Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Exp Neurol ; 373: 114671, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38160982

ABSTRACT

Patients with inflammatory bowel disease, including ulcerative colitis (UC) and Crohn's disease, have a high incidence of psychiatric disorders, including depression and anxiety. However, the underlying pathogenic mechanism remains unknown. Dextran sulfate sodium (DSS)-treated mice, a model of UC, exhibit depressive-like behavior and reduced adenosine monophosphate-activated protein kinase (AMPK) activity, which regulates various physiological functions in the brain and gut. However, comprehensive studies on UC pathophysiology with co-occurring depression focused on brain-gut AMPK activity are lacking. Therefore, we aimed to investigate whether resveratrol (RES), an AMPK activator, prevented DSS-induced UC-like symptoms and depressive-like behavior. DSS treatment induced UC-like pathology and depressive-like behavior, as assessed via the tail suspension test. Moreover, western blotting and immunohistochemical studies revealed that DSS increased p-p70S6 kinase (Thr389), p62, tumor necrosis factor-α, interleukin (IL)-1ß, IL-18, NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, cleaved Gasdermin-D (GSDMD), and cleaved caspase-3 expression levels in the rectum and hippocampus, and increased CD40, iNOS, and Kelch-like ECH-associated protein 1 expression levels, and the number of Iba1-positive cells in the hippocampus, and decreased p-AMPK and LC3II/I expression levels, and the number of NF-E2-related factor 2 (Nrf2)-positive cells, and reduced neurogenesis in the hippocampus. These changes were reversed by the RES administration. RES also enhanced PGC1α and SOD1 expression in the hippocampus of DSS-treated male mice. Moreover, NLRP3 staining was observed in the neurons and microglia, and cleaved GSDMD staining in neurons in the hippocampus of DSS-treated mice. Notably, RES prevented UC-like pathology and depressive-like behavior and enhancement of autophagy, decreased rectal and hippocampal inflammatory cytokines and inflammasome, and induced the Nrf2-PGC1α-SOD1 pathway in the hippocampus, resulting in neurogenesis in the hippocampal dentate gyrus. Our findings suggest that brain-gut AMPK activation may be an important therapeutic strategy in patients with UC and depression.


Subject(s)
Colitis, Ulcerative , Colitis , Enterocolitis , Humans , Male , Mice , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , AMP-Activated Protein Kinases/metabolism , NF-E2-Related Factor 2/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Superoxide Dismutase-1/metabolism , Brain/metabolism , Inflammasomes/metabolism , Enterocolitis/pathology , Hippocampus/metabolism , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/pathology , Disease Models, Animal
2.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674788

ABSTRACT

Dental caries, particularly secondary caries, which is the main contributor to dental repair failure, has been the subject of extensive research due to its biofilm-mediated, sugar-driven, multifactorial, and dynamic characteristics. The clinical utility of restorations is improved by cleaning bacteria nearby and remineralizing marginal crevices. In this study, a novel multifunctional dental resin composite (DRC) composed of Sr-N-co-doped titanium dioxide (Sr-N-TiO2) nanoparticles and nano-hydroxyapatite (n-HA) reinforcing fillers with improved antibacterial and mineralization properties is proposed. The experimental results showed that the anatase-phase Sr-N-TiO2 nanoparticles were synthesized successfully. After this, the curing depth (CD) of the DRC was measured from 4.36 ± 0.18 mm to 5.10 ± 0.19 mm, which met the clinical treatment needs. The maximum antibacterial rate against Streptococcus mutans (S. mutans) was 98.96%, showing significant inhibition effects (p < 0.0001), which was experimentally verified to be derived from reactive oxygen species (ROS). Meanwhile, the resin exhibited excellent self-remineralization behavior in an SBF solution, and the molar ratio of Ca/P was close to that of HA. Moreover, the relative growth rate (RGR) of mouse fibroblast L929 indicated a high biocompatibility, with the cytotoxicity level being 0 or I. Therefore, our research provides a suitable approach for improving the antibacterial and mineralization properties of DRCs.


