 7.6 ton crane on top of SCS887 and a straight-type maritime heavy-duty crane along with eAML. The effects attributed to the load and the wind speed are quantified to verify the reliability of eAML under the changes in external variables.

16.
Pharmaceutics ; 12(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823545

ABSTRACT

The purpose of this study was to prepare spray dried bosentan microparticles for dry powder inhaler and to characterize its physicochemical and aerodynamic properties. The microparticles were prepared from ethanol/water solutions containing bosentan using spray dryer. Three types of formulations (SD60, SD80, and SD100) depending on the various ethanol concentrations (60%, 80%, and 100%, respectively) were used. Bosentan microparticle formulations were characterized by scanning electron microscopy, powder X-ray diffraction, laser diffraction particle sizing, differential scanning calorimetry, Fourier-transform infrared spectroscopy, dissolution test, and in vitro aerodynamic performance using Andersen cascade impactor™ (ACI) system. In addition, particle image velocimetry (PIV) system was used for directly confirming the actual movement of the aerosolized particles. Bosentan microparticles resulted in formulations with various shapes, surface morphology, and particle size distributions. SD100 was a smooth surface with spherical morphology, SD80 was a rough surfaced with spherical morphology and SD60 was a rough surfaced with corrugated morphology. SD100, SD80, and SD60 showed significantly high drug release up to 1 h compared with raw bosentan. The aerodynamic size of SD80 and SD60 was 1.27 µm and SD100 was 6.95 µm. The microparticles with smaller particle size and a rough surface aerosolized better (%FPF: 63.07 ± 2.39 and 68.27 ± 8.99 for SD60 and SD80, respectively) than larger particle size and smooth surface microparticle (%FPF: 22.64 ± 11.50 for SD100).

17.
ACS Appl Mater Interfaces ; 12(26): 29979-29985, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32493011

ABSTRACT

Aesthetically appealing photovoltaic (PV) panels with colorful layers are used in numerous applications involving color matching with the surroundings. To develop a colored film for a PV system, appropriate optical properties such as high transparency and low angle sensitivity are necessary because the colored layers can reduce the efficiency of the PV system by causing variations in the transmittance and angle of incidence. Herein, we propose a facile fabrication method for bioinspired three-dimensional (3D) photonic crystal (PC) films that exhibit broad angle-insensitive transmission and reflection, for application in colorful PV. This structure, patterned on a sequentially stacked 11-layer film of SiO2 and TiO2, is fabricated via nanoimprint lithography and a one-step dry-etching process, without using a metal mask. The changes in transmission and reflection are observed via ultraviolet-visible spectroscopy and from the reflected images obtained under various angles. The transmittance dips of the 3D PC film shift by less than 10 nm in wavelength, for angles from 0 to 45°, indicating low angle dependency. In addition, the change in the observed color, with respect to the viewing position, is less in the fabricated film. Once the 3D PC film was added to a commercial PV cell, it exhibited a higher efficiency (approximately 6% upper) when compared to a cell with a one-dimensional PC film, during the duration of the experiment, from 0 to 30°. Thus, the proposed method demonstrates excellent potential for developing structural color films for achieving aesthetically appealing PV cells.

18.
Sensors (Basel) ; 20(10)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438711

ABSTRACT

On modern construction sites, guidance and automation systems are increasingly applied to excavators. Recently, studies have been actively conducted to compare the estimation results of the bucket tip with the motion measurement method of the boom, stick, and bucket and the sensor selection. This study selected the method of measuring the cylinder length of boom, stick, and bucket, and the method of directly measuring the boom, arm, and bucket, which are commonly used in guidance and automation systems. A low-cost sensor that can be attached and detached to the excavator in modular form was selected to apply the above methods to commercial excavator. After the sensor selection, hardware and excavator simulation models for sensor measurements were constructed. Finally, the trajectory of the bucket tip was compared and analyzed through graphs and simulation results when the boom, stick, and bucket were independently rotated one by one, or together. The results gives a guideline on what kinds of sensors would be better in machine guidance or controlling an excavator according to given external environments.

19.
ACS Sens ; 5(3): 845-852, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32096629

ABSTRACT

In the human skin, it has been well known that several mechanoreceptors uniquely sense external stimuli with specific frequencies and magnitudes. With regard to sensitivity, the output response shows nonlinearity depending on the frequency magnitude of the stimulus. We demonstrate a self-powered proton-driven solid-state somatosensor, which mimics a unique nonlinear response and intensity behavior of human mechanoreceptors. For this, a solid-state sensor is fabricated by combining a piezoelectric film and a proton generation device. The proton injection electrode and the Nafion layer conjugated with sulfonated graphene oxide are used for proton generation and transport. Two types of nonlinear signals from the sensor are similar to the Merkel/Ruffini (low deviation of threshold intensity), and in contrast, the behavior of Pacinian/Meissner (high deviation of threshold intensity) is simultaneously shown. The region of the most responsive frequency is also discriminated according to proton conduction. Moreover, it is asserted that unique signal patterns are obtained from the stimuli of various frequencies, such as respiration, radial artery pulse, and neck vibration, which naturally occur in the human body.


Subject(s)
Mechanoreceptors/physiology , Protons , Electrodes , Fluorocarbon Polymers , Graphite , Humans , Physical Stimulation , Skin , Vibration
20.
Sensors (Basel) ; 19(22)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703420

ABSTRACT

Of all the machinery and equipment used on construction sites, excavators are responsible for the greatest number of fatal accidents. Excavation is an inherently risky process due to imprecise work processes and the unstable external environment on most work sites. The resulting accidents cause serious injuries that threaten the lives of not only the excavator pilots but also those working around them. In this study, we propose a mechanical device that is capable of operating the excavator remotely from a nearby safe location such as a site office. To ensure worker safety and at the same time boost the productivity of excavation operations, data from 3D scanners, cameras, and sensors were combined to create a detailed 3D picture of the area surrounding the excavation site to guide a remotely operated excavating system. Rather than modifying the excavator itself, a removable manipulator was mounted on the joystick in the excavator's cockpit. Our proposed system was tested on a standard commercial excavator to verify its performance for a real-world excavation task.

SELECTION OF CITATIONS
SEARCH DETAIL
...