Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Mol Cancer Ther ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561023

ABSTRACT

CD33 (Siglec-3) is a cell surface receptor expressed in approximately 90% of AML blasts, making it an attractive target for therapy of acute myeloid leukemia (AML). While previous CD33-targeting antibody-drug conjugates (ADCs) like gemtuzumab ozogamicin (GO, Mylotarg) have shown efficacy in AML treatment, they have suffered from toxicity and narrow therapeutic window. This study aimed to develop a novel ADC with improved tolerability and a wider therapeutic window. GLK-33 consists of the anti-CD33 antibody lintuzumab and eight mavg-MMAU auristatin linker-payloads per antibody. The experimental methods included testing in cell cultures, patient-derived samples, mouse xenograft models, and rat toxicology studies. GLK-33 exhibited remarkable efficacy in reducing cell viability within CD33-positive leukemia cell lines and primary AML samples. Notably, GLK-33 demonstrated anti-tumor activity at single dose as low as 300 µg/kg in mice, while maintaining tolerability at single dose of 20 - 30 mg/kg in rats. In contrast to both GO and lintuzumab vedotin, GLK-33 exhibited a wide therapeutic window and activity against multidrug-resistant cells. The development of GLK-33 addresses the limitations of previous ADCs, offering a wider therapeutic window, improved tolerability, and activity against drug-resistant leukemia cells. These findings encourage further exploration of GLK-33 in AML through clinical trials.

2.
Oncogenesis ; 13(1): 11, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429288

ABSTRACT

Acute myeloid leukemia (AML), a heterogeneous and aggressive blood cancer, does not respond well to single-drug therapy. A combination of drugs is required to effectively treat this disease. Computational models are critical for combination therapy discovery due to the tens of thousands of two-drug combinations, even with approved drugs. While predicting synergistic drugs is the focus of current methods, few consider drug efficacy and potential toxicity, which are crucial for treatment success. To find effective new drug candidates, we constructed a bipartite network using patient-derived tumor samples and drugs. The network is based on drug-response screening and summarizes all treatment response heterogeneity as drug response weights. This bipartite network is then projected onto the drug part, resulting in the drug similarity network. Distinct drug clusters were identified using community detection methods, each targeting different biological processes and pathways as revealed by enrichment and pathway analysis of the drugs' protein targets. Four drugs with the highest efficacy and lowest toxicity from each cluster were selected and tested for drug sensitivity using cell viability assays on various samples. Results show that ruxolitinib-ulixertinib and sapanisertib-LY3009120 are the most effective combinations with the least toxicity and the best synergistic effect on blast cells. These findings lay the foundation for personalized and successful AML therapies, ultimately leading to the development of drug combinations that can be used alongside standard first-line AML treatment.

3.
Blood Adv ; 8(7): 1621-1633, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38197948

ABSTRACT

ABSTRACT: Monosomy 7 and del(7q) (-7/-7q) are frequent chromosomal abnormalities detected in up to 10% of patients with acute myeloid leukemia (AML). Despite unfavorable treatment outcomes, no approved targeted therapies exist for patients with -7/-7q. Therefore, we aimed to identify novel vulnerabilities. Through an analysis of data from ex vivo drug screens of 114 primary AML samples, we discovered that -7/-7q AML cells are highly sensitive to the inhibition of nicotinamide phosphoribosyltransferase (NAMPT). NAMPT is the rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Mechanistically, the NAMPT gene is located at 7q22.3, and deletion of 1 copy due to -7/-7q results in NAMPT haploinsufficiency, leading to reduced expression and a therapeutically targetable vulnerability to the inhibition of NAMPT. Our results show that in -7/-7q AML, differentiated CD34+CD38+ myeloblasts are more sensitive to the inhibition of NAMPT than less differentiated CD34+CD38- myeloblasts. Furthermore, the combination of the BCL2 inhibitor venetoclax and the NAMPT inhibitor KPT-9274 resulted in the death of significantly more leukemic blasts in AML samples with -7/-7q than the NAMPT inhibitor alone. In conclusion, our findings demonstrate that AML with -7/-7q is highly sensitive to NAMPT inhibition, suggesting that NAMPT inhibitors have the potential to be an effective targeted therapy for patients with monosomy 7 or del(7q).


