Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Environ Res ; 259: 119512, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964581

ABSTRACT

BACKGROUND: Valid, high-resolution estimates of population-level exposure to air pollutants are necessary for accurate estimation of the association between air pollution and the occurrence or exacerbation of adverse health outcomes such as Chronic Obstructive Pulmonary Disease (COPD). OBJECTIVES: We produced fine-scale individual-level estimates of ambient concentrations of multiple air pollutants (fine particulate matter [PM2.5], NOX, NO2, and O3) at residences of participants in the Subpopulations and Intermediate Outcomes in COPD Air Pollution (SPIROMICS Air) study, located in seven regions in the US. For PM2.5, we additionally integrated modeled estimates of particulate infiltration based on home characteristics and measured total indoor concentrations to provide comprehensive estimates of exposure levels. METHODS: To estimate ambient concentrations, we used a hierarchical high-resolution spatiotemporal model that integrates hundreds of geographic covariates and pollutant measurements from regulatory and study-specific monitors, including ones located at participant residences. We modeled infiltration efficiency based on data on house characteristics, home heating and cooling practices, indoor smoke and combustion sources, meteorological factors, and paired indoor-outdoor pollutant measurements, among other indicators. RESULTS: Cross-validated prediction accuracy (R2) for models of ambient concentrations was above 0.80 for most regions and pollutants. Particulate matter infiltration efficiency varied by region, from 0.51 in Winston-Salem to 0.72 in Los Angeles, and ambient-source particles constituted a substantial fraction of total indoor PM2.5. CONCLUSION: Leveraging well-validated fine-scale approaches for estimating outdoor, ambient-source indoor, and total indoor pollutant concentrations, we can provide comprehensive estimates of short and long-term exposure levels for cohorts undergoing follow-up in multiple different regions.

2.
Chest ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025205

ABSTRACT

BACKGROUND: Little research is available to provide practical guidance to health care providers for exercise preparticipation screening and referral of patients with interstitial lung diseases (ILD), including lymphangioleiomyomatosis (LAM), to participate in remote, unsupervised exercise programs. RESEARCH QUESTION: What exercise preparticipation screening steps are essential to determine whether a patient with LAM is medically appropriate to participate in a remote, unsupervised exercise program? STUDY DESIGN AND METHODS: Sixteen experts in LAM and ILD participated in a two-round modified Delphi study, ranking their level of agreement for ten statements related to unsupervised exercise training in LAM, with an a priori definition of consensus. Additionally, 60 patients with LAM completed a survey of the perceived risks and benefits of remote exercise training in LAM. RESULTS: Seven of the 10 statements reached consensus among experts. Experts agreed that an in-person clinical exercise test is indicated to screen for exercise-induced hypoxemia and prescribe supplemental oxygen therapy as indicated prior to initiating a remote exercise program. Patients with recent pneumothorax should wait to start an exercise program for at least 4 weeks until after resolution of pneumothorax and clearance by a physician. Patients with high cardiovascular risk for event during exercise, severe resting pulmonary hypertension, or risk for falls may be more appropriate for referral to a rehabilitation center. A LAM-specific remote exercise preparticipation screening tool was developed from the consensus statements and agreed upon by the panelists. INTERPRETATION: A modified Delphi study approach was useful to develop disease-specific recommendations for safety and preparticipation screening prior to unsupervised, remotely administered exercise in LAM. The primary product of this study is a clinical decision aid for providers to use when medically screening patients prior to participation in the newly launched LAMFit remote exercise program. FUNDING: This work was funded by an Established Investigator Award (LAM0130PB07-18) to MBB from The LAM Foundation.

4.
Article in English | MEDLINE | ID: mdl-38843116

ABSTRACT

RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.