Subject(s)
Dental Caries , Nanoparticles , Animals , Mice , Durapatite/pharmacology , Composite Resins/pharmacology , Anti-Bacterial Agents/pharmacology , Materials Testing
3.
Article in English | MEDLINE | ID: mdl-36273507

ABSTRACT

Patients with inflammatory bowel disease (IBD) have higher rates of psychiatric pathology including depression. The dextran sulfate sodium (DSS)-treated mice exhibit IBD- and depressive-like phenotypes. A disturbed intestinal environment causes a decrease in serotonin and abnormal myelination in the brain, along with depressive-like behavior in rodents. However, the involvement of these factors in DSS-induced depressive-like behavior in mice remains unclear. In this study, we examined whether myelin proteins in the prefrontal cortex (PFC) and hippocampi were altered in DSS-treated mice, along with the changes in the serotonergic system in the PFC by western blotting and HPLC. The effects of brexpiprazole (Brx), a serotonin modulator, on DSS-induced depressive-like behavior using the tail-suspension test were evaluated. Subsequently, we investigated Brx's effects on the levels of myelin, nodal proteins, and neurotrophic molecules in the PFC with western blotting, and examined the altered node of Ranvier formation by immunohistochemistry. DSS-treated mice showed a reduction in myelin and nodal proteins, dysfunction of the serotonergic system, and impaired formation of the nodes of Ranvier in the PFC. Brx administration prevented the DSS-induced depressive-like behavior and demyelination in the PFC. However, the Brx-mediated effects were inhibited by the selective 5-HT1A antagonist, WAY100635, or the selective TrkB antagonist, ANA-12. Brx decreased the phosphorylation of ERK, CREB, and TrkB along with the expression of BDNF in the PFC of DSS-treated mice. Moreover, the effects of Brx were blocked by WAY100635. These findings indicated that myelination regulated by the activation of the ERK1/2-CREB-BDNF-TrkB pathway in the PFC may be involved in mediating the antidepressant effects of Brx.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Brain-Derived Neurotrophic Factor/metabolism , Serotonin/metabolism , Prefrontal Cortex/metabolism , Colitis/metabolism , Inflammatory Bowel Diseases/metabolism , Disease Models, Animal , Depression/drug therapy , Depression/prevention & control , Depression/metabolism
4.
Behav Brain Res ; 438: 114175, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36309244

ABSTRACT

Alzheimer's disease is associated with marked olfactory dysfunction observed in the early stages. Clinical studies reported that acetylcholinesterase inhibitor donepezil (DNP) attenuated this deficit; however, the underlying mechanism remains unclear. Herein, we aimed to examine the effects and underlying mechanisms of DNP on olfactory deficits in zinc sulfate (ZnSO4) nasal-treated mice, which were used as a model of reversible olfactory impairment. We evaluated olfactory function using the buried food finding test and neurogenesis in the subventricular zone (SVZ) using immunohistochemistry. Finally, we measured the expression of doublecortin (DCX), neuronal nuclear antigen (NeuN), olfactory marker protein, tyrosine hydroxylase (TH), tryptophan hydroxylase 2, glutamic acid decarboxylase 67, p-α-synuclein (Ser129), α-synuclein, p-AMPK, p-p70S6 kinase (p70S6K) (Thr389), LC3 Ⅱ/Ⅰ, and p-p62 in the olfactory bulb (OB) by western blotting. On day 7 after treatment, ZnSO4-treated mice exhibited prolonged time to find the buried food, cell proliferation enhancement in the SVZ, increased NeuN, p-α-synuclein (Ser129), and α-synuclein levels, and decreased DCX and TH levels in the OB; except for TH, these changes normalized on day 14 after treatment. Repeated administration of DNP prevented the ZnSO4-induced changes on day 7 after treatment. Moreover, DNP increased p-AMPK and LC3 Ⅱ/Ⅰ, and decreased p-p70S6K and p-p62 (Ser351) levels in the OB, suggesting that DNP enhances autophagy in the OB. These findings indicate that DNP may help prevent olfactory dysfunction by autophagy that reduces α-synuclein aggregation via the AMPK/mTOC1 pathway.


Subject(s)
Olfaction Disorders , Olfactory Bulb , Animals , Mice , Olfactory Bulb/metabolism , alpha-Synuclein/metabolism , Donepezil/pharmacology , Zinc Sulfate/pharmacology , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , AMP-Activated Protein Kinases/metabolism , Acetylcholinesterase/metabolism , Tyrosine 3-Monooxygenase/metabolism , Autophagy
5.
J Opt Soc Am A Opt Image Sci Vis ; 39(10): 1839-1848, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36215556

ABSTRACT

The effective deployment of an intelligent reflecting mirror array (IRMA) can enhance channel quality and improve the system performance in visible light communications (VLC) systems. This paper focuses on the performance analysis and parameter optimization of an IRMA-aided VLC system. Initially, the channel gains of both line-of-sight (LoS) link and non-LoS links are analyzed. Then, considering the blockage probability of a LoS link, a theoretical expression of the average bit error rate (ABER) is derived. To further improve the system performance, the optimization problems about the parameters of the IRMA are formulated, and schemes are proposed to solve these problems. Moreover, a kind of hardware implementation of the IRMA is provided. Numerical results verify the accuracy of the derived ABER expression and the effectiveness of the proposed schemes.