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Nicotinamide Phosphoribosyltransferase , Leukemia, Myeloid, Acute/genetics , Chromosome Deletion , Chromosomes, Human, Pair 7
4.
Nat Protoc ; 19(1): 60-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37996540

ABSTRACT

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Precision Medicine/methods
5.
Int J Mol Sci ; 24(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37958554

ABSTRACT

This paper describes a machine learning (ML) decision support system to provide a list of chemotherapeutics that individual multiple myeloma (MM) patients are sensitive/resistant to, based on their proteomic profile. The methodology used in this study involved understanding the parameter space and selecting the dominant features (proteomics data), identifying patterns of proteomic profiles and their association to the recommended treatments, and defining the decision support system of personalized treatment as a classification problem. During the data analysis, we compared several ML algorithms, such as linear regression, Random Forest, and support vector machines, to classify patients as sensitive/resistant to therapeutics. A further analysis examined data-balancing techniques that emerged due to the small cohort size. The results suggest that utilizing proteomics data is a promising approach for identifying effective treatment options for patients with MM (reaching on average an accuracy of 81%). Although this pilot study was limited by the small patient cohort (39 patients), which restricted the training and validation of the explored ML solutions to identify complex associations between proteins, it holds great promise for developing personalized anti-MM treatments using ML approaches.


Subject(s)
Multiple Myeloma , Proteomics , Humans , Proteomics/methods , Pilot Projects , Multiple Myeloma/drug therapy , Machine Learning , Algorithms , Support Vector Machine
6.
Brain Circ ; 9(2): 107-111, 2023.
Article in English | MEDLINE | ID: mdl-37576578

ABSTRACT

Spinal cord infarctions in children are rare and early magnetic resonance imaging studies are often negative. A high clinical suspicion must be maintained to identify stroke and initiate workup for underlying etiology to suggest appropriate treatment. We present two cases of spinal cord infarction without major preceding trauma. The first was caused by disc herniation and external impingement of a radiculomedullary artery and the second was due to fibrocartilaginous embolism with classic imaging findings of ventral and dorsal cord infarctions, respectively. These cases were treated conservatively with diagnostic workup and aspirin, though additional treatments which can be considered with prompt diagnosis are also explored in our discussion. Both cases recovered the ability to ambulate independently within months. Case 1 is attending college and ambulates campus with a single-point cane. Case 2 ambulates independently, though has some difficulty with proprioception of the feet so uses wheelchairs for long-distance ambulation.

7.
Cancers (Basel) ; 15(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37568580

ABSTRACT

Multiple myeloma (MM) is an incurable haematological malignancy of plasma cells in the bone marrow. In rare cases, an aggressive form of MM called extramedullary multiple myeloma (EMM) develops, where myeloma cells enter the bloodstream and colonise distal organs or soft tissues. This variant is associated with refractoriness to conventional therapies and a short overall survival. The molecular mechanisms associated with EMM are not yet fully understood. Here, we analysed the proteome of bone marrow mononuclear cells and blood plasma from eight patients (one serial sample) with EMM and eight patients without extramedullary spread. The patients with EMM had a significantly reduced overall survival with a median survival of 19 months. Label-free mass spectrometry revealed 225 proteins with a significant differential abundance between bone marrow mononuclear cells (BMNCs) isolated from patients with MM and EMM. This plasma proteomics analysis identified 22 proteins with a significant differential abundance. Three proteins, namely vascular cell adhesion molecule 1 (VCAM1), pigment epithelium derived factor (PEDF), and hepatocyte growth factor activator (HGFA), were verified as the promising markers of EMM, with the combined protein panel showing excellent accuracy in distinguishing EMM patients from MM patients. Metabolomic analysis revealed a distinct metabolite signature in EMM patient plasma compared to MM patient plasma. The results provide much needed insight into the phenotypic profile of EMM and in identifying promising plasma-derived markers of EMM that may inform novel drug development strategies.