6.
Article in English | MEDLINE | ID: mdl-38843133

ABSTRACT

RATIONALE: Accelerated biological aging has been implicated in the development of interstitial lung disease (ILD) and other diseases of aging but remains poorly understood. OBJECTIVES: To identify plasma proteins that mediate the relationship between chronological age and survival association in patients with ILD. METHODS: Causal mediation analysis was performed to identify plasma proteins that mediated the chronological age-survival relationship in an idiopathic pulmonary fibrosis (IPF) discovery cohort. Proteins mediating this relationship after adjustment for false discovery were advanced for testing in an independent ILD validation cohort and explored in a chronic obstructive pulmonary disease (COPD) cohort. A proteomic-based measure of biological age was constructed and survival analysis performed assessing the impact of biological age and peripheral blood telomere length on the chronological age-survival relationship. RESULTS: Twenty-two proteins mediated the chronological age-survival relationship after adjustment for false discovery in the IPF discovery cohort (n=874), with nineteen remaining significant mediators of this relationship in the ILD validation cohort (n=983) and one mediating this relationship in the COPD cohort. Latent transforming growth factor beta binding protein 2 and ectodysplasin A2 receptor showed the strongest mediation across cohorts. A proteomic measure of biological age completely attenuated the chronological age-survival association and better discriminated survival than chronological age. Results were robust to adjustment for peripheral blood telomere length, which did not mediate the chronological age-survival relationship. CONCLUSIONS: Molecular measures of aging completely mediate the relationship between chronological age and survival, suggesting that chronological age has no direct effect on ILD survival.

7.
Respir Med ; 231: 107695, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38848821

ABSTRACT

Initial chronic obstructive lung disease (COPD) pharmacotherapy is based on symptom burden and exacerbation history. Inclusion of inhaled cortico-steroids (ICS) is recommended only for those with a history of exacerbations. This brief report highlights that among individuals with previously unrecognized COPD about 1 in 5 have one or more exacerbation-like events and about 1 in 10 have two or more events in the prior 12 months whether or not they self-report concomitant asthma. Closer attention to prior exacerbation-like event history might lead to more guideline concordant care. In addition, there are two other groups that have impaired but non-obstructive spirometry, some with significant respiratory symptom burden who have frequencies of exacerbation-like events similar to those meeting COPD spirometry criteria. To date we have little guidance for treatment of these individuals.

9.
Respir Res ; 25(1): 208, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750492

ABSTRACT

BACKGROUND: We estimated the prevalence and mortality risks of preserved ratio impaired spirometry (PRISm) and chronic obstructive pulmonary disease (COPD) in the US adult population. METHODS: We linked three waves of pre-bronchodilator spirometry data from the US National Health and Nutritional Examination Survey (2007-2012) with the National Death Index. The analytic sample included adults ages 20 to 79 without missing data on age, sex, height, BMI, race/ethnicity, and smoking status. We defined COPD (GOLD 1, 2, and 3-4) and PRISm using FEV1/FVC cut points by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We compared the prevalence of GOLD stages and PRISm by covariates across the three waves. We estimated adjusted all-cause and cause-specific mortality risks by COPD stage and PRISm using all three waves combined. RESULTS: Prevalence of COPD and PRISm from 2007-2012 ranged from 13.1%-14.3% and 9.6%-10.2%, respectively. We found significant differences in prevalence by sex, age, smoking status, and race/ethnicity. Males had higher rates of COPD regardless of stage, while females had higher rates of PRISm. COPD prevalence increased with age, but not PRISm, which was highest among middle-aged individuals. Compared to current and never smokers, former smokers showed lower rates of PRISm but higher rates of GOLD 1. COPD prevalence was highest among non-Hispanic White individuals, and PRISm was notably higher among non-Hispanic Black individuals (range 31.4%-37.4%). We found associations between PRISm and all-cause mortality (hazard ratio [HR]: 2.3 95% CI: 1.9-2.9) and various cause-specific deaths (HR ranges: 2.0-5.3). We also found associations between GOLD 2 (HR: 2.1, 95% CI: 1.7-2.6) or higher (HR: 4.2, 95% CI: 2.7-6.5) and all-cause mortality. Cause-specific mortality risk varied within COPD stages but typically increased with higher GOLD stage. CONCLUSIONS: The prevalence of COPD and PRISm remained stable from 2007-2012. Greater attention should be paid to the potential impacts of PRISm due to its higher prevalence in minority groups and its associations with mortality across various causes including cancer.


Subject(s)
Nutrition Surveys , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/mortality , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/diagnosis , Male , Female , Middle Aged , United States/epidemiology , Prevalence , Adult , Aged , Risk Factors , Young Adult , Spirometry , Forced Expiratory Volume/physiology
10.
Article in English | MEDLINE | ID: mdl-38564415
11.
Ann Am Thorac Soc ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568439

