Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Astrobiology ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985734

ABSTRACT

Understanding the nature and preservation of microbial traces in extreme environments is crucial for reconstructing Earth's early biosphere and for the search for life on other planets or moons. At Rio Tinto, southwestern Spain, ferric oxide and sulfate deposits similar to those discovered at Meridiani Planum, Mars, entomb a diversity of fossilized organisms, despite chemical conditions commonly thought to be challenging for life and fossil preservation. Investigating this unique fossil microbiota can elucidate ancient extremophile communities and the preservation of biosignatures in acidic environments on Earth and, potentially, Mars. In this study, we use an innovative multiscale approach that combines the state-of-the-art synchrotron X-ray nanoimaging methods of ptychographic X-ray computed laminography and nano-X-ray fluorescence to reveal Rio Tinto's microfossils at subcellular resolution. The unprecedented nanoscale views of several different specimens within their geological and geochemical contexts reveal novel intricacies of preserved microbial communities. Different morphotypes, ecological interactions, and possible taxonomic affinities were inferred based on qualitative and quantitative 3D ultrastructural information, whereas diagenetic processes and metabolic affinities were inferred from complementary chemical information. Our integrated nano-to-microscale analytical approach revealed previously invisible microbial and mineral interactions, which complemented and filled a gap of spatial resolution in conventional methods. Ultimately, this study contributes to the challenge of deciphering the faint chemical and morphological biosignatures that can indicate life's presence on the early Earth and on distant worlds.

2.
Discov Nano ; 19(1): 114, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977513

ABSTRACT

Structural colors arise from selective light interaction with (nano)structures, which give them advantages over pigmented colors such as resistance to fading and possibility to be fabricated out of traditional low-cost and non-toxic materials. Since the color arises from the photonic (nano)structures, different structural features can impact their photonic response and thus, their color. Therefore, the detailed characterization of their structural features is crucial for further improvement of structural colors. In this work, we present a detailed multi-scale structural characterization of ceramic-based photonic glasses by using a combination of high-resolution ptychographic X-ray computed tomography and small angle X-ray scattering. Our results uncover the structure-processing-properties' relationships of such nanoparticles-based photonic glasses and point out to the need of a review of the structural features used in simulation models concomitantly with the need for further investigations by experimentalists, where we point out exactly which structural features need to be improved.

3.
Int J Pharm ; 642: 123200, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37414373

ABSTRACT

A correlative, multiscale imaging methodology for visualising and quantifying the morphology of solid dosage forms by combining ptychographic X-ray computed nanotomography (PXCT) and scanning small- and wide-angle X-ray scattering (S/WAXS) is presented. The methodology presents a workflow for multiscale analysis, where structures are characterised from the nanometre to millimetre regime. Here, the method is demonstrated by characterising a hot-melt extruded, partly crystalline, solid dispersion of carbamazepine in ethyl cellulose. Characterisation of the morphology and solid-state phase of the drug in solid dosage forms is central as this affects the performance of the final formulation. The 3D morphology was visualised at a resolution of 80 nm over an extended volume through PXCT, revealing an oriented structure of crystalline drug domains aligned in the direction of extrusion. Scanning S/WAXS showed that the nanostructure is similar over the cross section of the extruded filament, with minor radial changes in domain sizes and degree of orientation. The polymorphic forms of carbamazepine were qualified with WAXS, showing a heterogeneous distribution of the metastable forms I and II. This demonstrates the methodology for multiscale structural characterization and imaging to enable a better understanding of the relationships between morphology, performance, and processing conditions of solid dosage forms.


Subject(s)
Carbamazepine , X-Rays , Radiography , Pharmaceutical Preparations , X-Ray Diffraction , Dosage Forms
4.
Nat Commun ; 14(1): 2652, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37156776

ABSTRACT

Despite a century of research, our understanding of cement dissolution and precipitation processes at early ages is very limited. This is due to the lack of methods that can image these processes with enough spatial resolution, contrast and field of view. Here, we adapt near-field ptychographic nanotomography to in situ visualise the hydration of commercial Portland cement in a record-thick capillary. At 19 h, porous C-S-H gel shell, thickness of 500 nm, covers every alite grain enclosing a water gap. The spatial dissolution rate of small alite grains in the acceleration period, ∼100 nm/h, is approximately four times faster than that of large alite grains in the deceleration stage, ∼25 nm/h. Etch-pit development has also been mapped out. This work is complemented by laboratory and synchrotron microtomographies, allowing to measure the particle size distributions with time. 4D nanoimaging will allow mechanistically study dissolution-precipitation processes including the roles of accelerators and superplasticizers.

