Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 798
Filter
1.
NMR Biomed ; : e5170, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742727

ABSTRACT

Toll-like receptor 2 (TLR2) belongs to the TLR protein family that plays an important role in the immune and inflammation response system. While TLR2 is predominantly expressed in immune cells, its expression has also been detected in the brain, specifically in microglia and astrocytes. Recent studies indicate that genomic deletion of TLR2 can result in impaired neurobehavioural function. It is currently not clear if the genomic deletion of TLR2 leads to any alterations in the microstructural features of the brain. In the current study, we noninvasively assess microstructural changes in the brain of TLR2-deficient (tlr2-/-) zebrafish using state-of-the art magnetic resonance imaging (MRI) methods at ultrahigh magnetic field strength (17.6 T). A significant increase in cortical thickness and an overall trend towards increased brain volumes were observed in young tlr2-/- zebrafish. An elevated T2 relaxation time and significantly reduced apparent diffusion coefficient (ADC) unveil brain-wide microstructural alterations, potentially indicative of cytotoxic oedema and astrogliosis in the tlr2-/- zebrafish. Multicomponent analysis of the ADC diffusivity signal by the phasor approach shows an increase in the slow ADC component associated with restricted diffusion. Diffusion tensor imaging and diffusion kurtosis imaging analysis revealed diminished diffusivity and enhanced kurtosis in various white matter tracks in tlr2-/- compared with control zebrafish, identifying the microstructural underpinnings associated with compromised white matter integrity and axonal degeneration. Taken together, our findings demonstrate that the genomic deletion of TLR2 results in severe alterations to the microstructural features of the zebrafish brain. This study also highlights the potential of ultrahigh field diffusion MRI techniques in discerning exceptionally fine microstructural details within the small zebrafish brain, offering potential for investigating microstructural changes in zebrafish models of various brain diseases.

2.
Nat Commun ; 15(1): 2072, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453959

ABSTRACT

Bacteria have an extensive adaptive ability to live in close association with eukaryotic hosts, exhibiting detrimental, neutral or beneficial effects on host growth and health. However, the genes involved in niche adaptation are mostly unknown and their functions poorly characterized. Here, we present bacLIFE ( https://github.com/Carrion-lab/bacLIFE ) a streamlined computational workflow for genome annotation, large-scale comparative genomics, and prediction of lifestyle-associated genes (LAGs). As a proof of concept, we analyzed 16,846 genomes from the Burkholderia/Paraburkholderia and Pseudomonas genera, which led to the identification of hundreds of genes potentially associated with a plant pathogenic lifestyle. Site-directed mutagenesis of 14 of these predicted LAGs of unknown function, followed by plant bioassays, showed that 6 predicted LAGs are indeed involved in the phytopathogenic lifestyle of Burkholderia plantarii and Pseudomonas syringae pv. phaseolicola. These 6 LAGs encompassed a glycosyltransferase, extracellular binding proteins, homoserine dehydrogenases and hypothetical proteins. Collectively, our results highlight bacLIFE as an effective computational tool for prediction of LAGs and the generation of hypotheses for a better understanding of bacteria-host interactions.


Subject(s)
Genome, Bacterial , Pseudomonas syringae , Genome, Bacterial/genetics , Pseudomonas syringae/genetics , Workflow , Genomics/methods
3.
Biotechniques ; 76(5): 183-191, 2024 May.
Article in English | MEDLINE | ID: mdl-38420933

ABSTRACT

In this study, the authors compared the efficiency of automated robotic and manual injection methods for the CRISPR-RfxCas13d (CasRx) system for mRNA knockdown and Cas9-mediated DNA targeting in zebrafish embryos. They targeted the no tail (TBXTA) gene as a proof-of-principle, evaluating the induced embryonic phenotypes. Both Cas9 and CasRx systems caused loss of function phenotypes for TBXTA. Cas9 protein exhibited a higher percentage of severe phenotypes compared with mRNA, while CasRx protein and mRNA showed similar efficiency. Both robotic and manual injections demonstrated comparable phenotype percentages and mortality rates. The findings highlight the potential of RNA-targeting CRISPR effectors for precise gene knockdown and endorse automated microinjection at a speed of 1.0 s per embryo as a high-throughput alternative to manual methods.