ABSTRACT

RATIONALE: It is unknown whether air pollution is associated with radiographic features of interstitial lung disease in individuals with chronic obstructive pulmonary disease (COPD). OBJECTIVES: To determine whether air pollution increases prevalence of interstitial lung abnormalities (ILA) or percent high-attenuation area (HAA) on computed tomography (CT) in individuals with a heavy smoking history and COPD. METHODS: We performed a cross-sectional study of SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), focused on current or former smokers with COPD. 10-year exposure to particulate matter < 2.5 µm (PM2.5), nitrogen oxides (NOx), nitrogen dioxide (NO2), and ozone (O3) prior to enrollment CTs (completed between 2010-2015) were estimated with validated spatiotemporal models at residential addresses. We applied adjusted multivariable modified Poisson regression and linear regression to investigate associations between pollution exposure and relative risk of ILA or increased percent HAA (between -600 and -250 Hounsfield units) respectively. We assessed for effect modification by MUC5B-promoter polymorphism (GT/TT vs GG at rs3705950), smoking status, sex, and percent emphysema. RESULTS: Among 1272 participants with COPD assessed for HAA, 424 were current smokers, 249 were carriers of the variant MUC5B allele (GT/TT). 519 participants were assessed for ILA. We found no association between pollution exposure and ILA or HAA. Associations between pollutant exposures and risk of ILA were modified by the presence of MUC5B polymorphism (p-value interaction term for NOx = 0.04 and PM2.5 = 0.05) and smoking status (p-value interaction term for NOx = 0.05, NO2 = 0.01, and O3 = 0.05). With higher exposure to NOx and PM2.5, MUC5B variant carriers had increased risk of ILA (Relative Risk [RR] per 26ppb NOx 2.41; 95% Confidence Interval [CI] 0.97 to 6.0) and RR per 4 µg·m-3 PM2.5 1.43; 95% CI 0.93 to 2.2). With higher exposure to NO2, former smokers had increased risk of ILA (RR per 10ppb 1.64; 95% CI 1.0 to 2.7). CONCLUSIONS: Exposure to ambient air pollution was not associated with interstitial features on CT in this population of heavy smokers with COPD. MUC5B modified the association between pollution and ILA, suggesting that gene-environment interactions may influence prevalence of interstitial lung features in COPD.

12.
Adv Ther ; 41(6): 2151-2167, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664329

ABSTRACT

Chronic obstructive pulmonary disease (COPD) constitutes a major global health burden and is the third leading cause of death worldwide. A high proportion of patients with COPD have cardiovascular disease, but there is also evidence that COPD is a risk factor for adverse outcomes in cardiovascular disease. Patients with COPD frequently die of respiratory and cardiovascular causes, yet the identification and management of cardiopulmonary risk remain suboptimal owing to limited awareness and clinical intervention. Acute exacerbations punctuate the progression of COPD in many patients, reducing lung function and increasing the risk of subsequent exacerbations and cardiovascular events that may lead to early death. This narrative review defines and summarises the principles of COPD-associated cardiopulmonary risk, and examines respiratory interventions currently available to modify this risk, as well as providing expert opinion on future approaches to addressing cardiopulmonary risk.


Subject(s)
Cardiovascular Diseases , Pulmonary Disease, Chronic Obstructive , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/therapy , Humans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/etiology , Disease Progression , Risk Factors , Heart Disease Risk Factors
13.
Radiology ; 311(1): e231801, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38687222

ABSTRACT

Background Acute respiratory disease (ARD) events are often thought to be airway-disease related, but some may be related to quantitative interstitial abnormalities (QIAs), which are subtle parenchymal abnormalities on CT scans associated with morbidity and mortality in individuals with a smoking history. Purpose To determine whether QIA progression at CT is associated with ARD and severe ARD events in individuals with a history of smoking. Materials and Methods This secondary analysis of a prospective study included individuals with a 10 pack-years or greater smoking history recruited from multiple centers between November 2007 and July 2017. QIA progression was assessed between baseline (visit 1) and 5-year follow-up (visit 2) chest CT scans. Episodes of ARD were defined as increased cough or dyspnea lasting 48 hours and requiring antibiotics or corticosteroids, whereas severe ARD episodes were those requiring an emergency room visit or hospitalization. Episodes were recorded via questionnaires completed every 3 to 6 months. Multivariable logistic regression and zero-inflated negative binomial regression models adjusted for comorbidities (eg, emphysema, small airway disease) were used to assess the association between QIA progression and episodes between visits 1 and 2 (intercurrent) and after visit 2 (subsequent). Results A total of 3972 participants (mean age at baseline, 60.7 years ± 8.6 [SD]; 2120 [53.4%] women) were included. Annual percentage QIA progression was associated with increased odds of one or more intercurrent (odds ratio [OR] = 1.29 [95% CI: 1.06, 1.56]; P = .01) and subsequent (OR = 1.26 [95% CI: 1.05, 1.52]; P = .02) severe ARD events. Participants in the highest quartile of QIA progression (≥1.2%) had more frequent intercurrent ARD (incidence rate ratio [IRR] = 1.46 [95% CI: 1.14, 1.86]; P = .003) and severe ARD (IRR = 1.79 [95% CI: 1.18, 2.73]; P = .006) events than those in the lowest quartile (≤-1.7%). Conclusion QIA progression was independently associated with higher odds of severe ARD events during and after radiographic progression, with higher frequency of intercurrent severe events in those with faster progression. Clinical trial registration no. NCT00608764 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Little in this issue.


