Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
ACS Chem Biol ; 17(6): 1401-1414, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35508359

ABSTRACT

Unbiased transcriptomic RNA-seq data has provided deep insights into biological processes. However, its impact in drug discovery has been narrow given high costs and low throughput. Proof-of-concept studies with Digital RNA with pertUrbation of Genes (DRUG)-seq demonstrated the potential to address this gap. We extended the DRUG-seq platform by subjecting it to rigorous testing and by adding an open-source analysis pipeline. The results demonstrate high reproducibility and ability to resolve the mechanism(s) of action for a diverse set of compounds. Furthermore, we demonstrate how this data can be incorporated into a drug discovery project aiming to develop therapeutics for schizophrenia using human stem cell-derived neurons. We identified both an on-target activation signature, induced by a set of chemically distinct positive allosteric modulators of the N-methyl-d-aspartate (NMDA) receptor, and independent off-target effects. Overall, the protocol and open-source analysis pipeline are a step toward industrializing RNA-seq for high-complexity transcriptomics studies performed at a saturating scale.


Subject(s)
Drug Discovery , Transcriptome , Drug Discovery/methods , Humans , RNA , Reproducibility of Results , Sequence Analysis, RNA/methods
2.
Nat Commun ; 13(1): 1150, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241644

ABSTRACT

Huntington's Disease (HD) is a progressive neurodegenerative disorder caused by CAG trinucleotide repeat expansions in exon 1 of the huntingtin (HTT) gene. The mutant HTT (mHTT) protein causes neuronal dysfunction, causing progressive motor, cognitive and behavioral abnormalities. Current treatments for HD only alleviate symptoms, but cerebral spinal fluid (CSF) or central nervous system (CNS) delivery of antisense oligonucleotides (ASOs) or virus vectors expressing RNA-induced silencing (RNAi) moieties designed to induce mHTT mRNA lowering have progressed to clinical trials. Here, we present an alternative disease modifying therapy the orally available, brain penetrant small molecule branaplam. By promoting inclusion of a pseudoexon in the primary transcript, branaplam lowers mHTT protein levels in HD patient cells, in an HD mouse model and in blood samples from Spinal Muscular Atrophy (SMA) Type I patients dosed orally for SMA (NCT02268552). Our work paves the way for evaluating branaplam's utility as an  HD therapy, leveraging small molecule splicing modulators to reduce expression of dominant disease genes by driving pseudoexon inclusion.


Subject(s)
Huntington Disease , Animals , Brain/metabolism , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/genetics , Huntington Disease/metabolism , Mice , Oligonucleotides, Antisense/metabolism , Trinucleotide Repeat Expansion
3.
Nat Commun ; 12(1): 6150, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686672

ABSTRACT

Cell-based transcriptional reporters are invaluable in high-throughput compound and CRISPR screens for identifying compounds or genes that can impact a pathway of interest. However, many transcriptional reporters have weak activities and transient responses. This can result in overlooking therapeutic targets and compounds that are difficult to detect, necessitating the resource-consuming process of running multiple screens at various timepoints. Here, we present RADAR, a digitizer circuit for amplifying reporter activity and retaining memory of pathway activation. Reporting on the AP-1 pathway, our circuit identifies compounds with known activity against PKC-related pathways and shows an enhanced dynamic range with improved sensitivity compared to a classical reporter in compound screens. In the first genome-wide pooled CRISPR screen for the AP-1 pathway, RADAR identifies canonical genes from the MAPK and PKC pathways, as well as non-canonical regulators. Thus, our scalable system highlights the benefit and versatility of using genetic circuits in large-scale cell-based screening.


Subject(s)
Genomics/methods , High-Throughput Screening Assays/methods , CRISPR-Cas Systems , Genes, Reporter , Humans , Promoter Regions, Genetic , Small Molecule Libraries/pharmacology , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cell Chem Biol ; 28(10): 1407-1419.e6, 2021 10 21.
Article in English | MEDLINE | ID: mdl-33794192

ABSTRACT

Three limonoid natural products with selective anti-proliferative activity against BRAF(V600E) and NRAS(Q61K)-mutation-dependent melanoma cell lines were identified. Differential transcriptome analysis revealed dependency of compound activity on expression of the mitochondrial cytochrome P450 oxidase CYP27A1, a transcriptional target of melanogenesis-associated transcription factor (MITF). We determined that CYP27A1 activity is necessary for the generation of a reactive metabolite that proceeds to inhibit cellular proliferation. A genome-wide small interfering RNA screen in combination with chemical proteomics experiments revealed gene-drug functional epistasis, suggesting that these compounds target mitochondrial biogenesis and inhibit tumor bioenergetics through a covalent mechanism. Our work suggests a strategy for melanoma-specific targeting by exploiting the expression of MITF target gene CYP27A1 and inhibiting mitochondrial oxidative phosphorylation in BRAF mutant melanomas.