Subject(s)
CRISPR-Cas Systems , Microinjections , Robotics , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/embryology , CRISPR-Cas Systems/genetics , Microinjections/methods , Robotics/methods , RNA Interference , Embryo, Nonmammalian , Gene Knockdown Techniques/methods , Zebrafish Proteins/genetics , RNA, Messenger/genetics
4.
Environ Microbiol ; 26(2): e16589, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356049

ABSTRACT

Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.


Subject(s)
Actinomycetales , Mammoths , Streptomyces , Animals , Phylogeny , Genomics , Streptomyces/genetics , Feces
5.
Physiol Rep ; 11(23): e15847, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38054547

ABSTRACT

Transmembrane protein 14A (TMEM14A) is a relatively unknown protein that is now identified to be required for maintaining the integrity of the glomerular filtration barrier. It is an integral transmembrane protein of 99 amino acids with three transmembrane domains. TMEM14A has been implied to suppress Bax-mediated apoptosis in other studies. Other than that, little is currently known of its function. Here, we show that its expression is diminished before onset of proteinuria in a spontaneously proteinuric rat model. Knocking down tmem14a mRNA translation results in proteinuria in zebrafish embryos without affecting tubular reabsorption. Also, it is primarily expressed by podocytes. Lastly, an increase in glomerular TMEM14A expression is exhibited in various proteinuric renal diseases. Overall, these results suggest that TMEM14A is a novel factor in the protective mechanisms of the nephron to maintain glomerular filtration barrier integrity.


Subject(s)
Apoptosis Regulatory Proteins , Glomerular Filtration Barrier , Membrane Proteins , Podocytes , Animals , Rats , Kidney Glomerulus/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Membrane Proteins/genetics , Apoptosis Regulatory Proteins/genetics
6.
Trends Microbiol ; 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38135617

ABSTRACT

The incidence of infections due to nontuberculous mycobacteria (NTM) has increased rapidly in recent years, surpassing tuberculosis in developed countries. Due to inherent antimicrobial resistance, NTM infections are particularly difficult to treat with low cure rates. There is an urgent need to understand NTM pathogenesis and to develop novel therapeutic approaches for the treatment of NTM diseases. Zebrafish have emerged as an excellent animal model due to genetic amenability and optical transparency during embryonic development, allowing spatiotemporal visualization of host-pathogen interactions. Furthermore, adult zebrafish possess fully functional innate and adaptive immunity and recapitulate important pathophysiological hallmarks of mycobacterial infection. Here, we report recent breakthroughs in understanding the hallmarks of NTM infections using the zebrafish model.

7.
Environ Sci Technol ; 57(43): 16552-16563, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37856883

ABSTRACT

The main driver of the potential toxicity of micro- and nanoplastics toward biota is often the release of compounds initially present in the plastic, i.e., polymer additives, as well as environmentally acquired metals and/or organic contaminants. Plastic particles degrade in the environment via various mechanisms and at different rates depending on the particle size/geometry, polymer type, and the prevailing physical and chemical conditions. The rate and extent of polymer degradation have obvious consequences for the uptake/release kinetics and, thus, the bioavailability of compounds associated with plastic particles. Herein, we develop a theoretical framework to describe the uptake and release kinetics of metal ions and organic compounds by plastic particles and apply it to the analysis of experimental data for pristine and aged micro- and nanoplastics. In particular, we elucidate the contribution of transient processes to the overall kinetics of plastic reactivity toward aquatic contaminants and demonstrate the paramount importance of intraparticulate contaminant diffusion.


Subject(s)
Microplastics , Water Pollutants, Chemical , Polymers/metabolism , Biological Availability , Water Pollutants, Chemical/toxicity , Metals , Plastics/analysis , Ions
8.
Eur Ann Otorhinolaryngol Head Neck Dis ; 140(6): 267-270, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37833161