Subject(s)
Disease Progression , Smoking , Tomography, X-Ray Computed , Humans , Female , Male , Tomography, X-Ray Computed/methods , Prospective Studies , Middle Aged , Smoking/adverse effects , Acute Disease , Aged , Lung Diseases, Interstitial/diagnostic imaging , Lung/diagnostic imaging
14.
Article in English | MEDLINE | ID: mdl-38507607

ABSTRACT

RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.

15.
J Cyst Fibros ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38490920

ABSTRACT

BACKGROUND: Iron deficiency (ID) is a common extrapulmonary manifestation in cystic fibrosis (CF). CF transmembrane conductance regulator (CFTR) modulator therapies, particularly highly-effective modulator therapy (HEMT), have drastically improved health status in a majority of people with CF. We hypothesize that CFTR modulator use is associated with improved markers of ID. METHODS: In a multicenter retrospective cohort study across 4 United States CF centers 2012-2022, the association between modulator therapies and ID laboratory outcomes was estimated using multivariable linear mixed effects models overall and by key subgroups. Summary statistics describe the prevalence and trends of ID, defined a priori as transferrin saturation (TSAT) <20 % or serum iron <60 µg/dL (<10.7 µmol/L). RESULTS: A total of 568 patients with 2571 person-years of follow-up were included in analyses. Compared to off modulator therapy, HEMT was associated with +8.4 % TSAT (95 % confidence interval [CI], +6.3-10.6 %; p < 0.0001) and +34.4 µg/dL serum iron (95 % CI, +26.7-42.1 µg/dL; p < 0.0001) overall; +5.4 % TSAT (95 % CI, +2.8-8.0 %; p = 0.0001) and +22.1 µg/dL serum iron (95 % CI, +13.5-30.8 µg/dL; p < 0.0001) in females; and +11.4 % TSAT (95 % CI, +7.9-14.8 %; p < 0.0001) and +46.0 µg/dL serum iron (95 % CI, +33.3-58.8 µg/dL; p < 0.0001) in males. Ferritin was not different in those taking modulator therapy relative to off modulator therapy. Hemoglobin was overall higher with use of modulator therapy. The prevalence of ID was high throughout the study period (32.8 % in those treated with HEMT). CONCLUSIONS: ID remains a prevalent comorbidity in CF, despite availability of HEMT. Modulator use, particularly of HEMT, is associated with improved markers for ID (TSAT, serum iron) and anemia (hemoglobin).