6.
Int J Mol Sci ; 23(17)2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36077503

ABSTRACT

The success of root canal therapy depends mainly on the complete elimination of the root canal bacterial biofilm. The validity and biocompatibility of root canal disinfectant materials are imperative for the success of root canal treatment. However, the insufficiency of the currently available root canal disinfectant materials highlights that more advanced materials are still needed. In this study, a nanozyme-loaded hydrogel (Fe3O4-CaO2-Hydrogel) was modified and analyzed as a root canal disinfectant material. Fe3O4-CaO2-Hydrogel was fabricated and examined for its release profile, biocompatibility, and antibacterial activity against E. faecalis and S. sanguis biofilms in vitro. Furthermore, its efficiency in eliminating the root canal bacterial biofilm removal in SD rat teeth was also evaluated. The results in vitro showed that Fe3O4-CaO2-Hydrogel could release reactive oxygen species (ROS). Moreover, it showed good biocompatibility, disrupting bacterial cell membranes, and inhibiting exopolysaccharide production (p < 0.0001). In addition, in vivo results showed that Fe3O4-CaO2-Hydrogel strongly scavenged on root canal biofilm infection and prevented further inflammation expansion (p < 0.05). Altogether, suggesting that Fe3O4-CaO2-Hydrogel can be used as a new effective biocompatible root canal disinfectant material. Our research provides a broad prospect for clinical root canal disinfection, even extended to other refractory infections in deep sites.


Subject(s)
Disinfectants , Enterococcus faecalis , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Dental Pulp Cavity , Disinfectants/pharmacology , Hydrogels/pharmacology , Hydrogen Peroxide/pharmacology , Rats , Rats, Sprague-Dawley , Root Canal Therapy/methods
7.
Front Psychol ; 13: 962419, 2022.
Article in English | MEDLINE | ID: mdl-36017443

ABSTRACT

Youth entrepreneurship is regarded as an important part of rural revitalization. Against the backdrop of the rural revitalization strategy, the Chinese government has introduced many policies to encourage return-home entrepreneurship among young people. However, highly educated youth have a lower willingness to return home for entrepreneurship, and prefer urban entrepreneurship or getting a job in a city. Therefore, this study used a two-stage approach to explore the factors that influence young people's contribution to the development of their homeland, the barriers they face, and the support mechanisms they need. The study found that many barriers affect young people's intention to return home for entrepreneurship. In rural areas, young people consider lagging environmental development to be the biggest barrier. In urban areas, infrastructure, lack of entrepreneurial experience, and funding are the factors that concern young people the most. As they have limited entrepreneurial experience, young people in both rural and urban areas have a high demand for shared entrepreneurial experience, as well as entrepreneurship courses and mentoring. The government and universities should remove the barriers faced by young people, provide more assistance, improve the environment for young people engaging in return-home entrepreneurship, and form a good entrepreneurial ecology.

8.
Neurosci Res ; 182: 76-80, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35679997

ABSTRACT

Reduced activity of hippocampal silent information regulator protein 2 (SirT2) has been associated with the development of depression caused by disturbances in neuronal and synaptic plasticity. However, changes in the hippocampal SirTs in olfactory bulbectomized (OBX) mice, an animal model of depression, remain unknown. Therefore, this study examined depressive-like behaviors, hippocampal SirTs, synaptic plasticity-associated proteins, and cell proliferation in OBX mice. The OBX mice showed depressive-like behaviors; reduced SirT2, synaptophysin, and PSD95 levels; and reduced cell proliferation in the hippocampus. These data indicate that decreased hippocampal SirT2 may contribute to pathophysiological depression and strongly affect the psychological state.