5.
Sci Rep ; 13(1): 4280, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36922565

ABSTRACT

Reducing precious metal loading in the anodic catalyst layer (CL) is indispensable for lowering capital costs and enabling the widespread adoption of polymer electrolyte water electrolysis. This work presents the first three-dimensional reconstruction of a TiO2-supported IrO2 based core shell CL (3 mgIrO2/cm2), using high-resolution X-ray ptychographic tomography at cryogenic temperature of 90 K. The high data quality and phase sensitivity of the technique have allowed the reconstruction of all four phases namely pore space, IrO2, TiO2 support matrix and the ionomer network, the latter of which has proven to be a challenge in the past. Results show that the IrO2 forms thin nanoporous shells around the TiO2 particles and that the ionomer has a non-uniform thickness and partially covers the catalyst. The TiO2 particles do not form a percolating network while all other phases have high connectivity. The analysis of the CL ionic and electronic conductivity shows that for a dry CL, the ionic conductivity is orders of magnitudes lower than the electronic conductivity. Varying the electronic conductivity of the support phase by simulations, reveals that the conductivity of the support does not have a considerable impact on the overall CL electrical conductivity.

6.
J Phys Chem C Nanomater Interfaces ; 126(43): 18536-18549, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36366758

ABSTRACT

Preparation conditions have a vital effect on the structure of alumina-supported hydrodesulfurization (HDS) catalysts. To explore this effect, we prepared two NiMoS/Al2O3 catalyst samples with the same target composition using different chemical sources and characterizing the oxidic NiMo precursors and sulfided and spent catalysts to understand the influence of catalyst structure on performance. The sample prepared from ammonium heptamolybdate and nickel nitrate (sample A) contains Mo in the oxidic precursor predominantly in tetrahedral coordination in the form of crystalline domains, which show low reducibility and strong metal-support interactions. This property influences the sulfidation process such that the sulfidation processes of Ni and Mo occur tendentially separately with a decreased efficiency to form active Ni-Mo-S particles. Moreover, inactive unsupported MoS2 particles or isolated NiS x species are formed, which are either washed off during catalytic reaction or aggregated to larger particles as seen in scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX). The oxidic precursor of the sample synthesized using nickel carbonate and molybdenum trioxide as metal sources (sample B), however, contains Mo in octahedral coordination and shows higher reducibility of the metal species as well as weaker metal-support interactions than that of sample A; these properties allow an efficient sulfidation of Mo and Ni such that formation of active Ni-Mo-S particles is the main product. Ptychographic X-ray computed tomography (PXCT) and STEM and EDX measurements show that the structure formed during sulfidation is stable under operation conditions. The structural differences explain the HDS activity difference between these two samples and explain why sample B is much active than sample A.

7.
Nanoscale ; 14(40): 15165-15180, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36214128

ABSTRACT

Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem. We have acquired quantitative, 3D nanoscale images of Zwischgold samples from 15th century artefacts and modern materials using ptychographic X-ray computed tomography (PXCT), a recently developed coherent diffractive imaging technique, to investigate the leaf structure and chemical state of Zwischgold. The measurements clearly demonstrate decreasing density (increasing porosity) of the leaf materials and their corrosion products, as well as delamination of the leaves from their substrate. Each of these effects speak to typically observed issues in the conservation of such Zwischgold applied artefacts. Further, a rare variant of Zwischgold that contains extremely thin multiple gold layers and an overlapping phenomenon of Zwischgold with other metal leaves are observed through PXCT. As supportive data, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray analysis (EDX) were performed on the medieval samples.