16.
Ann Am Thorac Soc ; 21(7): 1022-1033, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38530051

ABSTRACT

Rationale: Rates of emphysema progression vary in chronic obstructive pulmonary disease (COPD), and the relationships with vascular and airway pathophysiology remain unclear. Objectives: We sought to determine if indices of peripheral (segmental and beyond) pulmonary arterial dilation measured on computed tomography (CT) are associated with a 1-year index of emphysema (EI; percentage of voxels <-950 Hounsfield units) progression. Methods: Five hundred ninety-nine former and never-smokers (Global Initiative for Chronic Obstructive Lung Disease stages 0-3) were evaluated from the SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study) cohort: rapid emphysema progressors (RPs; n = 188, 1-year ΔEI > 1%), nonprogressors (n = 301, 1-year ΔEI ± 0.5%), and never-smokers (n = 110). Segmental pulmonary arterial cross-sectional areas were standardized to associated airway luminal areas (segmental pulmonary artery-to-airway ratio [PAARseg]). Full-inspiratory CT scan-derived total (arteries and veins) pulmonary vascular volume (TPVV) was compared with small vessel volume (radius smaller than 0.75 mm). Ratios of airway to lung volume (an index of dysanapsis and COPD risk) were compared with ratios of TPVV to lung volume. Results: Compared with nonprogressors, RPs exhibited significantly larger PAARseg (0.73 ± 0.29 vs. 0.67 ± 0.23; P = 0.001), lower ratios of TPVV to lung volume (3.21 ± 0.42% vs. 3.48 ± 0.38%; P = 5.0 × 10-12), lower ratios of airway to lung volume (0.031 ± 0.003 vs. 0.034 ± 0.004; P = 6.1 × 10-13), and larger ratios of small vessel volume to TPVV (37.91 ± 4.26% vs. 35.53 ± 4.89%; P = 1.9 × 10-7). In adjusted analyses, an increment of 1 standard deviation in PAARseg was associated with a 98.4% higher rate of severe exacerbations (95% confidence interval, 29-206%; P = 0.002) and 79.3% higher odds of being in the RP group (95% confidence interval, 24-157%; P = 0.001). At 2-year follow-up, the CT-defined RP group demonstrated a significant decline in postbronchodilator percentage predicted forced expiratory volume in 1 second. Conclusions: Rapid one-year progression of emphysema was associated with indices indicative of higher peripheral pulmonary vascular resistance and a possible role played by pulmonary vascular-airway dysanapsis.


Subject(s)
Disease Progression , Pulmonary Artery , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Male , Female , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/physiopathology , Aged , Middle Aged , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/physiopathology , Lung/diagnostic imaging , Lung/physiopathology , Forced Expiratory Volume , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging
17.
J Appl Physiol (1985) ; 136(5): 1144-1156, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38420676

ABSTRACT

Smaller mean airway tree caliber is associated with airflow obstruction and chronic obstructive pulmonary disease (COPD). We investigated whether airway tree caliber heterogeneity was associated with airflow obstruction and COPD. Two community-based cohorts (MESA Lung, CanCOLD) and a longitudinal case-control study of COPD (SPIROMICS) performed spirometry and computed tomography measurements of airway lumen diameters at standard anatomical locations (trachea-to-subsegments) and total lung volume. Percent-predicted airway lumen diameters were calculated using sex-specific reference equations accounting for age, height, and lung volume. The association of airway tree caliber heterogeneity, quantified as the standard deviation (SD) of percent-predicted airway lumen diameters, with baseline forced expired volume in 1-second (FEV1), FEV1/forced vital capacity (FEV1/FVC) and COPD, as well as longitudinal spirometry, were assessed using regression models adjusted for age, sex, height, race-ethnicity, and mean airway tree caliber. Among 2,505 MESA Lung participants (means ± SD age: 69 ± 9 yr; 53% female, mean airway tree caliber: 99 ± 10% predicted, airway tree caliber heterogeneity: 14 ± 5%; median follow-up: 6.1 yr), participants in the highest quartile of airway tree caliber heterogeneity exhibited lower FEV1 (adjusted mean difference: -125 mL, 95%CI: -171,-79), lower FEV1/FVC (adjusted mean difference: -0.01, 95%CI: -0.02,-0.01), and higher odds of COPD (adjusted odds ratio: 1.42, 95%CI: 1.01-2.02) when compared with the lowest quartile, whereas longitudinal changes in FEV1 and FEV1/FVC did not differ significantly. Observations in CanCOLD and SPIROMICS were consistent. Among older adults, airway tree caliber heterogeneity was associated with airflow obstruction and COPD at baseline but was not associated with longitudinal changes in spirometry.NEW & NOTEWORTHY In this study, by leveraging two community-based samples and a case-control study of heavy smokers, we show that among older adults, airway tree caliber heterogeneity quantified by CT is associated with airflow obstruction and COPD independent of age, sex, height, race-ethnicity, and dysanapsis. These observations suggest that airway tree caliber heterogeneity is a structural trait associated with low baseline lung function and normal decline trajectory that is relevant to COPD.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Spirometry , Humans , Female , Male , Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Spirometry/methods , Lung/physiopathology , Lung/diagnostic imaging , Forced Expiratory Volume/physiology , Case-Control Studies , Vital Capacity/physiology , Middle Aged , Longitudinal Studies , Tomography, X-Ray Computed/methods , Airway Obstruction/physiopathology , Aged, 80 and over
18.
Respir Res ; 25(1): 106, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419014

