Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 149
Filter
1.
Curr Opin Struct Biol ; 86: 102816, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38648680

ABSTRACT

The interactions between proteins in membranes govern many cellular functions. Our ability to probe for such interactions has greatly evolved in recent years due to the introduction of new fluorescence techniques. As a result, we currently have a choice of methods that can be used to assess the spatial distribution of a membrane protein, its association state, and the thermodynamic stability of the oligomers in the native milieu. These biophysical measurements have revealed new insights into important biological processes in cellular membranes.


Subject(s)
Membrane Proteins , Microscopy, Fluorescence , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Microscopy, Fluorescence/methods , Humans , Cell Membrane/metabolism , Cell Membrane/chemistry , Protein Binding , Animals
2.
Elife ; 122024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568193

ABSTRACT

The differential signaling of multiple FGF ligands through a single fibroblast growth factor (FGF) receptor (FGFR) plays an important role in embryonic development. Here, we use quantitative biophysical tools to uncover the mechanism behind differences in FGFR1c signaling in response to FGF4, FGF8, and FGF9, a process which is relevant for limb bud outgrowth. We find that FGF8 preferentially induces FRS2 phosphorylation and extracellular matrix loss, while FGF4 and FGF9 preferentially induce FGFR1c phosphorylation and cell growth arrest. Thus, we demonstrate that FGF8 is a biased FGFR1c ligand, as compared to FGF4 and FGF9. Förster resonance energy transfer experiments reveal a correlation between biased signaling and the conformation of the FGFR1c transmembrane domain dimer. Our findings expand the mechanistic understanding of FGF signaling during development and bring the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.


Subject(s)
Fibroblast Growth Factors , Signal Transduction , Female , Pregnancy , Humans , Ligands , Phosphorylation , Bias , Receptor, Fibroblast Growth Factor, Type 1/genetics
3.
Alzheimers Dement (N Y) ; 9(4): e12428, 2023.
Article in English | MEDLINE | ID: mdl-37954165

ABSTRACT

Introduction: Reducing brain levels of both soluble and insoluble forms of amyloid beta (Aß) remains the primary goal of most therapies that target Alzheimer's disease (AD). However, no treatment has so far resulted in patient benefit, and clinical trials of the most promising drug candidates have generally failed due to significant adverse effects. This highlights the need for safer and more selective ways to target and modulate Aß biogenesis. Methods: Peptide technology has advanced to allow reliable synthesis, purification, and delivery of once-challenging hydrophobic sequences. This is opening up new routes to target membrane processes associated with disease. Here we deploy a combination of atomic detail molecular dynamics (MD) simulations, living-cell Förster resonance energy transfer (FRET), and in vitro assays to elucidate the atomic-detail dynamics, molecular mechanisms, and cellular activity and selectivity of a membrane-active peptide that targets the Aß precursor protein (APP). Results: We demonstrate that Aß biogenesis can be downregulated selectively using an APP occlusion peptide (APPOP). APPOP inhibits Aß production in a dose-dependent manner, with a mean inhibitory concentration (IC50) of 450 nM toward exogenous APP and 50 nM toward endogenous APP in primary rat cortical neuronal cultures. APPOP does not impact the γ-secretase cleavage of Notch-1, or exhibit toxicity toward cultured primary rat neurons, suggesting that it selectively shields APP from proteolysis. Discussion: Drugs targeting AD need to be given early and for very long periods to prevent the onset of clinical symptoms. This necessitates being able to target Aß production precisely and without affecting the activity of key cellular enzymes such as γ-secretase for other substrates. Peptides offer a powerful way for targeting key pathways precisely, thereby reducing the risk of adverse effects. Here we show that protecting APP from proteolytic processing offers a promising route to safely and specifically lower Aß burden. In particular, we show that the amyloid pathway can be targeted directly and specificically. This reduces the risk of off-target effects and paves the way for a safe prophylactic treatment.

4.
Nat Commun ; 14(1): 7579, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989743

ABSTRACT

Signaling bias is the ability of a receptor to differentially activate downstream signaling pathways in response to different ligands. Bias investigations have been hindered by inconsistent results in different cellular contexts. Here we introduce a methodology to identify and quantify bias in signal transduction across the plasma membrane without contributions from feedback loops and system bias. We apply the methodology to quantify phosphorylation efficiencies and determine absolute bias coefficients. We show that the signaling of epidermal growth factor receptor (EGFR) to EGF and TGFα is biased towards Y1068 and against Y1173 phosphorylation, but has no bias for epiregulin. We further show that the L834R mutation found in non-small-cell lung cancer induces signaling bias as it switches the preferences to Y1173 phosphorylation. The knowledge gained here challenges the current understanding of EGFR signaling in health and disease and opens avenues for the exploration of biased inhibitors as anti-cancer therapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Phosphorylation , Epidermal Growth Factor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Ligands , Lung Neoplasms/genetics , ErbB Receptors/metabolism , Mutation
5.
PLoS One ; 18(10): e0289619, 2023.
Article in English | MEDLINE | ID: mdl-37906570