8.
Patient Educ Couns ; 115: 107883, 2023 10.
Article in English | MEDLINE | ID: mdl-37421687

ABSTRACT

BACKGROUND: This study aims to explore patients' with acute myeloid leukemia perceptions about precision medicine and their preferences for involvement in this new area of shared decision-making. METHODS: Individual semi-structured interviews were conducted in Finland, Italy and Germany (n = 16). The study population included patients aged 24-79 years. Interviews were analyzed with thematic content analysis. RESULTS: Patient's perceived lack of knowledge as a barrier for their involvement in decision-making. Treatment decisions were often made rapidly based on the patient's intuition and trust for the physician rather than on information, in situations that decrease the patient's decision capacity. The patients emphasized that they are in a desperate situation that makes them willing to accept treatment with low probabilities of being cured. CONCLUSIONS: The study raised important issues regarding patients' understanding of precision medicine and challenges concerning how to involve patients in medical decision-making. Although technical advances were viewed positively, the role of the physician as an expert and person-of-trust cannot be replaced. PRACTICE IMPLICATIONS: Regardless of patients' preferences for involvement in decision-making, information plays a crucial role for patients' perceived involvement in their care. The concepts related to precision medicine are complex and will imply challenges to patient education.


Subject(s)
Leukemia, Myeloid, Acute , Physicians , Humans , Decision Making , Precision Medicine , Leukemia, Myeloid, Acute/therapy , Patient Participation , Physician-Patient Relations , Qualitative Research
9.
Cancers (Basel) ; 15(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37174069

ABSTRACT

The bone marrow microenvironment interacts with malignant cells and regulates cancer survival and immune evasion in multiple myeloma (MM). We investigated the immune profiles of longitudinal bone marrow samples from patients with newly diagnosed MM (n = 18) using cytometry by time-of-flight. The results before and during treatment were compared between patients with good (GR, n = 11) and bad (BR, n = 7) responses to lenalidomide/bortezomib/dexamethasone-based treatment. Before treatment, the GR group had a lower tumor cell burden and a higher number of T cells with a phenotype shifted toward CD8+ T cells expressing markers attributed to cytotoxicity (CD45RA and CD57), a higher abundance of CD8+ terminal effector cells, and a lower abundance of CD8+ naïve T cells. On natural killer (NK) cells, increased expression of CD56 (NCAM), CD57, and CD16 was seen at baseline in the GR group, indicating their maturation and cytotoxic potential. During lenalidomide-based treatment, the GR patients showed an increase in effector memory CD4+ and CD8+ T-cell subsets. These findings support distinct immune patterns in different clinical contexts, suggesting that deep immune profiling could be used for treatment guidance and warrants further exploration.

10.
Blood ; 141(13): 1610-1625, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36508699

ABSTRACT

Myeloid neoplasms with erythroid or megakaryocytic differentiation include pure erythroid leukemia, myelodysplastic syndrome with erythroid features, and acute megakaryoblastic leukemia (FAB M7) and are characterized by poor prognosis and limited treatment options. Here, we investigate the drug sensitivity landscape of these rare malignancies. We show that acute myeloid leukemia (AML) cells with erythroid or megakaryocytic differentiation depend on the antiapoptotic protein B-cell lymphoma (BCL)-XL, rather than BCL-2, using combined ex vivo drug sensitivity testing, genetic perturbation, and transcriptomic profiling. High-throughput screening of >500 compounds identified the BCL-XL-selective inhibitor A-1331852 and navitoclax as highly effective against erythroid/megakaryoblastic leukemia cell lines. In contrast, these AML subtypes were resistant to the BCL-2 inhibitor venetoclax, which is used clinically in the treatment of AML. Consistently, genome-scale CRISPR-Cas9 and RNAi screening data demonstrated the striking essentiality of BCL-XL-encoding BCL2L1 but not BCL2 or MCL1, for the survival of erythroid/megakaryoblastic leukemia cell lines. Single-cell and bulk transcriptomics of patient samples with erythroid and megakaryoblastic leukemias identified high BCL2L1 expression compared with other subtypes of AML and other hematological malignancies, where BCL2 and MCL1 were more prominent. BCL-XL inhibition effectively killed blasts in samples from patients with AML with erythroid or megakaryocytic differentiation ex vivo and reduced tumor burden in a mouse erythroleukemia xenograft model. Combining the BCL-XL inhibitor with the JAK inhibitor ruxolitinib showed synergistic and durable responses in cell lines. Our results suggest targeting BCL-XL as a potential therapy option in erythroid/megakaryoblastic leukemias and highlight an AML subgroup with potentially reduced sensitivity to venetoclax-based treatments.