Subject(s)
Olfactory Bulb , Sirtuin 2 , Animals , Depression , Disease Models, Animal , Hippocampus/metabolism , Mice , Neuronal Plasticity , Olfactory Bulb/surgery , Sirtuin 2/metabolism
9.
J Psychiatr Res ; 148: 137-148, 2022 04.
Article in English | MEDLINE | ID: mdl-35123326

ABSTRACT

A therapeutic strategy through the gut-brain axis has been proven to be effective in treatment for depression. In our previous study, we demonstrated that Enterococcus faecalis 2001 (EF-2001) prevents colitis-induced depressive-like behavior through the gut-brain axis in mice. More recently, we found that demyelination in the prefrontal cortex (PFC) was associated with depressive-like behavior in an animal model of major depressive disorder, olfactory bulbectomized (OBX) mice. The present study investigated the effects of EF-2001 on depressive-like behaviors in OBX mice and the underlying molecular mechanisms from the perspective of myelination in the PFC. OBX mice exhibited depressive-like behaviors in the tail-suspension, splash, and sucrose preference tests, and decreased myelin and paranodal proteins along with mature oligodendrocytes in the PFC. These behavioral and biochemical changes were all prevented by treatment with EF-2001. Further, EF-2001 treatment increased brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) in the PFC. Interestingly, an immunohistochemical analysis revealed enhanced phospho (p) -cAMP-responsive element binding protein (CREB) expression in neurons, p-nuclear factor-kappa B (NFκB) p65 (Ser536) expression in astrocytes, and p-signal transducer and activator of transcription 3 (STAT3) (Ty705) expression in mature oligodendrocytes in the PFC of OBX mice. From these results, we suggest that EF-2001 administration prevents depressive-like behaviors by regulating prefrontal cortical myelination via the enhancement of CREB/BDNF and NFκB p65/LIF/STAT3 pathways. Our findings strongly support the idea that a therapeutic strategy involving the gut microbiota may be a promising alternative treatment for alleviating symptoms of depression.


Subject(s)
Brain-Derived Neurotrophic Factor , Depressive Disorder, Major , Animals , Antidepressive Agents/therapeutic use , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/pharmacology , Cyclic AMP Response Element-Binding Protein/therapeutic use , Depression/drug therapy , Depressive Disorder, Major/drug therapy , Disease Models, Animal , Enterococcus faecalis/metabolism , Hippocampus , Humans , Leukemia Inhibitory Factor/metabolism , Leukemia Inhibitory Factor/pharmacology , Leukemia Inhibitory Factor/therapeutic use , Mice , NF-kappa B/metabolism , NF-kappa B/pharmacology , NF-kappa B/therapeutic use , Olfactory Bulb/metabolism , Olfactory Bulb/surgery , Prefrontal Cortex/metabolism , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/pharmacology , STAT3 Transcription Factor/therapeutic use
10.
Soft Matter ; 18(9): 1885-1895, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35175271

ABSTRACT

In this investigation, transient crosslinking was constructed to obtain a hydrogel with excellent mechanical and self-healing properties. Firstly, core-shell particles with hydrophilic amino groups were prepared by emulsion polymerization and subsequently dispersed into hydrophobic association polyacrylamide hydrogels. Transient crosslinking was constructed through hydrogen bonding between core-shell particles and polyacrylamide. As a result, the hydrogels exhibited a tensile strength of 1.4 MPa and self-healing efficiency of 98% at 24 h. Furthermore, reconstruction of the transient crosslinking was confirmed from rheological measurements. Therefore, the essential reinforcement principle based on transient crosslinking would open a novel strategy to obtain hydrogels with superior toughness and self-healing properties.


Subject(s)
Hydrogels , Nanoparticles , Hydrogels/chemistry , Hydrophobic and Hydrophilic Interactions , Nanoparticles/chemistry , Polymerization , Tensile Strength
11.
Dent Mater ; 38(2): 281-293, 2022 02.
Article in English | MEDLINE | ID: mdl-34955233