ABSTRACT

We present a simple, spreadsheet-based method to determine the statistical significance of the difference between any two arbitrary curves. This modified Chi-squared method addresses two scenarios: A single measurement at each point with known standard deviation, or multiple measurements at each point averaged to produce a mean and standard error. The method includes an essential correction for the deviation from normality in measurements with small sample size, which are typical in biomedical sciences. Statistical significance is determined without regard to the functionality of the curves, or the signs of the differences. Numerical simulations are used to validate the procedure. Example experimental data are used to demonstrate its application. An Excel spreadsheet is provided for performing the calculations for either scenario.


Subject(s)
Data Collection , Sample Size
6.
Biophys J ; 122(20): 4113-4120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37735871

ABSTRACT

The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.


Subject(s)
Fluorescence Resonance Energy Transfer , Signal Transduction , Fluorescence Resonance Energy Transfer/methods , Cell Membrane/metabolism , Membranes , Membrane Proteins/metabolism
7.
Biochim Biophys Acta Gen Subj ; 1867(10): 130428, 2023 10.
Article in English | MEDLINE | ID: mdl-37488010

ABSTRACT

The current methods for quantifying ligand bias involve the construction of bias plots and the calculations of bias coefficients that can be compared using statistical methods. However, widely used bias coefficients can diverge in their abilities to identify ligand bias and can give false positives. As the empirical bias plots are considered the most reliable tools in bias identification, here we develop an analytical description of bias plot trajectories and introduce a bias coefficient, kappa, which is calculated from these trajectories. The new bias coefficient complements the tool-set in ligand bias identification in cell signaling research.


Subject(s)
Signal Transduction , Ligands , Bias
8.
J Foot Ankle Surg ; 62(5): 797-801, 2023.
Article in English | MEDLINE | ID: mdl-37086906

ABSTRACT

Elderly patients who sustain complex ankle or distal tibial fractures are often frail and comorbid and need surgery to contain the talus underneath the tibia in order to protect the soft tissue envelope and allow early unrestricted weightbearing. We performed a retrospective observational review of patients >65 years old who underwent a hindfoot nail fixation of an ankle or distal tibial fracture in our institution. Data collected included: injury sustained, open or closed injury, ASA grade, age at time of surgery, length of stay, postoperative mortality, complications, and further treatment. The primary outcome was reoperation. Secondary outcomes were infection and 1 year mortality. Seventy hind foot nailing procedures were undertaken. Sixty-three out of 70 patients were female. The average age of those who died within 1 year of surgery was 84 years. Forty-five out of 70 were open injuries. Eleven out of 70 patients died with 1 year of surgery (range 1-358 days postsurgery). Five out of 70 (7%) patients developed an infection. Four out of 5 of these injuries were open. Three out of 5 underwent removal of the nail due to infection. Two out of 5 had the infection suppressed with antibiotics. Ten out of 70 (14%) patients underwent locking bolt removal due to it backing out or being prominent and causing wound healing issues. Two out of 70 (3%) patients went on to have below knee amputations. Both were due to ongoing wound problems following open fractures. The hindfoot nail is an important implant when treating complex ankle and distal tibial fractures in an elderly population. It facilitates early mobilization to avoid deconditioning and other medical complications.


Subject(s)
Ankle Fractures , Fracture Fixation, Intramedullary , Tibial Fractures , Aged , Female , Humans , Male , Ankle Fractures/diagnostic imaging , Ankle Fractures/surgery , Bone Nails , Follow-Up Studies , Fracture Fixation, Intramedullary/methods , Fracture Healing , Nails , Retrospective Studies , Tibia/surgery , Tibial Fractures/surgery , Treatment Outcome
9.
Biochem J ; 479(24): 2465-2475, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36416757