Subject(s)
Leukemia, Megakaryoblastic, Acute , Leukemia, Myeloid, Acute , Lymphoma, B-Cell , Animals , Mice , Humans , Proto-Oncogene Proteins c-bcl-2/genetics , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Cell Line, Tumor , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , bcl-X Protein/genetics , Leukemia, Megakaryoblastic, Acute/drug therapy , Leukemia, Megakaryoblastic, Acute/genetics , Cell Differentiation , Apoptosis
11.
Haematologica ; 108(7): 1768-1781, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36519325

ABSTRACT

The BCL-2 inhibitor venetoclax has revolutionized the treatment of acute myeloid leukemia (AML) in patients not benefiting from intensive chemotherapy. Nevertheless, treatment failure remains a challenge, and predictive markers are needed, particularly for relapsed or refractory AML. Ex vivo drug sensitivity testing may correlate with outcomes, but its prospective predictive value remains unexplored. Here we report the results of the first stage of the prospective phase II VenEx trial evaluating the utility and predictiveness of venetoclax sensitivity testing using different cell culture conditions and cell viability assays in patients receiving venetoclax-azacitidine. Participants with de novo AML ineligible for intensive chemotherapy, relapsed or refractory AML, or secondary AML were included. The primary endpoint was the treatment response in participants showing ex vivo sensitivity and the key secondary endpoints were the correlation of sensitivity with responses and survival. Venetoclax sensitivity testing was successful in 38/39 participants. Experimental conditions significantly influenced the predictive accuracy. Blast-specific venetoclax sensitivity measured in conditioned medium most accurately correlated with treatment outcomes; 88% of sensitive participants achieved a treatment response. The median survival was significantly longer for participants who were ex vivo-sensitive to venetoclax (14.6 months for venetoclax-sensitive patients vs. 3.5 for venetoclax-insensitive patients, P<0.001). This analysis illustrates the feasibility of integrating drug-response profiling into clinical practice and demonstrates excellent predictivity. This trial is registered with ClinicalTrials.gov identifier: NCT04267081.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Prospective Studies , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
Hum Mol Genet ; 32(1): 161-171, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36018815

ABSTRACT

Tuberculosis is a significant public health concern resulting in the death of over 1 million individuals each year worldwide. While treatment options and vaccines exist, a substantial number of infections still remain untreated or are caused by treatment resistant strains. Therefore, it is important to identify mechanisms that contribute to risk and prognosis of tuberculosis as this may provide tools to understand disease mechanisms and provide novel treatment options for those with severe infection. Our goal was to identify genetic risk factors that contribute to the risk of tuberculosis and to understand biological mechanisms and causality behind the risk of tuberculosis. A total of 1895 individuals in the FinnGen study had International Classification of Diseases-based tuberculosis diagnosis. Genome-wide association study analysis identified genetic variants with statistically significant association with tuberculosis at the human leukocyte antigen (HLA) region (P < 5e-8). Fine mapping of the HLA association provided evidence for one protective haplotype tagged by HLA DQB1*05:01 (P = 1.82E-06, OR = 0.81 [CI 95% 0.74-0.88]), and predisposing alleles tagged by HLA DRB1*13:02 (P = 0.00011, OR = 1.35 [CI 95% 1.16-1.57]). Furthermore, genetic correlation analysis showed association with earlier reported risk factors including smoking (P < 0.05). Mendelian randomization supported smoking as a risk factor for tuberculosis (inverse-variance weighted P < 0.05, OR = 1.83 [CI 95% 1.15-2.93]) with no significant evidence of pleiotropy. Our findings indicate that specific HLA alleles associate with the risk of tuberculosis. In addition, lifestyle risk factors such as smoking contribute to the risk of developing tuberculosis.