ABSTRACT

OBJECTIVE: Although bisphenol Aglycidyl methacrylate (Bis-GMA) are widely used in the dental composite, its raw materials include the petroleum-based product bisphenol A (BPA) with high estrogenic activity (EA). In this study, two new BPA-free dimethacrylate monomers from bio-based material creosol were synthesized and evaluated. METHODS: The renewable bisphenol monomer 5, 5'-methylenedicreosol (BCF) was prepared from bio-based material creosol. By the human breast cancer cells (MCF-7 cells) proliferation assay, a risk assessment of BCF was performed to determine if BCF possessed reduced EA in comparison to BPA. Then, the novel monomers 5, 5'-methylenedicreosol diglycidyl ether diacrylate (BCF-EA) and 5, 5'-methylenedicreosol diglycidyl ether dimethacrylate (BCF-GMA) were synthesized from BCF with epichlorohydrin and (meth)acrylate. All products were investigated by 1H NMR and FT-IR spectra. The control resin was a mixture based on Bis-GMA and tri(ethyleneglycol) dimethacrylate (TEGDMA) with a weight ratio of 5:5 (5B5T). Similarly, experimental resin matrix was a mixture based on BCF-EA/TEGDMA (5E5T) and BCF-GMA/TEGDMA (5G5T). And their corresponding composites were then prepared with corresponding resin matrices and hybrid SiO2 (5E5TC, 5G5TC and 5B5TC). The properties of these composites were investigated according to the standard or referenced methods. Each sample was evaluated for double bond conversion (DC), shrinkage stress (SS) and volumetric polymerization shrinkage (VS). Water sorption (WS), water solubility (SL), mechanical properties and cytotoxicity were also measured. RESULTS: 1H NMR and FT-IR spectra confirmed the chemical structure of each monomer. EA test revealed that bio-based bisphenol monomer BCF as the precursor of BCF-EA and BCF-GMA showed lower EA than BPA. Cured resin matrix: Both 5E5T and 5G5T had nearly the same DC (p < 0.05), which was higher than 5B5T (p < 0.05); 5E5T and 5G5T had lower VS, SL and cytotoxicity than 5B5T (p < 0.05); mechanical properties of 5E5T and 5G5T were all better than those of 5B5T (p < 0.05). Cured composite: There was no significant difference in conversion (p < 0.05); 5E5TC and 5G5TC had significantly lower VS (p < 0.05); WS of 5E5TC and 5G5TC were similar (p < 0.05), but higher compared to 5B5TC (p < 0.05); 5E5TC and 5G5TC had the deeper depth of cure (p > 0.05); before water immersion, there was no significant difference in flexural strength between 5E5TC and 5G5TC (p > 0.05), and higher than 5B5TC (p < 0.05); 5E5TC and 5G5TC showed less cytotoxicity than 5B5TC (p < 0.05). SIGNIFICANCE: The new BPA-free di(meth)acrylates are promising photocurable dental monomers owning to bio-based raw material, high degree of conversion coupled with low curing shrinkage and good mechanical properties. Therefore, BCF-EA and BCF-GMA has a potential to be used as the substitution for Bis-GMA to prepare Bis-GMA-free dental composite.


Subject(s)
Composite Resins , Silicon Dioxide , Benzhydryl Compounds , Bisphenol A-Glycidyl Methacrylate/chemistry , Composite Resins/chemistry , Humans , Materials Testing , Methacrylates/chemistry , Phenols , Polyethylene Glycols/chemistry , Polymethacrylic Acids/chemistry , Spectroscopy, Fourier Transform Infrared
12.
Neurochem Int ; 148: 105112, 2021 09.
Article in English | MEDLINE | ID: mdl-34171413

ABSTRACT

Recent studies have reported that demyelination is associated with the development of depression. Olfactory bulbectomized (OBX) rodents are a useful experimental animal model for depressive disorder. However, little is known about the change in myelination in the brain of OBX mice. To address this question, we observed depressive-like behavior of OBX mice in the tail-suspension test, and determined the quantity of myelin proteins in the prefrontal cortex (PFC), striatum and hippocampus on day 14 or 21 after surgery. The number of nodes of Ranvier paired with the paranodal marker contactin-associated protein (Caspr), as well as the numbers of immature and mature oligodendrocytes in the PFC, were also measured on day 21 after surgery. We examined whether these behavioral and neurochemical changes observed in OBX mice were reversed by chronic administration of imipramine. OBX mice showed depressive-like behavior in the tail-suspension test together with a decrease in the levels of myelin proteins such as myelin basic protein, myelin-associated glycoprotein and cyclicnucleotide phosphodiesterase in the PFC on day 21 after surgery. The number of nodes of Ranvier and mature oligodendrocytes were also decreased in the PFC of OBX mice, while the number of immature oligodendrocytes was increased on day 21 after surgery. However, the number of immature oligodendrocytes in the PFC of OBX mice was decreased on day 35 after surgery. Administration of imipramine (20 mg/kg) for 2 weeks from day 21 after surgery improved OBX-induced depressive-like behavior and abnormal myelination in the PFC. The present findings suggest that the disturbance of myelin function in the PFC may contribute to the pathophysiology of depression, and further support the notion that it plays an important role in the psychological state.