8.
J Synchrotron Radiat ; 29(Pt 5): 1223-1231, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36073881

ABSTRACT

The acquisition speed and spatial resolution of X-ray nanotomography have continuously improved over the last decades. Coherent diffraction-based techniques breach the 10 nm resolution barrier frequently and thus pose stringent demands on sample positioning accuracy and stability. At the same time there is an increasing desire to accommodate in situ or operando measurements. Here, an environmental control system for X-ray nanotomography is introduced to regulate the temperature of a sample from room temperature up to 850°C in a controlled atmospheric composition. The system allows for a 360° sample rotation, permitting tomographic studies in situ or operando free of missing wedge constraints. The system is implemented and available at the flOMNI microscope at the Swiss Light Source. In addition to the environmental control system itself, the related modifications of flOMNI are described. Tomographic measurements of a nanoporous gold sample at 50°C and 600°C at a resolution of sub-20 nm demonstrate the performance of the device.

9.
Adv Sci (Weinh) ; 9(24): e2201723, 2022 08.
Article in English | MEDLINE | ID: mdl-35748171

ABSTRACT

Although X-ray contrast agents offer specific characteristics in terms of targeting and attenuation, their accumulation in the tissue on a cellular level is usually not known and difficult to access, as it requires high resolution and sensitivity. Here, quantitative near-field ptychographic X-ray computed tomography is demonstrated to assess the location of X-ray stains at a resolution sufficient to identify intracellular structures by means of a basis material decomposition. On the example of two different X-ray stains, the nonspecific iodine potassium iodide, and eosin Y, which mostly interacts with proteins and peptides in the cell cytoplasm, the distribution of the stains within the cells in murine kidney samples is assessed and compared to unstained samples with similar structural features. Quantitative nanoscopic stain concentrations are in good agreement with dual-energy micro computed tomography measurements, the state-of-the-art modality for material-selective imaging. The presented approach can be applied to a variety of X-ray stains advancing the development of X-ray contrast agents.


Subject(s)
Coloring Agents , Contrast Media , Animals , Mice , Staining and Labeling , X-Ray Microtomography/methods , X-Rays
10.
J Bone Miner Res ; 37(9): 1700-1710, 2022 09.
Article in English | MEDLINE | ID: mdl-35770824

ABSTRACT

Osteoarthritis (OA) is the most common joint disease, where articular cartilage degradation is often accompanied with sclerosis of the subchondral bone. However, the association between OA and tissue mineralization at the nanostructural level is currently not understood. In particular, it is technically challenging to study calcified cartilage, where relevant but poorly understood pathological processes such as tidemark multiplication and advancement occur. Here, we used state-of-the-art microfocus small-angle X-ray scattering with a 5-µm spatial resolution to determine the size and organization of the mineral crystals at the nanostructural level in human subchondral bone and calcified cartilage. Specimens with a wide spectrum of OA severities were acquired from both medial and lateral compartments of medial compartment knee OA patients (n = 15) and cadaver knees (n = 10). Opposing the common notion, we found that calcified cartilage has thicker and more mutually aligned mineral crystals than adjoining bone. In addition, we, for the first time, identified a well-defined layer of calcified cartilage associated with pathological tidemark multiplication, containing 0.32 nm thicker crystals compared to the rest of calcified cartilage. Finally, we found 0.2 nm thicker mineral crystals in both tissues of the lateral compartment in OA compared with healthy knees, indicating a loading-related disease process because the lateral compartment is typically less loaded in medial compartment knee OA. In summary, we report novel changes in mineral crystal thickness during OA. Our data suggest that unloading in the knee might be involved with the growth of mineral crystals, which is especially evident in the calcified cartilage. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Osteoarthritis , Bone and Bones/pathology , Cartilage, Articular/pathology , Humans , Knee Joint/pathology , Minerals/metabolism , Osteoarthritis/metabolism , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology
11.
Adv Sci (Weinh) ; 9(8): e2105432, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35289133

ABSTRACT

The synthesis of hierarchically porous materials usually requires complex experimental procedures, often based around extensive trial and error approaches. One common synthesis strategy is the sol-gel method, although the relation between synthesis parameters, material structure and function has not been widely explored. Here, in situ 2D hard X-ray ptychography (XRP) and 3D ptychographic X-ray computed tomography (PXCT) are applied to monitor the development of hierarchical porosity in Ni/Al2 O3 and Al2 O3 catalysts with connected meso- and macropore networks. In situ XRP allows to follow textural changes of a dried gel Ni/Al2 O3 sample as a function of temperature during calcination, activation and CO2 methanation reaction. Complementary PXCT studies on dried gel particles of Ni/Al2 O3 and Al2 O3 provide quantitative information on pore structure, size distribution, and shape with 3D spatial resolution approaching 50 nm, while identical particles are imaged ex situ before and after calcination. The X-ray imaging results are correlated with N2 -sorption, Hg porosimetry and He pycnometry pore characterization. Hard X-ray nanotomography is highlighted to derive fine structural details including tortuosity, branching nodes, and closed pores, which are relevant in understanding transport phenomena during chemical reactions. XRP and PXCT are enabling technologies to understand complex synthesis pathways of porous materials.