Subject(s)
Genetic Predisposition to Disease , Tuberculosis , Humans , Genome-Wide Association Study , Tuberculosis/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Haplotypes/genetics , Risk Factors , Alleles , Gene Frequency
13.
EJHaem ; 3(4): 1352-1357, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36467798

ABSTRACT

Observations of inherited susceptibility to multiple myeloma have led to active research in defining predisposing genes to the disease. Here, we analysed 128 plasma cell dyscrasia patients' germline whole-exome sequencing data. Rare dominantly inherited pathogenic or likely pathogenic (P/LP) variant was found in 9.4% of the patients. Among the P/LP variants, CHEK2 (p. Thr410MetfsTer15) was the most prevalent (n = 5, 3.9%). Interestingly, P/LP variants in POT1 were identified in three patients (2.3%). Our findings broaden the spectrum of POT1-related cancers and demonstrate the importance of the germline genetic analysis in hematological malignancies.

14.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36053753

ABSTRACT

Thrombocytopenia, prevalent in the majority of patients with myeloid malignancies, such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), is an independent adverse prognostic factor. Azacitidine (AZA), a mainstay therapeutic agent for stem cell transplant-ineligible patients with MDS/AML, often transiently induces or further aggravates disease-associated thrombocytopenia by an unknown mechanism. Here, we uncover the critical role of an acute type-I interferon (IFN-I) signaling activation in suppressing megakaryopoiesis in AZA-mediated thrombocytopenia. We demonstrate that megakaryocytic lineage-primed progenitors present IFN-I receptors and, upon AZA exposure, engage STAT1/SOCS1-dependent downstream signaling prematurely attenuating thrombopoietin receptor (TPO-R) signaling and constraining megakaryocytic progenitor cell growth and differentiation following TPO-R stimulation. Our findings directly implicate RNA demethylation and IFN-I signal activation as a root cause for AZA-mediated thrombocytopenia and suggest mitigation of TPO-R inhibitory innate immune signaling as a suitable therapeutic strategy to support platelet production, particularly during the early phases of AZA therapy.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Thrombocytopenia , Azacitidine/pharmacology , Azacitidine/therapeutic use , Humans , Immunity, Innate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology
15.
Leukemia ; 36(10): 2384-2395, 2022 10.
Article in English | MEDLINE | ID: mdl-35945345

ABSTRACT

Treatment responses of patients with acute myeloid leukemia (AML) are known to be heterogeneous, posing challenges for risk scoring and treatment stratification. In this retrospective multi-cohort study, we investigated whether combining pyroptosis- and immune-related genes improves prognostic classification of AML patients. Using a robust gene pairing approach, which effectively eliminates batch effects across heterogeneous patient cohorts and transcriptomic data, we developed an immunity and pyroptosis-related prognostic (IPRP) signature that consists of 15 genes. Using 5 AML cohorts (n = 1327 patients total), we demonstrate that the IPRP score leads to more consistent and accurate survival prediction performance, compared with 10 existing signatures, and that IPRP scoring is widely applicable to various patient cohorts, treatment procedures and transcriptomic technologies. Compared to current standards for AML patient stratification, such as age or ELN2017 risk classification, we demonstrate an added prognostic value of the IPRP risk score for providing improved prediction of AML patients. Our web-tool implementation of the IPRP score and a simple 4-factor nomogram enables practical and robust risk scoring for AML patients. Even though developed for AML patients, our pan-cancer analyses demonstrate a wider application of the IPRP signature for prognostic prediction and analysis of tumor-immune interplay also in multiple solid tumors.


