Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Main subject
Publication year range
1.
Sci Rep ; 10(1): 3659, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32108143

ABSTRACT

La0.7Sr0.3MnO3, a strong semi-metallic ferromagnet having robust spin polarization and magnetic transition temperature (TC) well above 300 K, has attracted significant attention as a possible candidate for a wide range of memory, spintronic, and multifunctional devices. Since varying the oxygen partial pressure during growth is likely to change the structural and other physical functionalities of La0.7Sr0.3MnO3 (LSMO) films, here we report detailed investigations on structure, along with magnetic behavior of LSMO films with same thickness (~30 nm) but synthesized at various oxygen partial pressures: 10, 30, 50, 100, 150, 200 and 250 mTorr. The observation of only (00 l) reflections without any secondary peaks in the XRD patterns confirms the high-quality synthesis of the above-mentioned films. Surface morphology of the films reveals that these films are very smooth with low roughness, the thin films synthesized at 150 mTorr having the lowest average roughness. The increasing of magnetic TC and sharpness of the magnetic phase transitions with increasing oxygen growth pressure suggests that by decreasing the oxygen growth pressure leads to oxygen deficiencies in grown films which induce oxygen inhomogeneity. Thin films grown at 150 mTorr exhibits the highest magnetization with TC = 340 K as these thin films possess the lowest roughness and might exhibit lowest oxygen vacancies and defects. Interpretation and significance of these results in the 30 nm LSMO thin films prepared at different oxygen growth pressures are also presented, along with the existence and growth pressure dependence of negative remanent magnetization (NRM) of the above-mentioned thin films.

2.
Sci Rep ; 9(1): 5633, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30948768

ABSTRACT

The engineering of materials with controlled magnetic properties by means other than a magnetic field is of great interest in nanotechnology. In this study, we report engineered magnetic graphene oxide (MGO) in the nanocomposite form of iron oxide nanoparticles (IO)-graphene oxide (GO) with tunable core magnetism and magnetic resonance transverse relaxivity (r2). These tunable properties are obtained by varying the IO content on GO. The MGO series exhibits r2 values analogous to those observed in conventional single core and cluster forms of IO in different size regimes-motional averaging regime (MAR), static dephasing regime (SDR), and echo-limiting regime (ELR) or slow motion regime (SMR). The maximum r2 of 162 ± 5.703 mM-1s-1 is attained for MGO with 28 weight percent (wt%) content of IO on GO and hydrodynamic diameter of 414 nm, which is associated with the SDR. These findings demonstrate the clear potential of magnetic graphene oxide for magnetic resonance imaging (MRI) applications.


Subject(s)
Graphite/chemistry , Contrast Media , Ferric Compounds , Magnetic Phenomena , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Magnetics , Nanocomposites/chemistry , Nanoparticles , Physical Phenomena , Protons
3.
ACS Nano ; 13(3): 3457-3465, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30807694

ABSTRACT

Aspects of the optoelectronic performance of thin-film ferromagnetic materials are evaluated for application in ultrafast devices. Dynamics of photocarriers and their associated spin polarization are measured using transient reflectivity (TR) measurements in cross linear and circular polarization configurations for La0.7Sr0.3MnO3 films with a range of thicknesses. Three spin-related recombination mechanisms have been observed for thicker films (thickness of d ≥ 20 nm) at different time regimes (τ), which are attributed to the electron-phonon recombination (τ < 1 ps), phonon-assisted spin-lattice recombination (τ ∼ 100 ps), and thermal diffusion and radiative recombination (τ > 1 ns). Density functional theory (DFT+U) based first-principles calculations provide information about the nature of the optical transitions and their probabilities for the majority and the minority spin channels. These transitions are partly responsible for the aforementioned recombination mechanisms, identified through the comparison of linear and circular TR measurements. The same sets of measurements for thinner films (4.4 nm ≤ d < 20 nm) revealed an additional relaxation dynamic (τ ∼ 10 ps), which is attributed to the enhanced surface recombination of charge carriers. Our DFT+U calculations further corroborate this observation, indicating an increase in the surface density of states with decreasing film thickness which results in higher amplitude and smaller time constant for surface recombination as the film thickness decreases.

4.
J Synchrotron Radiat ; 25(Pt 6): 1711-1718, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30407181

ABSTRACT

The properties of many materials can be strongly affected by the atomic valence of the contained individual elements, which may vary at surfaces and other interfaces. These variations can have a critical impact on material performance in applications. A non-destructive method for the determination of layer-by-layer atomic valence as a function of material thickness is presented for La0.7Sr0.3MnO3 (LSMO) thin films. The method utilizes a combination of bulk- and surface-sensitive X-ray absorption spectroscopy (XAS) detection modes; here, the modes are fluorescence yield and surface-sensitive total electron yield. The weighted-average Mn atomic valence as measured from the two modes are simultaneously fitted using a model for the layer-by-layer variation of valence based on theoretical model Hamiltonian calculations. Using this model, the Mn valence profile in LSMO thin film is extracted and the valence within each layer is determined to within an uncertainty of a few percent. The approach presented here could be used to study the layer-dependent valence in other systems or extended to different properties of materials such as magnetism.