Subject(s)
Behavior, Animal , Demyelinating Diseases/pathology , Demyelinating Diseases/psychology , Depression/psychology , Olfactory Bulb , Prefrontal Cortex/pathology , Animals , Antidepressive Agents, Tricyclic/pharmacology , Cell Count , Hindlimb Suspension , Hippocampus/metabolism , Imipramine/pharmacology , Male , Mice , Motor Activity , Myelin Proteins/metabolism , Neostriatum/metabolism , Oligodendroglia
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-815631

ABSTRACT

@#Esophageal cancer is one of the most lethal digestive system cancers, and its pathogenic factors have always been the focus of research. Recently, it has been found that microorganisms and their metabolites in the esophagus may also represent one of the pathogenic factors. Because of their continuity in anatomical structure, the oral cavity and esophagus have a certain correlation in terms of the composition of flora. In recent years, many scholars have studied the relationship between oral microorganisms and esophageal cancer to monitor changes in oral microorganisms as well as to diagnose and treat esophageal cancer more effectively. In this paper, the research status of oral microorganisms and esophageal cancer was reviewed. The Results of the literature review show that the diversity of bacteria in the esophagus is affected by oral flora in terms of the occurrence and development of esophageal cancer. Among these bacteria, the periodontal red complex, which includes Porphyromonas gingivalis, forsythia and Treponema dentata, as well as common oral microorganisms, such as Streptococcus viridis and Fusobacterium nucleatum, are all related to the occurrence and development of esophageal cancer to a certain extent. At present, there are few studies on the mechanism of microorganisms and esophageal cancer, but scholars have found that lipopolysaccharides and endotoxins, the products of Gram-negative bacteria in the esophagus, may participate in the innate immune response of the host, and the relevant mechanism of action needs further study in order to find new targets for monitoring and treatment.

14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 37(5): 521-526, 2019 Oct 01.
Article in Chinese | MEDLINE | ID: mdl-31721501

ABSTRACT

The malignant tumors including oral cancer, colorectal cancer, pancreatic cancer, and esophageal cancer, of the digestive system are a common high-fatal malignancy. Porphyromonas gingivalis, as the most important pathogen of periodontal disease, has been gradually proved that its invasiveness occurs not only in the mouth but also in other parts of the digestive system. Moreover, the relevant pathogenic mechanism is increasingly attracting the reseachers' attention. In this study, the role and possible pathogenesis of Porphyromonas gingivalis in the digestive system are described in a systematic and comprehensive way.


Subject(s)
Mouth Neoplasms , Periodontal Diseases , Humans , Porphyromonas gingivalis
16.
Cell Commun Signal ; 17(1): 2, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30630510

ABSTRACT

BACKGROUND: Acetaminophen (APAP) overdose-induced acute liver failure (ALF) is mainly resulted from uncontrolled oxidative stress. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a key antioxidant transcription factor, is essential for alleviating APAP-induced hepatotoxicity. Corilagin (Cori) is a natural polyphenol compound that possesses effective antioxidant activity; however, the protective effect of Cori on APAP-induced hepatotoxicity is still unknown. The current study aimed to explore whether Cori could mitigate hepatotoxicity caused by APAP and the underlying molecular mechanisms of action. METHODS: Cell counting kit-8 (CCK-8) assays, Western blotting analysis, dual-luciferase reporter assays, a mouse model, CRISPR/Cas9 knockout technology, and hematoxylin-eosin (H & E) staining were employed to explore the mechanisms by which Cori exerts a protective effect on hepatotoxicity in HepG2 cells and in a mouse model. RESULTS: Our findings suggested that Cori efficiently decreased APAP-triggered the generation of reactive oxygen species (ROS) and cell death in HepG2 cells. Additionally, Cori significantly induced the expression of several antioxidant enzymes, and this induced expression was closely linked to the upregulation of Nrf2, inhibition of Keap1 protein expression, and promotion of antioxidant response element (ARE) activity in HepG2 cells. Moreover, Cori clearly induced the phosphorylation of AMP-activated protein kinase (AMPK), glycogen synthase kinase-3ß (GSK3ß), liver kinase B1 (LKB1) and acetyl-CoA carboxylase (ACC). Furthermore, Cori-mediated GSK3ß inactivation, Nrf2 upregulation and cytoprotection were abolished by an AMPK inhibitor (Compound C) in HepG2 cells. Lastly, we found that Cori inhibited APAP-induced hepatotoxicity and mediated the expression of many antioxidant enzymes; these results were reversed in Nrf2 -/- HepG2 cells. In vivo, Cori significantly protected against APAP-induced ALF by reducing mortality and alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, attenuating histopathological liver changes, inhibiting myeloperoxidase (MPO) and malondialdehyde (MDA) levels, and increasing the superoxide dismutase (SOD) content and GSH-to-GSSG ratio as well as suppressing c-jun N-terminal kinase (JNK) phosphorylation. However, Cori-induced reductions in mortality, AST and ALT levels, and histopathological liver changes induced by APAP were clearly abrogated in Nrf2-deficienct mice. CONCLUSIONS: These findings principally indicated that Cori effectively protects against APAP-induced ALF via the upregulation of the AMPK/GSK3ß-Nrf2 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetaminophen/adverse effects , Glucosides/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Hydrolyzable Tannins/pharmacology , Liver/pathology , NF-E2-Related Factor 2/metabolism , Signal Transduction , Animals , Antioxidant Response Elements/genetics , Cell Death/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Glucosides/chemistry , Hep G2 Cells , Humans , Hydrolyzable Tannins/chemistry , Liver/drug effects , Liver/injuries , Liver Failure, Acute/drug therapy , Liver Failure, Acute/pathology , Male , Mice, Inbred C57BL , Models, Biological , Oxidative Stress/drug effects , Protective Agents/pharmacology , Protective Agents/therapeutic use , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects , Up-Regulation/genetics
17.
Clin Exp Pharmacol Physiol ; 46(4): 389-397, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30575977