12.
Int J Pharm ; 617: 121581, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35176331

ABSTRACT

Biomaterial aerogel fabrication by freeze-drying must be further improved to reduce the costs of lengthy freeze-drying cycles and to avoid the formation of spongy cryogels and collapse of the aerogel structures. Residual water content is a critical quality attribute of the freeze-dried product, which can be monitored in-line with near-infrared (NIR) spectroscopy. Predictive models of NIR have not been previously applied for biomaterials and the models were mostly focused on the prediction of only one formulation at a time. We recorded NIR spectra of different nanofibrillated cellulose (NFC) hydrogel formulations during the secondary drying and set up a partial least square regression model to predict their residual water contents. The model can be generalized to measure residual water of formulations with different NFC concentrations and the excipients, and the NFC fiber concentrations and excipients can be separated with the principal component analysis. Our results provide valuable information about the freeze-drying of biomaterials and aerogel fabrication, and how NIR spectroscopy can be utilized in the optimization of residual water content.


Subject(s)
Cellulose , Spectroscopy, Near-Infrared , Freeze Drying/methods , Least-Squares Analysis , Principal Component Analysis , Spectroscopy, Near-Infrared/methods
13.
J Cell Sci ; 134(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34494099

ABSTRACT

Ptychographic hard X-ray computed tomography (PXCT) is a recent method allowing imaging with quantitative electron-density contrast. Here, we imaged, at cryogenic temperature and without sectioning, cellular and subcellular structures of a chemically fixed and stained wild-type mouse retina, including axons and synapses, with complete isotropic 3D information over tens of microns. Comparison with tomograms of degenerative retina from a mouse model of retinitis pigmentosa illustrates the potential of this method for analyzing disease processes like neurodegeneration at sub-200 nm resolution. As a non-destructive imaging method, PXCT is very suitable for correlative imaging. Within the outer plexiform layer containing the photoreceptor synapses, we identified somatic synapses. We used a small region inside the X-ray-imaged sample for further high-resolution focused ion beam/scanning electron microscope tomography. The subcellular structures of synapses obtained with the X-ray technique matched the electron microscopy data, demonstrating that PXCT is a powerful scanning method for tissue volumes of more than 60 cells and sensitive enough for identification of regions as small as 200 nm, which remain available for further structural and biochemical investigations.


Subject(s)
Retina , Tomography , Animals , Imaging, Three-Dimensional , Mice , Microscopy, Electron , Synapses , Tomography, X-Ray Computed
14.
Nat Commun ; 12(1): 5383, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508091

ABSTRACT

The function-optimized properties of biominerals arise from the hierarchical organization of primary building blocks. Alteration of properties in response to environmental stresses generally involves time-intensive processes of resorption and reprecipitation of mineral in the underlying organic scaffold. Here, we report that the load-bearing shells of the brachiopod Discinisca tenuis are an exception to this process. These shells can dynamically modulate their mechanical properties in response to a change in environment, switching from hard and stiff when dry to malleable when hydrated within minutes. Using ptychographic X-ray tomography, electron microscopy and spectroscopy, we describe their hierarchical structure and composition as a function of hydration to understand the structural motifs that generate this adaptability. Key is a complementary set of structural modifications, starting with the swelling of an organic matrix on the micron level via nanocrystal reorganization and ending in an intercalation process on the molecular level in response to hydration.