ABSTRACT

BACKGROUND: Small airways disease (SAD) is a major cause of airflow obstruction in COPD patients and has been identified as a precursor to emphysema. Although the amount of SAD in the lungs can be quantified using our Parametric Response Mapping (PRM) approach, the full breadth of this readout as a measure of emphysema and COPD progression has yet to be explored. We evaluated topological features of PRM-derived normal parenchyma and SAD as surrogates of emphysema and predictors of spirometric decline. METHODS: PRM metrics of normal lung (PRMNorm) and functional SAD (PRMfSAD) were generated from CT scans collected as part of the COPDGene study (n = 8956). Volume density (V) and Euler-Poincaré Characteristic (χ) image maps, measures of the extent and coalescence of pocket formations (i.e., topologies), respectively, were determined for both PRMNorm and PRMfSAD. Association with COPD severity, emphysema, and spirometric measures were assessed via multivariable regression models. Readouts were evaluated as inputs for predicting FEV1 decline using a machine learning model. RESULTS: Multivariable cross-sectional analysis of COPD subjects showed that V and χ measures for PRMfSAD and PRMNorm were independently associated with the amount of emphysema. Readouts χfSAD (ß of 0.106, p < 0.001) and VfSAD (ß of 0.065, p = 0.004) were also independently associated with FEV1% predicted. The machine learning model using PRM topologies as inputs predicted FEV1 decline over five years with an AUC of 0.69. CONCLUSIONS: We demonstrated that V and χ of fSAD and Norm have independent value when associated with lung function and emphysema. In addition, we demonstrated that these readouts are predictive of spirometric decline when used as inputs in a ML model. Our topological PRM approach using PRMfSAD and PRMNorm may show promise as an early indicator of emphysema onset and COPD progression.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Lung/diagnostic imaging , Forced Expiratory Volume/physiology
20.
EClinicalMedicine ; 68: 102408, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38273887

ABSTRACT

Background: Abnormal lung function trajectories are associated with increased risk of chronic obstructive pulmonary disease (COPD) and premature mortality; several risk factors for following these trajectories have been identified. Airway under-sizing dysanapsis (small airway lumens relative to lung size), is associated with an increased risk for COPD. The relationship between dysanapsis and lung function trajectories at risk for adverse outcomes of COPD is largely unexplored. We test the hypothesis that dysanapsis differentially affects distinct lung function trajectories associated with adverse outcomes of COPD. Methods: To identify lung function trajectories, we applied Bayesian trajectory analysis to longitudinal FEV1 and FVC Z-scores in the COPDGene Study, an ongoing longitudinal study that collected baseline data from 2007 to 2012. To ensure clinical relevance, we selected trajectories based on risk stratification for all-cause mortality and prospective exacerbations of COPD (ECOPD). Dysanapsis was measured in baseline COPDGene CT scans as the airway lumen-to-lung volume (a/l) ratio. We compared a/l ratios between trajectories and evaluated their association with trajectory assignment, controlling for previously identified risk factors. We also assigned COPDGene participants for whom only baseline data is available to their most likely trajectory and repeated our analysis to further evaluate the relationship between trajectory assignment and a/l ratio measures. Findings: We identified seven trajectories: supranormal, reference, and five trajectories at increased risk for mortality and exacerbations. Three at-risk trajectories are characterized by varying degrees of concomitant FEV1 and FVC impairments and exhibit airway predominant COPD patterns as assessed by quantitative CT imaging. These trajectories have lower a/l ratio values and increased risk for mortality and ECOPD compared to the reference trajectory. Two at-risk trajectories are characterized by disparate levels of FEV1 and FVC impairment and exhibit mixed airway and emphysema COPD patterns on quantitative CT imaging. These trajectories have markedly lower a/l ratio values compared to both the reference trajectory and airway-predominant trajectories and are at greater risk for mortality and ECOPD compared to the airway-predominant trajectories. These findings were observed among the participants with baseline-only data as well. Interpretation: The degree of dysanapsis appears to portend patterns of progression leading to COPD. Assignment of individuals-including those without spirometric obstruction-to distinct trajectories is possible in a clinical setting and may influence management strategies. Strategies that combine CT-assessed dysanapsis together with spirometric measures of lung function and smoke exposure assessment are likely to further improve trajectory assignment accuracy, thereby improving early detection of those most at risk for adverse outcomes. Funding: United States National Institute of Health, COPD Foundation, and Brigham and Women's Hospital.

SELECTION OF CITATIONS
SEARCH DETAIL