ABSTRACT

OBJECTIVES: Allergic fungal rhinosinusitis (AFRS) and eosinophilic mucin chronic rhinosinusitis (EMRS) are two forms of chronic sinusitis distinguished by the presence (AFRS) or absence (EMRS) of fungal elements in sinus mucin. Detection of the fungal elements, however, is complex and it is difficult to say whether EMRS is in fact an entity distinct from AFRS. The aim of the present study, based on a retrospective series of AFRS and EMRS, was to identify the specific clinical and radiological elements distinguishing between the two. MATERIALS AND METHODS: A 2-center retrospective observational study following STROBE guidelines included patients managed for AFRS or EMRS between 2009 and 2022. Clinical, mycological, pathologic and radiological data were collected. Type of treatment and disease progression were also analyzed. Intergroup comparison used Student's test for mean values of quantitative variables, with calculation of P-values, and Pearson's Chi2 test or Fisher's exact test for categoric variables, with calculation of relative risk and 95% confidence intervals. RESULTS: The AFRS group comprised 41 patients and the EMRS group 34. Demographic data were comparable between groups. EMRS showed a higher rate of asthma (79.4 vs. 31.4%; P<0.001), more severe nasal symptomatology (rhinorrhea, P=0.01; nasal obstruction, P=0.001), and more frequent bilateral involvement (85.3 vs. 58.5%; P=0.021). AFRS showed more frequent complications (19 vs. 0%; P=0.006). Radiologically, mucin accumulation was greater in AFRS, filling the sinus in 84.2% of cases, versus 26.3% (P<0.001), with more frequent sinus wall erosion (19 vs. 5.8%; P=0.073). The recurrence rate was higher in EMRS: 38.2 vs.21.9% (P=0.087). CONCLUSION: The present retrospective study found a difference in clinical and radiological presentation between AFRS and EMRS, with EMRS more resembling the presentation of severe nasal polyposis.


Subject(s)
Allergic Fungal Sinusitis , Mycoses , Sinusitis , Humans , Chronic Disease , Mucins , Mycoses/complications , Mycoses/diagnosis , Mycoses/microbiology , Retrospective Studies , Sinusitis/complications , Sinusitis/diagnosis
9.
Rhinology ; 61(4): 368-375, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37515817

ABSTRACT

BACKGROUND: Treatment of inverted papilloma of the maxillary sinus (IPMS) has a lower success rate compared to other IPs. As such, its correct management generally needs trans-nasal endoscopic medial maxillectomy (EMMs) for adequate resection. The aim of this manuscript is to describe outcomes and major prognostic factors of a cohort of patients with IPMS who were treated with EMM. METHODOLOGY: In this multicentric study, patients affected with IPMS and treated with EMMs were included. The site of origin of the IPMS were studied as well as the type of EMM performed. The histological features (IP vs dysplasia), type of mucosal resection (total vs. pedicle oriented), and post-operative complications were analyzed. RESULTS: 310 patients were included (212 primary and 98 recurrent cases). After a mean follow-up of 45.4 months, 15 patients experienced recurrence (4.8%) due to the application of EMMs tailored to the surgical insertion point. Dysplasia was significantly associated with a higher risk of recurrence. The rates of early and late complications were 11.6% and 11.9%, respectively. CONCLUSIONS: IPMS resection via tailored EMM is associated with excellent disease control, thus excluding the systematic use of extended EMMs, which can however be justified in case of dysplastic IPMS given its significant impact on recurrence.


Subject(s)
Maxillary Sinus Neoplasms , Papilloma, Inverted , Paranasal Sinus Neoplasms , Humans , Maxillary Sinus/surgery , Maxillary Sinus/pathology , Papilloma, Inverted/surgery , Papilloma, Inverted/pathology , Endoscopy , Maxillary Sinus Neoplasms/surgery , Postoperative Complications , Neoplasm Recurrence, Local/surgery , Retrospective Studies , Paranasal Sinus Neoplasms/surgery , Paranasal Sinus Neoplasms/pathology
10.
J Dev Biol ; 11(3)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37489332

ABSTRACT

How head patterning is regulated in vertebrates is yet to be understood. In this study, we show that frog embryos injected with Noggin at different blastula and gastrula stages had their head development sequentially arrested at different positions. When timed BMP inhibition was applied to BMP-overexpressing embryos, the expression of five genes: xcg-1 (a marker of the cement gland, which is the front-most structure in the frog embryo), six3 (a forebrain marker), otx2 (a forebrain and mid-brain marker), gbx2 (an anterior hindbrain marker), and hoxd1 (a posterior hindbrain marker) were sequentially fixed. These results suggest that the vertebrate head is patterned from anterior to posterior in a progressive fashion and may involve timed actions of the BMP signaling.