Subject(s)
Adaptation, Physiological , Animal Shells/physiology , Invertebrates/physiology , Organism Hydration Status/physiology , Animal Shells/anatomy & histology , Animal Shells/ultrastructure , Animals , Invertebrates/anatomy & histology , Invertebrates/ultrastructure , Microscopy, Electron
15.
R Soc Open Sci ; 8(8): 202013, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34386244

ABSTRACT

Conodont elements, microfossil remains of extinct primitive vertebrates, are commonly exploited as mineral archives of ocean chemistry, yielding fundamental insights into the palaeotemperature and chemical composition of past oceans. Geochemical assays have been traditionally focused on the so-called lamellar and white matter crown tissues; however, the porosity and crystallographic nature of the white matter and its inferred permeability are disputed, raising concerns over its suitability as a geochemical archive. Here, we constrain the characteristics of this tissue and address conflicting interpretations using ptychographic X-ray-computed tomography (PXCT), pore network analysis, synchrotron radiation X-ray tomographic microscopy (srXTM) and electron back-scatter diffraction (EBSD). PXCT and pore network analyses based on these data reveal that while white matter is extremely porous, the pores are unconnected, rendering this tissue closed to postmortem fluid percolation. EBSD analyses demonstrate that white matter is crystalline and comprised of a single crystal typically tens of micrometres in dimensions. Combined with evidence that conodont elements grow episodically, these data suggest that white matter, which comprises the denticles of conodont elements, grows syntactically, indicating that individual crystals are time heterogeneous. Together these data provide support for the interpretation of conodont white matter as a closed geochemical system and, therefore, its utility of the conodont fossil record as a historical archive of Palaeozoic and Early Mesozoic ocean chemistry.

16.
Sci Adv ; 7(24)2021 Jun.
Article in English | MEDLINE | ID: mdl-34108209

ABSTRACT

The performance of functional materials is either driven or limited by nanoscopic heterogeneities distributed throughout the material's volume. To better our understanding of these materials, we need characterization tools that allow us to determine the nature and distribution of these heterogeneities in their native geometry in 3D. Here, we introduce a method based on x-ray near-edge spectroscopy, ptychographic x-ray computed nanotomography, and sparsity techniques. The method allows the acquisition of quantitative multimodal tomograms of representative sample volumes at sub-30 nm half-period spatial resolution within practical acquisition times, which enables local structure refinements in complex geometries. To demonstrate the method's capabilities, we investigated the transformation of vanadium phosphorus oxide catalysts with industrial use. We observe changes from the micrometer to the atomic level and the formation of a location-specific defect so far only theorized. These results led to a reevaluation of these catalysts used in the production of plastics.

17.
Geobiology ; 19(3): 218-227, 2021 05.
Article in English | MEDLINE | ID: mdl-33624944

ABSTRACT

Metasedimentary rocks from Isua, West Greenland (> 3,700 million years old) contain carbonaceous compounds, compatible with a biogenic origin (Hassenkam, Andersson, Dalby, Mackenzie, & Rosing, 2017; Ohtomo, Kakegawa, Ishida, Nagase, & Rosing, 2014; Rosing, 1999). The metamorphic mineral assemblage with garnet and quartz intergrowths contains layers of carbonaceous inclusions contiguous with carbon-rich sedimentary beds in the host rock. Previous studies (Hassenkam et al., 2017; Ohtomo et al., 2014; Rosing, 1999) on Isua rocks focused on testing the biogenic origin of the carbonaceous material, but here we searched for evidence which could provide new insights into the nature of the life that generated this carbonaceous material. We studied material trapped in inclusions armoured within quartz grains inside garnet porphyroblasts by non-destructive ptychographic X-ray nanotomography (PXCT). The 3D electron density maps generated by PXCT were correlated with maps from X-ray fluorescence tomography and micro-Raman spectroscopy. We found that the material trapped inside inclusions in the quartz grains consist of disordered carbon material encasing domains of iron-rich carbonaceous material. These results corroborate earlier claims (Hassenkam et al., 2017; Ohtomo et al., 2014; Rosing, 1999) for biogenic origins and are compatible with relics of metamorphosed biological material originally containing high iron/carbon ratios, comparable to ratios found in most extant organisms. These iron-rich domains represent the oldest evidence for organic iron complexes in the geologic record and are consistent with Fe-isotopic evidence for metabolic iron fractionation in > 3,700 Ma Isua banded iron formation (Czaja et al., 2013; Whitehouse & Fedo, 2007).