Subject(s)
Leukemia, Myeloid, Acute , Pyroptosis , Cohort Studies , Humans , Leukemia, Myeloid, Acute/pathology , Prognosis , Pyroptosis/genetics , Retrospective Studies
16.
Curr Cancer Drug Targets ; 23(1): 25-46, 2022.
Article in English | MEDLINE | ID: mdl-35747970

ABSTRACT

Aminopeptidases, which catalyze the cleavage of amino acids from the amino terminus of proteins, are widely distributed in the natural world and play a crucial role in cellular processes and functions, including metabolism, signaling, angiogenesis, and immunology. They are also involved in the homeostasis of amino acids and proteins that are required for cellular proliferation. Tumor cells are highly dependent on the exogenous supply of amino acids for their survival, and overexpression of aminopeptidase facilitates rapid tumor cell proliferation. In addition, clinical studies have demonstrated that patients with cancers with high aminopeptidase expression often have poorer outcomes. Emerging evidence supports the rationale of inhibiting aminopeptidase activity as a targeted approach for novel treatment options, as limiting the availability of amino acids can be selectively lethal to tumor cells. While there are agents that directly target aminopeptidases that demonstrate potential as cancer therapies, such as bestatin and tosedostat, more selective and more targeted therapeutic approaches are needed. This article specifically looks at the biological role of aminopeptidases in both normal and cancer processes, and their potential as a biological target for future therapeutic strategies. When examining previous publications, most do not cover aminopeptidases and their role in cancer processes. Aminopeptidases play a vital role in cell processes and functions; however, their overexpression may lead to a rapid proliferation of tumor cells. Emerging evidence supports the rationale of leveraging aminopeptidase activity as a targeted approach for new oncological treatments. This article specifically looks at the biological role of aminopeptidases in both normal and cancer processes, and their potential as a biological target for future therapeutic strategies.


Subject(s)
Aminopeptidases , Neoplasms , Humans , Aminopeptidases/chemistry , Aminopeptidases/metabolism , Amino Acids/metabolism , Amino Acids/pharmacology , Neoplasms/drug therapy , Leucine/pharmacology , Signal Transduction , Biology
17.
Sci Rep ; 12(1): 10670, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739278

ABSTRACT

Despite recent progress in acute lymphoblastic leukemia (ALL) therapies, a significant subset of adult and pediatric ALL patients has a dismal prognosis. Better understanding of leukemogenesis and recognition of germline genetic changes may provide new tools for treating patients. Given that hematopoietic stem cell transplantation, often from a family member, is a major form of treatment in ALL, acknowledging the possibility of hereditary predisposition is of special importance. Reports of comprehensive germline analyses performed in adult ALL patients are scarce. Aiming at fulfilling this gap of knowledge, we investigated variants in 93 genes predisposing to hematologic malignancies and 70 other cancer-predisposing genes from exome data obtained from 61 adult and 87 pediatric ALL patients. Our results show that pathogenic (P) or likely pathogenic (LP) germline variants in genes associated with predisposition to ALL or other cancers are prevalent in ALL patients: 8% of adults and 11% of children. Comparison of P/LP germline variants in patients to population-matched controls (gnomAD Finns) revealed a 2.6-fold enrichment in ALL cases (CI 95% 1.5-4.2, p = 0.00071). Acknowledging inherited factors is crucial, especially when considering hematopoietic stem cell transplantation and planning post-therapy follow-up. Harmful germline variants may also predispose patients to excessive toxicity potentially compromising the outcome. We propose integrating germline genetics into precise ALL patient care and providing families genetic counseling.


Subject(s)
Germ-Line Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Child , Exome , Genetic Predisposition to Disease , Germ Cells , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
18.
Sci Transl Med ; 14(650): eabn3248, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35731890

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.


Subject(s)
CDC2-CDC28 Kinases , Leukemia, Myeloid, Acute , Animals , CDC2-CDC28 Kinases/metabolism , CDC2-CDC28 Kinases/pharmacology , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Mice , Neoplastic Stem Cells , Proteomics
19.
Cells ; 11(9)2022 05 07.
Article in English | MEDLINE | ID: mdl-35563880

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide-drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome.


Subject(s)
Mesenchymal Stem Cells , Multiple Myeloma , Bone Marrow/pathology , Bortezomib/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Humans , Melphalan/analogs & derivatives , Melphalan/pharmacology , Melphalan/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Phenylalanine/analogs & derivatives
20.
Blood ; 140(17): 1891-1906, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35544598

ABSTRACT

Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Mice , Animals , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Dasatinib/pharmacology , Dasatinib/therapeutic use , Zebrafish/metabolism , Tyrosine , Cell Line, Tumor , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/metabolism , Recurrence , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...