11.
PLoS One ; 18(4): e0284215, 2023.
Article in English | MEDLINE | ID: mdl-37058498

ABSTRACT

Leptin is a hormone that plays a key role in controlling food intake and energy homeostasis. Skeletal muscle is an important target for leptin and recent studies have shown that leptin deficiency may lead to muscular atrophy. However, leptin deficiency-induced structural changes in muscles are poorly understood. The zebrafish has emerged as an excellent model organism for studies of vertebrate diseases and hormone response mechanisms. In this study, we explored ex-vivo magnetic resonance microimaging (µMRI) methods to non-invasively assess muscle wasting in leptin-deficient (lepb-/-) zebrafish model. The fat mapping performed by using chemical shift selective imaging shows significant fat infiltration in muscles of lepb-/- zebrafish compared to control zebrafish. T2 relaxation measurements show considerably longer T2 values in the muscle of lepb-/- zebrafish. Multiexponential T2 analysis detected a significantly higher value and magnitude of long T2 component in the muscles of lepb-/- as compared to control zebrafish. For further zooming into the microstructural changes, we applied diffusion-weighted MRI. The results show a significant decrease in the apparent diffusion coefficient indicating increased constraints of molecular movements within the muscle regions of lepb-/- zebrafish. The use of the phasor transformation for the separation of diffusion-weighted decay signals showed a bi-component diffusion system which allows us to estimate each fraction on a voxel-wise basis. A substantial difference was found between the ratio of two components in lepb-/- and control zebrafish muscles, indicating alterations in diffusion behavior associated with the tissue microstructural changes in muscles of lepb-/- zebrafish as compared to control zebrafish. Taken together, our results demonstrate that the muscles of lepb-/- zebrafish undergo significant fat infiltration and microstructural changes leading to muscle wasting. This study also demonstrates that µMRI provides excellent means to non-invasively study the microstructural changes in the muscles of the zebrafish model.


Subject(s)
Leptin , Zebrafish , Animals , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Muscle, Skeletal/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Muscular Atrophy
12.
Biology (Basel) ; 12(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36829598

ABSTRACT

Toll-like receptors (TLRs) have been implicated in the regulation of various metabolism pathways, in addition to their function in innate immunity. Here, we investigate the metabolic function of TLR2 in a larval zebrafish system. We studied larvae from a tlr2 mutant and the wild type sibling controls in an unchallenged normal developmental condition using transcriptomic and metabolomic analyses methods. RNAseq was used to evaluate transcriptomic differences between the tlr2 mutant and wild-type control zebrafish larvae and found a signature set of 149 genes to be significantly altered in gene expression. The expression level of several genes was confirmed by qPCR analyses. Gene set enrichment analysis (GSEA) revealed differential enrichment of genes between the two genotypes related to valine, leucine, and isoleucine degradation and glycolysis and gluconeogenesis. Using 1H nuclear magnetic resonance (NMR) metabolomics, we found that glucose and various metabolites related with glucose metabolism were present at higher levels in the tlr2 mutant. Furthermore, we confirmed that the glucose level is higher in tlr2 mutants by using a fluorometric assay. Therefore, we have shown that TLR2, in addition to its function in immunity, has a function in controlling metabolism during vertebrate development. The functions are associated with transcriptional regulation of various enzymes involved in glucose metabolism that could explain the different levels of glucose, lactate, succinate, and malate in larvae of a tlr2 mutant.

13.
Dis Model Mech ; 16(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36645087

ABSTRACT

PTPN6 encodes SHP1, a protein tyrosine phosphatase with an essential role in immune cell function. SHP1 mutations are associated with neutrophilic dermatoses and emphysema in humans, which resembles the phenotype seen in motheaten mice that lack functional SHP1. To investigate the function of Shp1 in developing zebrafish embryos, we generated a ptpn6 knockout zebrafish line lacking functional Shp1. Shp1 knockout caused severe inflammation and lethality around 17 days post fertilization (dpf). During early development, the myeloid lineage was affected, resulting in a decrease in the number of neutrophils and a concomitant increase in the number of macrophages. The number of emerging hematopoietic stem and progenitor cells (HSPCs) was decreased, but due to hyperproliferation, the number of HSPCs was higher in ptpn6 mutants than in siblings at 5 dpf. Finally, the directional migration of neutrophils and macrophages was decreased in response to wounding, and fewer macrophages were recruited to the wound site. Yet, regeneration of the caudal fin fold was normal. We conclude that loss of Shp1 impaired neutrophil and macrophage function, and caused severe inflammation and lethality at the larval stage.