ABSTRACT

Pulpitis suppressed the level of let-7c-5p that promotes osteogenesis and bone formation by repressing HMGA2. In the current study, the function of let-7c-5p in the inflammation and osteogenesis in dental pulp stem cells (DPSCs) was explored. The level of let-7c-5p in DPSCs was up-regulated, and the cells were subjected to lipopolysaccharide (LPS) to induce inflammation. The effect of let-7c-5p on cell proliferation potential, osteogenic differentiation potential, and activity of HMGA2/PI3K/Akt pathway was detected. The administration of LPS suppressed the cell proliferation of DPSCs and suppressed calcium deposition, activity of alkaline phosphatase (ALP), and levels of OCN, OPN, OSX, MSX2, and RUNX2 in inflamed DPSCs. The impaired osteogenic differentiation of inflamed DPSCs was associated with the increased levels of HMGA2, p-PI3K, and p-Akt. In let-7c-5p-overexpressed inflamed DPSCs, the proliferation and osteogenic differentiation potential of DPSCs were restored, and the activation of HMGA2/PI3K/Akt signalling was inhibited. In rat pulpitis models, the injection of let-7c-5p agomir restored the osteogenic differentiation potential of dental pulp cells and inhibited HMGA2/PI3K/Akt signalling. The findings demonstrated the anti-inflammation and pro-osteogenesis effect of let-7c-5p during the attack of pulpitis, which depended on the inhibition of HMGA2/PI3K/Akt signalling.

18.
Med Sci Monit ; 24: 6656-6665, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30238933

ABSTRACT

BACKGROUND Let-7c-5p is down-regulated in dental pulp tissues in inflammatory disorders. The microRNA (miR) molecule shows an anti-inflammation potential due to its direct regulation of dentin matrix protein-1 (DMP1), which promotes inflammation changes in dental pulp tissues. In the present study, the effect of let-7c-5p on lipopolysaccharide (LPS)-induced pulpitis was detected and the associated mechanism was explored. MATERIAL AND METHODS Dental pulp stem cells (DPSCs) were isolated from rat dental tissues, infected with let-7c-5p lentivirus particles, and subjected to LPS administration to induce inflammation. Then, the effect of let-7c-5p overexpression on LPS-induced impairments on DPSCs were detected and the mechanism was explained by focusing on the DMP1 expression and NF-κB pathway. The role of DMP1 in the anti-inflammation effect of let-7c-5p was assessed by incubating let-7c-5p-expressed DPSCs with DMP1 protein. The results of in vitro assays were verified in LPS-induced rat pulpitis models. RESULTS LPS administration increased the production of IL-1ß and TNF-α and decreased DPSCs viability by increasing the expression of DMP1 and activating NF-κB pathway. However, the induced expression of let-7c-5p relieved DPSCs from LPS-induced inflammation and suppressed DMP1 as well as NF-κB pathway. The incubation of let-7c-5p-expressed DPSCs with DMP1 protein blocked the effect of let-7c-5p. In in vivo experiments, the injection of let-7c-5p attenuated LPS-induced pulpitis by inhibiting DMP1-mediated NF-κB pathway. CONCLUSIONS Findings outlined in the current study demonstrated the dental pulp protecting function of let-7c-5p during LPS-induced inflammation, which was exerted by inhibiting the DMP1-mediated NF-κB pathway.