Subject(s)
Graphite , Geologic Sediments , Graphite/analysis , Greenland , Iron , Minerals/analysis
18.
ACS Appl Bio Mater ; 4(9): 7157-7167, 2021 09 20.
Article in English | MEDLINE | ID: mdl-35006947

ABSTRACT

The diversity and safety of nanofibrillated cellulose (NFC) hydrogels have gained a vast amount of interest at the pharmaceutical site in recent years. Moreover, this biomaterial has a high potential to be utilized as a protective matrix during the freeze-drying of heat-sensitive pharmaceuticals and biologics to increase their properties for long-term storing at room temperature and transportation. Since freeze-drying and subsequent reconstitution have not been optimized for this biomaterial, we must find a wider understanding of the process itself as well as the molecular level interactions between the NFC hydrogel and the most suitable lyoprotectants. Herein we optimized the reconstitution of the freeze-dried NFC hydrogel by considering critical quality attributes required to ensure the success of the process and gained insights of the obtained experimental data by simulating the effects of the used lyoprotectants on water and NFC. We discovered the correlation between the measured characteristics and molecular dynamics simulations and obtained successful freeze-drying and subsequent reconstitution of NFC hydrogel with the presence of 300 mM of sucrose. These findings demonstrated the possibility of using the simulations together with the experimental measurements to obtain a more comprehensive way to design a successful freeze-drying process, which could be utilized in future pharmaceutical applications.


Subject(s)
Cellulose , Hydrogels , Biocompatible Materials , Freeze Drying , Water
19.
Front Neurosci ; 14: 570019, 2020.
Article in English | MEDLINE | ID: mdl-33324142

ABSTRACT

Gaining insight to pathologically relevant processes in continuous volumes of unstained brain tissue is important for a better understanding of neurological diseases. Many pathological processes in neurodegenerative disorders affect myelinated axons, which are a critical part of the neuronal circuitry. Cryo ptychographic X-ray computed tomography in the multi-keV energy range is an emerging technology providing phase contrast at high sensitivity, allowing label-free and non-destructive three dimensional imaging of large continuous volumes of tissue, currently spanning up to 400,000 µm3. This aspect makes the technique especially attractive for imaging complex biological material, especially neuronal tissues, in combination with downstream optical or electron microscopy techniques. A further advantage is that dehydration, additional contrast staining, and destructive sectioning/milling are not required for imaging. We have developed a pipeline for cryo ptychographic X-ray tomography of relatively large, hydrated and unstained biological tissue volumes beyond what is typical for the X-ray imaging, using human brain tissue and combining the technique with complementary methods. We present four imaged volumes of a Parkinson's diseased human brain and five volumes from a non-diseased control human brain using cryo ptychographic X-ray tomography. In both cases, we distinguish neuromelanin-containing neurons, lipid and melanic pigment, blood vessels and red blood cells, and nuclei of other brain cells. In the diseased sample, we observed several swellings containing dense granular material resembling clustered vesicles between the myelin sheaths arising from the cytoplasm of the parent oligodendrocyte, rather than the axoplasm. We further investigated the pathological relevance of such swollen axons in adjacent tissue sections by immunofluorescence microscopy for phosphorylated alpha-synuclein combined with multispectral imaging. Since cryo ptychographic X-ray tomography is non-destructive, the large dataset volumes were used to guide further investigation of such swollen axons by correlative electron microscopy and immunogold labeling post X-ray imaging, a possibility demonstrated for the first time. Interestingly, we find that protein antigenicity and ultrastructure of the tissue are preserved after the X-ray measurement. As many pathological processes in neurodegeneration affect myelinated axons, our work sets an unprecedented foundation for studies addressing axonal integrity and disease-related changes in unstained brain tissues.

20.
Chem Commun (Camb) ; 56(87): 13373-13376, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33030473

ABSTRACT

X-ray linear dichroism and X-ray birefringence microscopy are yet to be fully utilized as instruments in the microstructural characterization of crystalline materials. Here, we demonstrate analyser-free X-ray linear dichroism microscopy using spectroscopic hard X-ray ptychography. First experiments enabled a spectroscopic and microstructural characterisation of polycrystalline vanadium pentoxide on the nanoscale, outside of diffraction-contrast based methods.


Subject(s)
Microscopy/methods , Nanoparticles/chemistry , Linear Models , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...