Subject(s)
Cholestanetriol 26-Monooxygenase/metabolism , Limonins/pharmacology , Mitochondria/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Cholestanetriol 26-Monooxygenase/antagonists & inhibitors , Cholestanetriol 26-Monooxygenase/genetics , Humans , Limonins/chemistry , Limonins/metabolism , Limonins/therapeutic use , Melanoma/drug therapy , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Promoter Regions, Genetic , Protein Binding , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA Interference , RNA, Small Interfering/metabolism
6.
Cell Chem Biol ; 28(6): 802-812.e6, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33333026

ABSTRACT

The recent development of successful CAR (chimeric antigen receptor) T cell therapies has been accompanied by a need to better control potentially fatal toxicities that can arise from adverse immune reactions. Here we present a ligand-controlled CAR system, based on the IKZF3 ZF2 ß-hairpin IMiD-inducible degron, which allows for the reversible control of expression levels of type I membrane proteins, including CARs. Testing this system in an established mouse xenotransplantation model for acute lymphoblastic leukemia, we validate the ability of the CAR19-degron to target and kill CD19-positive cells displaying complete control/clearance of the tumor. We also demonstrate that the activity of CAR19-degron can be regulated in vivo when dosing a US Food and Drug Administration-approved drug, lenalidomide.


Subject(s)
Ikaros Transcription Factor/immunology , Immunologic Factors/pharmacology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Adolescent , Animals , Cell Line , Cell Proliferation/drug effects , Female , Humans , Ikaros Transcription Factor/chemistry , Immunologic Factors/chemistry , Male , Mice , Mice, Congenic , Mice, Inbred NOD , Mice, SCID , Middle Aged , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Receptors, Chimeric Antigen/genetics , Young Adult
7.
SLAS Discov ; 25(4): 350-360, 2020 04.
Article in English | MEDLINE | ID: mdl-31997692

ABSTRACT

Protein turnover is highly regulated by the posttranslational process of ubiquitination. Deregulation of the ubiquitin proteasome system (UPS) has been implicated in cancer and neurodegenerative diseases, and modulating this system has proven to be a viable approach for therapeutic intervention. The development of novel technologies that enable high-throughput studies of substrate protein ubiquitination is key for UPS drug discovery. Conventional approaches for studying ubiquitination either have high protein requirements or rely on exogenous or modified ubiquitin moieties, thus limiting their utility. In order to circumvent these issues, we developed a high-throughput live-cell assay that combines the NanoBiT luminescence-based technology with tandem ubiquitin binding entities (TUBEs) to resolve substrate ubiquitination. To demonstrate the effectiveness and utility of this assay, we studied compound-induced ubiquitination of the G to S Phase Transition 1 (GSPT1) protein. Using this assay, we characterized compounds with varying levels of GSPT1 ubiquitination activity. This method provides a live-cell-based approach for assaying substrate ubiquitination that can be adapted to study the kinetics of ubiquitin transfer onto a substrate protein of interest. In addition, our results show that this approach is portable for studying the ubiquitination of target proteins with diverse functions.


Subject(s)
Drug Discovery , High-Throughput Screening Assays , Proteasome Endopeptidase Complex/genetics , Ubiquitin/genetics , Humans , Luminescence , Protein Binding/genetics , Protein Transport/genetics , Ubiquitination/genetics
8.
J Med Chem ; 61(24): 11021-11036, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30407821

ABSTRACT

Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.


Subject(s)
Brain/drug effects , ERG1 Potassium Channel/metabolism , Muscular Atrophy, Spinal/drug therapy , Pyridazines/chemistry , Administration, Oral , Animals , Brain/metabolism , Cell Line , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Mice, Inbred C57BL , Motor Neurons/drug effects , Muscular Atrophy, Spinal/genetics , Pyridazines/pharmacology , Quantitative Structure-Activity Relationship , RNA Splicing , Rats, Sprague-Dawley , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics
9.
Nat Commun ; 9(1): 4307, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30333485

ABSTRACT

Here we report Digital RNA with pertUrbation of Genes (DRUG-seq), a high-throughput platform for drug discovery. Pharmaceutical discovery relies on high-throughput screening, yet current platforms have limited readouts. RNA-seq is a powerful tool to investigate drug effects using transcriptome changes as a proxy, yet standard library construction is costly. DRUG-seq captures transcriptional changes detected in standard RNA-seq at 1/100th the cost. In proof-of-concept experiments profiling 433 compounds across 8 doses, transcription profiles generated from DRUG-seq successfully grouped compounds into functional clusters by mechanism of actions (MoAs) based on their intended targets. Perturbation differences reflected in transcriptome changes were detected for compounds engaging the same target, demonstrating the value of using DRUG-seq for understanding on and off-target activities. We demonstrate DRUG-seq captures common mechanisms, as well as differences between compound treatment and CRISPR on the same target. DRUG-seq provides a powerful tool for comprehensive transcriptome readout in a high-throughput screening environment.