Subject(s)
Extracellular Matrix Proteins/antagonists & inhibitors , Extracellular Matrix Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/metabolism , Animals , Cell Differentiation/physiology , Cell Survival/genetics , Cells, Cultured , Dental Pulp/drug effects , Dental Pulp/metabolism , Dentin/metabolism , Extracellular Matrix Proteins/genetics , Inflammation/genetics , Inflammation/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , NF-kappa B/genetics , Phosphoproteins/genetics , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
19.
Hum Reprod ; 33(1): 11-22, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29165645

ABSTRACT

STUDY QUESTION: Do microRNAs (miRNAs) contribute to human early pregnancy loss (EPL)? SUMMARY ANSWER: miR-378a-3p expression is regulated by progesterone and is down-regulated in ducidua of EPL patients which may contribute to decidual apoptosis through Caspase-3 activation. WHAT IS KNOWN ALREADY: A variety of miRNAs have been demonstrated to be associated with the development of decidualization and placental formation. However, little has been reported on the roles of miRNA in the pathogenesis of EPL. STUDY DESIGN, SIZE, DURATION: Normal and EPL decidual tissues were collected from patients with normal pregnancies undergoing elective termination of gestation, and from patients with EPL, respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS: miRNA microarrays were used to identify the differentially expressed miRNAs between normal and EPL decidua, and miRNA expression was confirmed by qRT-PCR, qRT-PCR, western blotting and luciferase reporter assays were employed to validate the downstream targets of miR-378a-3p. The effects of miR-378a-3p were evaluated using miR-378a-3p-transfected decidual cells. MAIN RESULTS AND THE ROLE OF CHANCE: Of note, 32 up-regulated miRNAs and 38 down-regulated miRNAs were identified by microarray analysis when comparing EPL to normal decidua. MiR-378a-3p was significantly down-regulated in the EPL decidua and was found to inversely regulate the expression of Caspase-3 by directly binding to its 3'-UTRs. In decidual cells, transfection of miR-378a-3p mimics resulted in the inhibition of cell apoptosis and in the increase of cell proliferation through Caspase-3 suppression. Moreover, we found that progesterone could induce the expression of miR-378a-3p in decidual cells. LIMITATIONS, REASONS FOR CAUTION: This study focused on the function of miR-378a-3p and its target Caspase-3, however, numerous other targets and miRNAs may also be responsible for the pathogenesis of EPL. Therefore, further studies are required to elucidate the role of miRNAs in EPL. WIDER IMPLICATIONS OF THE FINDINGS: Our findings indicate that miR-378a-3p may contribute to the development of EPL, and that it could serve as a new potential predictive and therapeutic target of progesterone-treatment for EPL. STUDY FUNDING/COMPETING INTEREST: This study was supported by National Basic Research Program of China (No.2012CB944900); National Science Foundation of China (No.31471405 and 81490742, No.81361120246); The National Science and Technology Support Program (No.2012BA132B00). Authors declare no competing interests.


Subject(s)
Abortion, Spontaneous/etiology , Decidua/metabolism , Decidua/pathology , MicroRNAs/genetics , 3' Untranslated Regions , Abortion, Spontaneous/genetics , Abortion, Spontaneous/pathology , Adult , Apoptosis/genetics , Case-Control Studies , Caspase 3/genetics , Cell Survival/genetics , Decidua/drug effects , Down-Regulation , Embryo Implantation/genetics , Embryo Implantation/physiology , Female , Gene Expression Profiling , Gene Expression Regulation/drug effects , Humans , In Vitro Techniques , Molecular Mimicry/genetics , Pregnancy , Progesterone/pharmacology , Transfection , Young Adult
20.
ACS Appl Mater Interfaces ; 9(37): 32227-32236, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28845965

ABSTRACT

Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g-1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm-1 at 25 °C and 0.163 S cm-1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm-1 at 25 °C and 0.133 S cm-1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm-2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm-2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...