Subject(s)
Inflammation , Zebrafish , Animals , Humans , Mice , Inflammation/genetics , Myeloid Cells/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Zebrafish/metabolism , Larva
14.
Sci Total Environ ; 857(Pt 3): 159576, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36273559

ABSTRACT

Seagrass meadows provide valuable ecosystem services of coastal protection and chemical habitat formation that could help mitigate the impact of sea level rise and ocean acidification. However, the intensification of hydrodynamic forces caused by sea level rise, in addition to habitat degradation threaten the provision of these ecosystem services. With quantitative field measurements of the coastal protection and chemical habitat formation services of seagrass meadows, we statistically model the relationships between hydrodynamic forces, vegetation density and the provision of these ecosystem services. Utilising a high-resolution hydrodynamic model that simulates end of the century hydrodynamic conditions and three scenarios of coral reef degradation (i.e., keep up, remain or loss) we quantify how the environmental conditions within a tropical bay will change given changes to the provision of ecosystem services. Our study shows that increasing hydrodynamic forces lead to a seafloor made up of a larger grain size that is increasingly unstable and more vulnerable to erosion. The loss of a fringing reef leads to larger hydrodynamic forces entering the bay, however, the 0.87 m increase in depth due to sea-level rise reduces the bed shear stress in shallower areas, which limits the change in the ecosystem services provided by the current benthic seagrass meadow. Loss of seagrass constitutes the greatest change in a bay ecosystem, resulting in the sediment surface where seagrass existed becoming unstable and the median sediment grain size increasing by 5-7 %. The loss of seagrass also leads to the disappearance of the unique fluctuating chemical habitat, which leaves the surrounding community vulnerable to ocean acidification. A reduction or complete loss of these ecosystem services would impact the entire community assemblage while also leaving the surrounding coastline vulnerable to erosion, thus exacerbating negative effects brought about by climate change.


Subject(s)
Coral Reefs , Ecosystem , Climate Change , Hydrogen-Ion Concentration , Seawater
15.
mBio ; 14(1): e0302422, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36475748

ABSTRACT

The global burden of tuberculosis (TB) is aggravated by the continuously increasing emergence of drug resistance, highlighting the need for innovative therapeutic options. The concept of host-directed therapy (HDT) as adjunctive to classical antibacterial therapy with antibiotics represents a novel and promising approach for treating TB. Here, we have focused on repurposing the clinically used anticancer drug tamoxifen, which was identified as a molecule with strong host-directed activity against intracellular Mycobacterium tuberculosis (Mtb). Using a primary human macrophage Mtb infection model, we demonstrate the potential of tamoxifen against drug-sensitive as well as drug-resistant Mtb bacteria. The therapeutic effect of tamoxifen was confirmed in an in vivo TB model based on Mycobacterium marinum infection of zebrafish larvae. Tamoxifen had no direct antimicrobial effects at the concentrations used, confirming that tamoxifen acted as an HDT drug. Furthermore, we demonstrate that the antimycobacterial effect of tamoxifen is independent of its well-known target the estrogen receptor (ER) pathway, but instead acts by modulating autophagy, in particular the lysosomal pathway. Through RNA sequencing and microscopic colocalization studies, we show that tamoxifen stimulates lysosomal activation and increases the localization of mycobacteria in lysosomes both in vitro and in vivo, while inhibition of lysosomal activity during tamoxifen treatment partly restores mycobacterial survival. Thus, our work highlights the HDT potential of tamoxifen and proposes it as a repurposed molecule for the treatment of TB. IMPORTANCE Tuberculosis (TB) is the world's most lethal infectious disease caused by a bacterial pathogen, Mycobacterium tuberculosis. This pathogen evades the immune defenses of its host and grows intracellularly in immune cells, particularly inside macrophages. There is an urgent need for novel therapeutic strategies because treatment of TB patients is increasingly complicated by rising antibiotic resistance. In this study, we explored a breast cancer drug, tamoxifen, as a potential anti-TB drug. We show that tamoxifen acts as a so-called host-directed therapeutic, which means that it does not act directly on the bacteria but helps the host macrophages combat the infection more effectively. We confirmed the antimycobacterial effect of tamoxifen in a zebrafish model for TB and showed that it functions by promoting the delivery of mycobacteria to digestive organelles, the lysosomes. These results support the high potential of tamoxifen to be repurposed to fight antibiotic-resistant TB infections by host-directed therapy.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Zebrafish , Tamoxifen/pharmacology , Tamoxifen/therapeutic use , Drug Repositioning , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Mycobacterium tuberculosis/genetics
16.
Neuroimage ; 264: 119735, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36347441