Subject(s)
Drug Discovery/methods , Gene Expression Profiling/methods , High-Throughput Screening Assays/methods , Sequence Analysis, RNA , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Humans
10.
ACS Omega ; 3(6): 6097-6103, 2018 Jun 30.
Article in English | MEDLINE | ID: mdl-30221232

ABSTRACT

Methuosis is a form of nonapoptotic cell death characterized by the accumulation of macropinosome-derived vacuoles. Herein, we identify PIKFYVE, a class III phosphoinositide (PI) kinase, as the protein target responsible for the methuosis-inducing activity of indolyl-pyridinyl-propenones (3-(5-methoxy-2-methyl-1H-indol-3-yl)-1-(4-pyridinyl)-2-propen-1-one). We further characterize the effects of chemical substitutions at the 2- and 5-indolyl positions on cytoplasmic vacuolization and PIKFYVE binding and inhibitory activity. Our study provides a better understanding of the mechanism of methuosis-inducing indolyl-pyridinyl-propenones.

11.
Cell Syst ; 7(1): 28-40.e4, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29936182

ABSTRACT

Discriminating transcriptional changes that drive disease pathogenesis from nonpathogenic and compensatory responses is a daunting challenge. This is particularly true for neurodegenerative diseases, which affect the expression of thousands of genes in different brain regions at different disease stages. Here we integrate functional testing and network approaches to analyze previously reported transcriptional alterations in the brains of Huntington disease (HD) patients. We selected 312 genes whose expression is dysregulated both in HD patients and in HD mice and then replicated and/or antagonized each alteration in a Drosophila HD model. High-throughput behavioral testing in this model and controls revealed that transcriptional changes in synaptic biology and calcium signaling are compensatory, whereas alterations involving the actin cytoskeleton and inflammation drive disease. Knockdown of disease-driving genes in HD patient-derived cells lowered mutant Huntingtin levels and activated macroautophagy, suggesting a mechanism for mitigating pathogenesis. Our multilayered approach can thus untangle the wealth of information generated by transcriptomics and identify early therapeutic intervention points.


Subject(s)
High-Throughput Screening Assays/methods , Huntington Disease/genetics , Animals , Brain/metabolism , Cell Line , Disease Models, Animal , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Female , Fibroblasts/metabolism , Gene Expression Profiling/methods , Humans , Huntington Disease/physiopathology , Induced Pluripotent Stem Cells , Male , Transcriptome/genetics
12.
Elife ; 72018 03 29.
Article in English | MEDLINE | ID: mdl-29595474

ABSTRACT

Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.


Subject(s)
Cell Size , Epithelial Cells/physiology , G1 Phase , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism , Cell Line , Humans , Social Control, Formal
13.
ACS Omega ; 3(8): 9034, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459036

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.8b00202.].

14.
Curr Protoc Stem Cell Biol ; 37: IE.9.1-IE.9.15, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27171795

ABSTRACT

The ability of human airway basal cells to serve as progenitor cells in the conducting airway makes them an attractive target in a number of respiratory diseases associated with epithelial remodeling. This unit describes a protocol for the culture of 'bronchospheres', three-dimensional (3-D) organoids that are derived from primary human airway basal cells. Mature bronchospheres are composed of functional multi-ciliated cells, mucin-producing goblet cells, and airway basal cells. In contrast to existing methods used for the culture of well-differentiated human airway epithelial cells, bronchospheres do not require growth on a permeable support and can be cultured in 384-well assay plates. The system provides a mechanism for investigating the regulation of basal cell fate during airway epithelial morphogenesis, as well as a basis for studying the function of the human airway epithelium in high-throughput assays. © 2016 by John Wiley & Sons, Inc.


Subject(s)
Bronchi/cytology , High-Throughput Screening Assays/methods , Imaging, Three-Dimensional , Organoids/cytology , Tissue Culture Techniques/methods , Cell Proliferation , Cells, Cultured , Humans , Nucleic Acid Hybridization , RNA/isolation & purification , Reproducibility of Results , Spheroids, Cellular/cytology
17.
Nat Chem Biol ; 11(7): 511-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030728

ABSTRACT

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.