5.
J Phys Condens Matter ; 30(40): 405804, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30168452

ABSTRACT

The observation of inverted magnetic hysteresis loops and negative magnetic remanence (NRM) in a 7.6 nm thin film of La0.7Sr0.3MnO3 grown on SrTiO3 substrates is reported. The film was grown employing pulsed laser deposition and characterized by reflection high-energy electron diffraction during growth and using x-ray reflectivity measurements post-growth. Magnetic properties of the film were measured from 5 K to 400 K under both the field-cooled (FC) and zero-field-cooled (ZFC) conditions. The observed results of inverted magnetic hysteresis loops and NRM are interpreted in terms of the co-existence of a magnetically inhomogeneous region consisting of superparamagnetic spin clusters with a blocking temperature T B = 240 K and the ferromagnetic state with an ordering temperature T C = 290 K. Hysteresis loop inversion is observed in the temperature region of T B < T < T C whereas NRM appears in the mixed superparamagnetic and ferromagnetic states for T < T C down to 5 K. These observations of hysteresis loop inversion and NRM are related to the magneto-static interaction between the superparamagnetic and ferromagnetic phases leading to anti-alignment of spin of both magnetic phases with respect to each other.

6.
Sci Rep ; 8(1): 14313, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30254275

ABSTRACT

The Mn valence in thin film La0.7Sr0.3MnO3 was studied as a function of film thickness in the range of 1-16 unit cells with a combination of non-destructive bulk and surface sensitive X-ray absorption spectroscopy techniques. Using a layer-by-layer valence model, it was found that while the bulk averaged valence hovers around its expected value of 3.3, a significant deviation occurs within several unit cells of the surface and interface. These results were supported by first principles calculations. The surface valence increases to up to Mn3.7+, whereas the interface valence reduces down to Mn2.5+. The change in valence from the expected bulk value is consistent with charge redistribution due to the polar discontinuity at the film-substrate interface. The comparison with theory employed here illustrates how this layer-by-layer valence evolves with film thickness and allows for a deeper understanding of the microscopic mechanisms at play in this effect. These results offer insight on how the two-dimensional electron gas is created in thin film oxide alloys and how the magnetic ordering is reduced with dimensionality.

7.
Nat Commun ; 7: 13054, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27687867

ABSTRACT

Low-energy collective electronic excitations exhibiting sound-like linear dispersion have been intensively studied both experimentally and theoretically for a long time. However, coherent acoustic plasmon modes appearing in time-domain measurements are rarely observed due to Landau damping by the single-particle continua. Here we report on the observation of coherent acoustic Dirac plasmon (CADP) modes excited in indirectly (electrostatically) opposite-surface coupled films of the topological insulator Bi2Se3. Using transient second-harmonic generation, a technique capable of independently monitoring the in-plane and out-of-plane electron dynamics in the films, the GHz-range oscillations were observed without corresponding oscillations in the transient reflectivity. These oscillations were assigned to the transverse magnetic and transverse electric guided CADP modes induced by the evanescent guided Lamb acoustic waves and remained Landau undamped due to fermion tunnelling between the opposite-surface Dirac states.

8.
J Phys Condens Matter ; 28(16): 165601, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-27001950

ABSTRACT

Transient reflectivity (TR) measured at laser photon energy 1.51 eV from the indirectly intersurface-coupled topological insulator Bi2-x Mn x Se3 films (12 nm thick) revealed a strong dependence of the rise-time and initial decay-time constants on photoexcited carrier density and Mn content. In undoped samples (x = 0), these time constants are exclusively governed by electron-electron and electron-phonon scattering, respectively, whereas in films with x = 0.013-0.27 ultrafast carrier dynamics are completely controlled by photoexcited electron trapping by ionized Mn(2+) acceptors and their dimers. The shortest decay-time (~0.75 ps) measured for the film with x = 0.27 suggests a great potential of Mn-doped Bi2Se3 films for applications in high-speed optoelectronic devices. Using Raman spectroscopy exploiting similar laser photon energy (1.58 eV), we demonstrate that due to indirect intersurface coupling in the films, the photoexcited electron trapping in the bulk enhances the electron-phonon interaction strength in Dirac surface states.

9.
Phys Rev Lett ; 114(9): 097201, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793845

ABSTRACT

Three-dimensional antiferromagnets with random magnetic anisotropy (RMA) that have been experimentally studied to date have competing two-dimensional and three-dimensional exchange interactions which can obscure the authentic effects of RMA. The magnetic phase diagram of Fe_{x}Ni_{1-x}F_{2} epitaxial thin films with true random single-ion anisotropy was deduced from magnetometry and neutron scattering measurements and analyzed using mean-field theory. Regions with uniaxial, oblique, and easy-plane anisotropies were identified. A RMA-induced glass region was discovered where a Griffiths-like breakdown of long-range spin order occurs.

10.
Nano Lett ; 8(7): 2050-5, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18547121

ABSTRACT

We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co 0.9Fe 0.1/BiFeO3 heterostructures. Two distinct types of interactions - an enhancement of the coercive field ( exchange enhancement) and an enhancement of the coercive field combined with large shifts of the hysteresis loop ( exchange bias) - have been observed in these heterostructures, which depend directly on the type and crystallography of the nanoscale ( approximately 2 nm) domain walls in the BiFeO3 film. We show that the magnitude of the exchange bias interaction scales with the length of 109 degrees ferroelectric domain walls in the BiFeO 3 thin films which have been probed via piezoresponse force microscopy and X-ray magnetic circular dichroism.

11.
Nat Mater ; 7(6): 478-82, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18438412

ABSTRACT

Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO(3). The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO(3) film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co(0.9)Fe(0.1)) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.

SELECTION OF CITATIONS
SEARCH DETAIL