ABSTRACT

The Epidermal Growth Factor Receptor (EGFR) is a Receptor Tyrosine Kinase that mediates cell proliferation and differentiation events during development and maintenance of complex organisms. Formation of specific, ligand-dependent EGFR dimers is a key step in stimulating EGFR signaling, and crystal structures of active, dimeric forms of isolated EGFR extracellular regions and kinase domains have revealed much about how dimer interactions regulate EGFR activity. The nature and role of the transmembrane region in regulating EGFR activity remains less clear, however. Proposed roles for the transmembrane region range from nonspecific but energetically favorable interactions to specific transmembrane dimer conformations being associated with active, inactive, or activity-modulated states of EGFR. To investigate the role of specific transmembrane dimers in modulating EGFR activity we generated thirteen EGFR variants with altered transmembrane sequences designed to favor or disfavor specific types of transmembrane region interactions. We show using FRET microscopy that EGFR transmembrane regions have an intrinsic propensity to associate in mammalian cell membranes that is counteracted by the extracellular region. We show using cell-based assays that each of the EGFR transmembrane variants except the Neu variant, which results in constitutive receptor phosphorylation, is able to autophosphorylate and stimulate phosphorylation of downstream effectors Erk and Akt. Our results indicate that many transmembrane sequences, including polyleucine, are compatible with EGFR activity and provide no evidence for specific transmembrane dimers regulating EGFR function.


Subject(s)
ErbB Receptors , Signal Transduction , Animals , Phosphorylation , ErbB Receptors/metabolism , Signal Transduction/physiology , Cell Membrane/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Mammals/metabolism
10.
ChemSystemsChem ; 4(5)2022 Sep.
Article in English | MEDLINE | ID: mdl-36337751

ABSTRACT

Lipid rafts are ordered lipid domains that are enriched in saturated lipids, such as the ganglioside GM1. While lipid rafts are believed to exist in cells and to serve as signaling platforms through their enrichment in signaling components, they have not been directly observed in the plasma membrane without treatments that artificially cluster GM1 into large lattices. Here, we report that microscopic GM1-enriched domains can form, in the plasma membrane of live mammalian cells expressing the EphA2 receptor tyrosine kinase in response to its ligand ephrinA1-Fc. The GM1-enriched microdomains form concomitantly with EphA2-enriched microdomains. To gain insight into how plasma membrane heterogeneity controls signaling, we quantify the degree of EphA2 segregation and study initial EphA2 signaling steps in both EphA2-enriched and EphA2-depleted domains. By measuring dissociation constants, we demonstrate that the propensity of EphA2 to oligomerize is similar in EphA2-enriched and -depleted domains. However, surprisingly, EphA2 interacts preferentially with its downstream effector SRC in EphA2-depleted domains. The ability to induce microscopic GM1-enriched domains in live cells using a ligand for a transmembrane receptor will give us unprecedented opportunities to study the biophysical chemistry of lipid rafts.

11.
J Biol Chem ; 298(10): 102370, 2022 10.
Article in English | MEDLINE | ID: mdl-35970390

ABSTRACT

The receptor tyrosine kinase (RTK) EphA2 is expressed in epithelial and endothelial cells and controls the assembly of cell-cell junctions. EphA2 has also been implicated in many diseases, including cancer. Unlike most RTKs, which signal predominantly as dimers, EphA2 readily forms high-order oligomers upon ligand binding. Here, we investigated if a correlation exists between EphA2 signaling properties and the size of the EphA2 oligomers induced by multiple ligands, including the widely used ephrinA1-Fc ligand, the soluble monomeric m-ephrinA1, and novel engineered peptide ligands. We used fluorescence intensity fluctuation (FIF) spectrometry to characterize the EphA2 oligomer populations induced by the different ligands. Interestingly, we found that different monomeric and dimeric ligands induce EphA2 oligomers with widely different size distributions. Our comparison of FIF brightness distribution parameters and EphA2 signaling parameters reveals that the efficacy of EphA2 phosphorylation on tyrosine 588, an autophosphorylation response contributing to EphA2 activation, correlates with EphA2 mean oligomer size. However, we found that other characteristics, such as the efficacy of AKT inhibition and ligand bias coefficients, appear to be independent of EphA2 oligomer size. Taken together, this work highlights the utility of FIF in RTK signaling research and demonstrates a quantitative correlation between the architecture of EphA2 signaling complexes and signaling features.


Subject(s)
Ephrin-A1 , Receptor, EphA2 , Endothelial Cells/metabolism , Ephrin-A1/chemistry , Ligands , Phosphorylation , Receptor, EphA2/metabolism , Humans
12.
Biophys J ; 121(12): 2411-2418, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35596525

ABSTRACT

Here we seek to gain insight into changes in the plasma membrane of live cells upon the application of osmotic stress using Laurdan, a fluorescent probe that reports on membrane organization, hydration, and dynamics. It is known that the application of osmotic stress to lipid vesicles causes a decrease in Laurdan's generalized polarization (GP), which has been interpreted as an indication of membrane stretching. In cells, we see the opposite effects, as GP increases when the osmolarity of the solution is decreased. This increase in GP is associated with the presence of caveolae, which are known to disassemble and flatten in response to osmotic stress.


Subject(s)
2-Naphthylamine , Laurates , 2-Naphthylamine/analogs & derivatives , Cell Membrane/metabolism , Fluorescence Polarization , Fluorescent Dyes/metabolism , Osmotic Pressure , Spectrometry, Fluorescence
13.
iScience ; 25(3): 103870, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35243233

ABSTRACT

The EphA2 receptor tyrosine kinase activates signaling pathways with different, and sometimes opposite, effects in cancer and other pathologies. Thus, highly specific and potent biased ligands that differentially control EphA2 signaling responses could be therapeutically valuable. Here, we use EphA2-specific monomeric peptides to engineer dimeric ligands with three different geometric configurations to combine a potential ability to differentially modulate EphA2 signaling responses with the high potency and prolonged receptor residence time characteristic of dimeric ligands. The different dimeric peptides readily induce EphA2 clustering, autophosphorylation and signaling, the best with sub-nanomolar potency. Yet, there are differences in two EphA2 signaling responses induced by peptides with different configurations, which exhibit distinct potency and efficacy. The peptides bias signaling when compared with the ephrinA1-Fc ligand and do so via different mechanisms. These findings provide insights into Eph receptor signaling, and proof-of-principle that different Eph signaling responses can be distinctly modulated.

14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074920

ABSTRACT

Increased intercellular tension is associated with enhanced cell proliferation and tissue growth. Here, we present evidence for a force-transduction mechanism that links mechanical perturbations of epithelial (E)-cadherin (CDH1) receptors to the force-dependent activation of epidermal growth factor receptor (EGFR, ERBB1)-a key regulator of cell proliferation. Here, coimmunoprecipitation studies first show that E-cadherin and EGFR form complexes at the plasma membrane that are disrupted by either epidermal growth factor (EGF) or increased tension on homophilic E-cadherin bonds. Although force on E-cadherin bonds disrupts the complex in the absence of EGF, soluble EGF is required to mechanically activate EGFR at cadherin adhesions. Fully quantified spectral imaging fluorescence resonance energy transfer further revealed that E-cadherin and EGFR directly associate to form a heterotrimeric complex of two cadherins and one EGFR protein. Together, these results support a model in which the tugging forces on homophilic E-cadherin bonds trigger force-activated signaling by releasing EGFR monomers to dimerize, bind EGF ligand, and signal. These findings reveal the initial steps in E-cadherin-mediated force transduction that directly link intercellular force fluctuations to the activation of growth regulatory signaling cascades.


Subject(s)
Cadherins/metabolism , ErbB Receptors/metabolism , Mechanotransduction, Cellular , Signal Transduction , Cell Adhesion , Cell Line, Tumor , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Humans , Intercellular Junctions/metabolism , Mechanotransduction, Cellular/drug effects , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Protein Multimerization , Signal Transduction/drug effects
15.
Integr Comp Biol ; 61(6): 2244-2254, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34160617

ABSTRACT

Both mathematical models and biological model systems stand as tractable representations of complex biological systems or behaviors. They facilitate research and provide insights, and they can describe general rules. Models that represent biological processes or formalize general hypotheses are essential to any broad understanding. Mathematical or biological models necessarily omit details of the natural systems and thus may ultimately be "incorrect" representations. A key challenge is that tractability requires relatively simple models but simplification can result in models that are incorrect in their qualitative, broad implications if the abstracted details matter. Our paper discusses this tension, and how we can improve our inferences from models. We advocate for further efforts dedicated to model development, improvement, and acceptance by the scientific community, all of which may necessitate a more explicit discussion of the purpose and power of models. We argue that models should play a central role in reintegrating biology as a way to test our integrated understanding of how molecules, cells, organs, organisms, populations, and ecosystems function.


Subject(s)
Ecosystem , Systems Biology , Animals , Models, Biological
16.
Nat Commun ; 12(1): 7047, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857764

ABSTRACT

Eph receptor tyrosine kinases play a key role in cell-cell communication. Lack of structural information on the entire multi-domain intracellular region of any Eph receptor has hindered understanding of their signaling mechanisms. Here, we use integrative structural biology to investigate the structure and dynamics of the EphA2 intracellular region. EphA2 promotes cancer malignancy through a poorly understood non-canonical form of signaling involving serine/threonine phosphorylation of the linker connecting its kinase and SAM domains. We show that accumulation of multiple linker negative charges, mimicking phosphorylation, induces cooperative changes in the EphA2 intracellular region from more closed to more extended conformations and perturbs the EphA2 juxtamembrane segment and kinase domain. In cells, linker negative charges promote EphA2 oligomerization. We also identify multiple kinases catalyzing linker phosphorylation. Our findings suggest multiple effects of linker phosphorylation on EphA2 signaling and imply that coordination of different kinases is necessary to promote EphA2 non-canonical signaling.


Subject(s)
Receptor, EphA2/chemistry , Serine/chemistry , Sterile Alpha Motif/genetics , Threonine/chemistry , A549 Cells , Amino Acid Sequence , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Gene Expression , HEK293 Cells , Humans , Models, Molecular , Molecular Mimicry , PC-3 Cells , Phosphorylation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Serine/genetics , Serine/metabolism , Static Electricity , Substrate Specificity , Threonine/genetics , Threonine/metabolism
17.
Biochem Pharmacol ; 193: 114769, 2021 11.
Article in English | MEDLINE | ID: mdl-34543656

ABSTRACT

Melittin, the main venom component of the European Honeybee, is a cationic linear peptide-amide of 26 amino acid residues with the sequence: GIGAVLKVLTTGLPALISWIKRKRQQ-NH2. Melittin binds to lipid bilayer membranes, folds into amphipathic α-helical secondary structure and disrupts the permeability barrier. Since melittin was first described, a remarkable array of activities and potential applications in biology and medicine have been described. Melittin is also a favorite model system for biophysicists to study the structure, folding and function of peptides and proteins in membranes. Melittin has also been used as a template for the evolution of new activities in membranes. Here we overview the rich history of scientific research into the many activities of melittin and outline exciting future applications.


Subject(s)
Bees/genetics , Bees/physiology , Melitten/genetics , Melitten/metabolism , Animals , Gene Expression Regulation/physiology , Melitten/chemistry , Phylogeny , Protein Conformation
18.
PLoS Biol ; 19(9): e3001392, 2021 09.
Article in English | MEDLINE | ID: mdl-34499637

ABSTRACT

Human herpesvirus 8 (HHV-8) is an oncogenic virus that enters cells by fusion of the viral and endosomal cellular membranes in a process mediated by viral surface glycoproteins. One of the cellular receptors hijacked by HHV-8 to gain access to cells is the EphA2 tyrosine kinase receptor, and the mechanistic basis of EphA2-mediated viral entry remains unclear. Using X-ray structure analysis, targeted mutagenesis, and binding studies, we here show that the HHV-8 envelope glycoprotein complex H and L (gH/gL) binds with subnanomolar affinity to EphA2 via molecular mimicry of the receptor's cellular ligands, ephrins (Eph family receptor interacting proteins), revealing a pivotal role for the conserved gH residue E52 and the amino-terminal peptide of gL. Using FSI-FRET and cell contraction assays, we further demonstrate that the gH/gL complex also functionally mimics ephrin ligand by inducing EphA2 receptor association via its dimerization interface, thus triggering receptor signaling for cytoskeleton remodeling. These results now provide novel insight into the entry mechanism of HHV-8, opening avenues for the search of therapeutic agents that could interfere with HHV-8-related diseases.


Subject(s)
Herpesvirus 8, Human/physiology , Molecular Mimicry , Receptor Protein-Tyrosine Kinases/metabolism , Virus Internalization , Animals , Cell Line , Drosophila , Ephrins , HEK293 Cells , Humans , Ligands , Membrane Glycoproteins/metabolism , Signal Transduction , Viral Envelope Proteins
19.
Biochem J ; 478(19): 3643-3654, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34524408

ABSTRACT

The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists in a monomer-dimer equilibrium in the plasma membrane. Tetraspanin 8 dimerization is described by a high dissociation constant (Kd = 14 700 ± 1100 Tspan8/µm2), one of the highest dissociation constants measured for membrane proteins in live cells. We propose that this high dissociation constant, and thus the short lifetime of the Tetraspanin 8 dimer, is critical for Tetraspanin 8 functioning as a master regulator of cell signaling.


Subject(s)
Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Signal Transduction/genetics , Tetraspanins/chemistry , Tetraspanins/metabolism , Fluorescence Resonance Energy Transfer/methods , HEK293 Cells , Humans , Lipoylation , Membrane Microdomains/genetics , Microscopy, Fluorescence/methods , Protein Multimerization , Tetraspanins/genetics , Thermodynamics , Transfection
20.
Curr Opin Struct Biol ; 71: 193-199, 2021 12.
Article in English | MEDLINE | ID: mdl-34399300

ABSTRACT

Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.


Subject(s)
Receptor Protein-Tyrosine Kinases , Signal Transduction , Cell Proliferation , Ligands , Phosphorylation , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...