ABSTRACT

To improve 'bench-to-bedside' translation, it is integral that knowledge flows bidirectionally-from animal models to humans, and vice versa. This requires common analytical frameworks, as well as open software and data sharing practices. We share a new pipeline (and test dataset) for the preprocessing of wide-field optical fluorescence imaging data-an emerging mode applicable in animal models-as well as results from a functional connectivity and graph theory analysis inspired by recent work in the human neuroimaging field. The approach is demonstrated using a dataset comprised of two test-cases: (1) data from animals imaged during awake and anesthetized conditions with excitatory neurons labeled, and (2) data from awake animals with different genetically encoded fluorescent labels that target either excitatory neurons or inhibitory interneuron subtypes. Both seed-based connectivity and graph theory measures (global efficiency, transitivity, modularity, and characteristic path-length) are shown to be useful in quantifying differences between wakefulness states and cell populations. Wakefulness state and cell type show widespread effects on canonical network connectivity with variable frequency band dependence. Differences between excitatory neurons and inhibitory interneurons are observed, with somatostatin expressing inhibitory interneurons emerging as notably dissimilar from parvalbumin and vasoactive polypeptide expressing cells. In sum, we demonstrate that our pipeline can be used to examine brain state and cell-type differences in mesoscale imaging data, aiding translational neuroscience efforts. In line with open science practices, we freely release the pipeline and data to encourage other efforts in the community.


Subject(s)
Calcium , Wakefulness , Animals , Calcium/metabolism , Interneurons/physiology , Neurons/physiology , Parvalbumins/metabolism
17.
Ecotoxicol Environ Saf ; 241: 113840, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36068763

ABSTRACT

A robust description of the bioavailability of Ni(II) in freshwaters is fundamental for the setting of environmental quality standards. Current approaches assume that bioavailability is governed by the equilibrium concentration of the free metal ion in the bulk aqueous medium. Such strategies generally have limited predictive value: a suite of empirical fitting parameters is required to deal with variations in water chemistry. Herein we compile data on Ni(II) speciation under typical freshwater conditions and compute the lability of Ni(II) complexes with typical molecular and nanoparticulate components of dissolved organic carbon. In combination with an analysis of the kinetic setting of Ni(II) biouptake by freshwater organisms, we assess the potential contribution from dissociation of Ni(II) complexes to the diffusive supply flux of free Ni2+. The strategy takes into account the absolute and relative magnitudes of the Michaelis-Menten bioaffinity and bioconversion parameters for a range of freshwater organisms, together with dynamic chemical speciation descriptors under environmentally relevant conditions. The results show that the dissociation kinetics of Ni(II) complexes play a crucial role in buffering the free metal ion concentration at the biointerface. Our results highlight the need to couple the timescales of chemical reactivity with those of biouptake to properly identify the bioavailable fraction of Ni(II) in freshwaters.


Subject(s)
Water Pollutants, Chemical , Water Pollutants , Biological Availability , Fresh Water/chemistry , Nickel/analysis , Water , Water Pollutants/analysis , Water Pollutants, Chemical/analysis
18.
Metabolomics ; 18(8): 67, 2022 08 07.
Article in English | MEDLINE | ID: mdl-35933481

ABSTRACT

INTRODUCTION: The leptin signaling pathway plays an important role as a key regulator of glucose homeostasis, metabolism control and systemic inflammatory responses. However, the metabolic effects of leptin on infectious diseases, for example tuberculosis (TB), are still little known. OBJECTIVES: In this study, we aim to investigate the role of leptin on metabolism in the absence and presence of mycobacterial infection in zebrafish larvae and mice. METHODS: Metabolites in entire zebrafish larvae and the blood of mice were studied using high-resolution magic-angle-spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and mass spectrometry, respectively. For transcriptome studies of zebrafish larvae, deep RNA sequencing was used. RESULTS: The results show that leptin mutation leads to a similar metabolic syndrome as caused by mycobacterial infection in the two species, characterized by the decrease of 11 amine metabolites. In both species, this metabolic syndrome was not aggravated further when the leptin mutant was infected by mycobacteria. Therefore, we conclude that leptin and mycobacterial infection are both impacting metabolism non-synergistically. In addition, we studied the transcriptomes of lepbibl54 mutant zebrafish larvae and wild type (WT) siblings after mycobacterial infection. These studies showed that mycobacteria induced a very distinct transcriptome signature in the lepbibl54 mutant zebrafish compared to WT sibling control larvae. Furthermore, lepbibl55 Tg (pck1:luc1) zebrafish line was constructed and confirmed this difference in transcriptional responses. CONCLUSIONS: Leptin mutation and TB lead non-synergistically to a similar metabolic syndrome. Moreover, different transcriptomic responses in the lepbibl54  mutant and TB can lead to the similar metabolic end states.


Subject(s)
Leptin , Mutation , Zebrafish , Animals , Larva/genetics , Larva/metabolism , Leptin/genetics , Leptin/metabolism , Magnetic Resonance Spectroscopy , Metabolomics , Mice , Zebrafish/genetics , Zebrafish/metabolism
19.
Toxicology ; 477: 153262, 2022 07.
Article in English | MEDLINE | ID: mdl-35868597

ABSTRACT

The zebrafish embryo (ZFE) is a promising alternative non-rodent model in toxicology, and initial studies suggested its applicability in detecting hepatic responses related to drug-induced liver injury (DILI). Here, we hypothesize that detailed analysis of underlying mechanisms of hepatotoxicity in ZFE contributes to the improved identification of hepatotoxic properties of compounds and to the reduction of rodents used for hepatotoxicity assessment. ZFEs were exposed to nine reference hepatotoxicants, targeted at induction of steatosis, cholestasis, and necrosis, and effects compared with negative controls. Protein profiles of the individual compounds were generated using LC-MS/MS. We identified differentially expressed proteins and pathways, but as these showed considerable overlap, phenotype-specific responses could not be distinguished. This led us to identify a set of common hepatotoxicity marker proteins. At the pathway level, these were mainly associated with cellular adaptive stress-responses, whereas single proteins could be linked to common hepatotoxicity-associated processes. Applying several stringency criteria to our proteomics data as well as information from other data sources resulted in a set of potential robust protein markers, notably Igf2bp1, Cox5ba, Ahnak, Itih3b.2, Psma6b, Srsf3a, Ces2b, Ces2a, Tdo2b, and Anxa1c, for the detection of adverse responses.


Subject(s)
Chemical and Drug Induced Liver Injury , Zebrafish , Animals , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chromatography, Liquid , Liver , Proteome , RNA-Binding Proteins/metabolism , Tandem Mass Spectrometry , Zebrafish/physiology , Zebrafish Proteins/genetics
20.
Biology (Basel) ; 11(2)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35205112

ABSTRACT

Innate immunity is considered the first line of defense against microbial invasion, and its dysregulation can increase the susceptibility of hosts to infections by invading pathogens. Host cells rely on pattern recognition receptors (PRRs) to recognize invading pathogens and initiate protective innate immune responses. Toll-like receptor 2 (TLR2) is believed to be among the most important Toll-like receptors for defense against mycobacterial infection. TLR2 has been reported to have very broad functions in infectious diseases and also in other diseases, such as chronic and acute inflammatory diseases, cancers, and even metabolic disorders. However, TLR2 has an unclear dual role in both the activation and suppression of innate immune responses. Moreover, in some studies, the function of TLR2 was shown to be controversial, and therefore its role in several diseases is still inconclusive. Therefore, although TLR2 has been shown to have an important function in innate immunity, its usefulness as a therapeutic target in clinical application is still uncertain. In this literature review, we summarize the knowledge of the functions of TLR2 in host-mycobacterial interactions, discuss controversial results, and suggest possibilities for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...