Subject(s)
Alternative Splicing , Muscular Atrophy, Spinal/drug therapy , RNA, Double-Stranded/agonists , Ribonucleoprotein, U1 Small Nuclear/agonists , Small Molecule Libraries/pharmacology , Survival of Motor Neuron 2 Protein/metabolism , Animals , Binding Sites , Disease Models, Animal , Female , Gene Expression , Humans , Mice , Mice, Transgenic , Models, Molecular , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/mortality , Muscular Atrophy, Spinal/pathology , Protein Binding/drug effects , Protein Stability/drug effects , Proteolysis , RNA Precursors/agonists , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/metabolism , Ribonucleoprotein, U1 Small Nuclear/chemistry , Ribonucleoprotein, U1 Small Nuclear/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Survival Analysis , Survival of Motor Neuron 2 Protein/chemistry , Survival of Motor Neuron 2 Protein/genetics
18.
Cell Rep ; 10(2): 239-52, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25558064

ABSTRACT

The balance and distribution of epithelial cell types is required to maintain tissue homeostasis. A hallmark of airway diseases is epithelial remodeling, leading to increased goblet cell numbers and an overproduction of mucus. In the conducting airway, basal cells act as progenitors for both secretory and ciliated cells. To identify mechanisms regulating basal cell fate, we developed a screenable 3D culture system of airway epithelial morphogenesis. We performed a high-throughput screen using a collection of secreted proteins and identified inflammatory cytokines that specifically biased basal cell differentiation toward a goblet cell fate, culminating in enhanced mucus production. We also demonstrate a specific requirement for Notch2 in cytokine-induced goblet cell metaplasia in vitro and in vivo. We conclude that inhibition of Notch2 prevents goblet cell metaplasia induced by a broad range of stimuli and propose Notch2 neutralization as a therapeutic strategy for preventing goblet cell metaplasia in airway diseases.


Subject(s)
Cytokines/pharmacology , Goblet Cells/drug effects , Lung/pathology , Receptor, Notch2/metabolism , Animals , Cell Culture Techniques , Cell Differentiation/drug effects , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Goblet Cells/cytology , Goblet Cells/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Hepatocyte Nuclear Factor 3-gamma/metabolism , Humans , Interleukin-13/genetics , Interleukin-13/metabolism , Interleukin-13/pharmacology , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-17/pharmacology , Lung/metabolism , Metaplasia , Mice , Mice, Inbred BALB C , Mucin 5AC/genetics , Mucin 5AC/metabolism , Mucin-5B/genetics , Mucin-5B/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology
19.
Nature ; 512(7512): 49-53, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25043012

ABSTRACT

In the 1950s, the drug thalidomide, administered as a sedative to pregnant women, led to the birth of thousands of children with multiple defects. Despite the teratogenicity of thalidomide and its derivatives lenalidomide and pomalidomide, these immunomodulatory drugs (IMiDs) recently emerged as effective treatments for multiple myeloma and 5q-deletion-associated dysplasia. IMiDs target the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)) and promote the ubiquitination of the IKAROS family transcription factors IKZF1 and IKZF3 by CRL4(CRBN). Here we present crystal structures of the DDB1-CRBN complex bound to thalidomide, lenalidomide and pomalidomide. The structure establishes that CRBN is a substrate receptor within CRL4(CRBN) and enantioselectively binds IMiDs. Using an unbiased screen, we identified the homeobox transcription factor MEIS2 as an endogenous substrate of CRL4(CRBN). Our studies suggest that IMiDs block endogenous substrates (MEIS2) from binding to CRL4(CRBN) while the ligase complex is recruiting IKZF1 or IKZF3 for degradation. This dual activity implies that small molecules can modulate an E3 ubiquitin ligase and thereby upregulate or downregulate the ubiquitination of proteins.


Subject(s)
Peptide Hydrolases/chemistry , Thalidomide/chemistry , Ubiquitin-Protein Ligases/chemistry , Adaptor Proteins, Signal Transducing , Crystallography, X-Ray , DNA-Binding Proteins/agonists , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Humans , Lenalidomide , Models, Molecular , Multiprotein Complexes/agonists , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Peptide Hydrolases/metabolism , Protein Binding , Structure-Activity Relationship , Substrate Specificity , Thalidomide/analogs & derivatives , Thalidomide/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism
20.
Nat Neurosci ; 16(5): 562-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23525043

ABSTRACT

Huntington's disease is caused by expanded CAG repeats in HTT, conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntington's disease model, and 6 exhibited activity consistent with the in vitro screening results. Among these, negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment, interferon-ß lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus, we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntington's disease.


Subject(s)
Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Adenosine Triphosphate/metabolism , Animals , Cell Line , Cells, Cultured , Cullin Proteins/metabolism , Disease Models, Animal , Drosophila/drug effects , Drosophila/metabolism , Embryo, Mammalian , Female , Gene Expression , Genome-Wide Association Study , Humans , Huntingtin Protein , Huntington Disease/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NEDD8 Protein , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/toxicity , Neurons/drug effects , Pregnancy , Transcription Factors/genetics , Ubiquitins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL