Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38666575

ABSTRACT

Recently, some of us reviewed and studied the photoionization dynamics of C60 that are of great interest to the astrochemical community as four of the diffuse interstellar bands (DIBs) have been assigned to electronic transitions in the C60+ cation. Our previous analysis of the threshold photoelectron spectrum (TPES) of C60 [Hrodmarsson et al., Phys. Chem. Chem. Phys. 22, 13880-13892 (2020)] appeared to give indication of D3d ground state symmetry, in contrast to theoretical predictions of D5d symmetry. Here, we revisit our original measurements taking account of a previous theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), obtained within a vibronic model parametrized on density functional theory/local-density approximation electronic structure involving all hg Jahn-Teller active modes, which couple to the 2Hu components of the ground state of the C60+ cation. By reanalyzing our measured TPES of the ground state of the C60 Buckminsterfullerene, we find a striking resemblance to the theoretical spectrum calculated in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), and we provide assignments for many of the hg modes. In order to obtain deeper insights into the temperature effects and possible anharmonicity effects, we provide complementary modeling of the photoelectron spectrum via classical molecular dynamics (MD) involving density functional based tight binding (DFTB) computations of the electronic structure for both C60 and C60+. The validity of the DFTB modeling is first checked vs the IR spectra of both species which are well established from IR spectroscopic studies. To aid the interpretation of our measured TPES and the comparisons to the ab initio spectrum we showcase the complementarity of utilizing MD calculations to predict the PES evolution at high temperatures expected in our experiment. The comparison with the theoretical spectrum presented in the work of Manini et al., Phys. Rev. Lett. 91(19), 196402 (2003), furthermore, provides further evidence for a D5d symmetric ground state of the C60+ cation in the gas phase, in complement to IR spectroscopy in frozen noble gas matrices. This not only allows us to assign the first adiabatic ionization transition and thus determine the ionization energy of C60 with greater accuracy than has been achieved at 7.598 ± 0.005 eV, but we also assign the two lowest excited states (2E1u and 2E2u) which are visible in our TPES. Finally, we discuss the energetics of additional DIBs that could be assigned to C60+ in the future.

2.
J Phys Chem A ; 125(28): 6122-6130, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34232644

ABSTRACT

VUV photoionization of the CHnI radicals (with n = 0, 1, and 2) is investigated by means of synchrotron radiation coupled with a double imaging photoion-photoelectron coincidence spectrometer. Photoionization efficiencies and threshold photoelectron spectra (TPES) for photon energies ranging between 9.2 and 12.0 eV are reported. An adiabatic ionization energy (AIE) of 8.334 ± 0.005 eV is obtained for CH2I, which is in good agreement with previous results [8.333 ± 0.015 eV, Sztáray J. Chem. Phys. 2017, 147, 013944], while for CI an AIE of 8.374 ± 0.005 eV is measured for the first time and a value of ∼8.8 eV is estimated for CHI. Ab initio calculations have been carried out for the ground state of the CH2I radical and for the ground state and excited states of the radical cation CH2I+, including potential energy curves along the C-I coordinate. Franck-Condon factors are calculated for transitions from the CH2I(X̃2B1) ground state of the neutral radical to the ground state and excited states of the radical cation. The TPES measured for the CH2I radical shows several structures that correspond to the photoionization into excited states of the radical cation and are fully assigned on the basis of the calculations. The TPES obtained for the CHI is characterized by a broad structure peaking at 9.335 eV, which could be due to the photoionization from both the singlet and the triplet states and into one or more electronic states of the cation. A vibrational progression is clearly observed in the TPES for the CI radical and a frequency for the C-I stretching mode of 760 ± 60 cm-1 characterizing the CI+ electronic ground state has been extracted.

3.
Phys Chem Chem Phys ; 22(36): 20394-20408, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32914152

ABSTRACT

We present a combined theoretical and experimental investigation on the single photoionization and dissociative photoionization of gas-phase methyl ketene (MKE) and its neutral dimer (MKE2). The performed experiments entail the recording of photoelectron photoion coincidence (PEPICO) spectra and slow photoelectron spectra (SPES) in the energy regime 8.7-15.5 eV using linearly polarized synchrotron radiation. We observe both dimerization and trimerization of the monomer which brings about significantly complex and abstruse dissociative ionization patterns. These require the implementation of theoretical calculations to explore the potential energy surfaces of the monomer and dimer's neutral and ionized geometries. To this end, explicitly correlated quantum chemical methodologies involving the coupled cluster with single, double and perturbative triple excitations (R)CCSD(T)-F12 method, are utilized. An improvement in the adiabatic ionization energy of MKE is presented (AIE = 8.937 ± 0.020 eV) as well as appearance energies for multiple fragments formed through dissociative ionization of either the MKE monomer or dimer. In this regard, the synergy of experiment and theory is crucial to interpreting the obtained results. We discuss the potential astrochemical implications of this work in the context of recent advances in the field of astrochemistry and speculate on the potential presence and eventual fate of interstellar MKE molecules.

4.
Phys Chem Chem Phys ; 22(25): 13880-13892, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32396927

ABSTRACT

We present the photoionization dynamics of the C60 buckminsterfullerene from threshold up to 14.0 eV recorded with VUV synchrotron radiation at the DESIRS beamline at the SOLEIL synchrotron. The recorded data is obtained using a double-imaging photoelectron photoion coincidence spectrometer and is presented as a two-dimensional photoelectron matrix which contains a wealth of spectroscopic data. We present these data in an astrophysical context which relates to (i) the threshold photoelectron spectrum which is compared to data relevant to the diffuse interstellar bands (DIBs), (ii) the kinetic photoelectron distribution at the Lyman-α line which is relevant to the dominant heating source in the ISM, and (iii) the absolute photoionization cross section of C60 up to approx. 10.5 eV. The photoelectron spectrum implies that the symmetry of the ground state is different than previous theoretical models have predicted, and this result is discussed in context of recent experimental and theoretical findings. Also presented are partial photoionization cross sections of the first two photoelectron bands and their anisotropy parameters. These data are compared with previous theoretical values and discussed where appropriate.

5.
Phys Chem Chem Phys ; 21(46): 25907-25915, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31742264

ABSTRACT

We present the absolute photoionization cross-section of the mercapto radical, SH, recorded from its first ionization energy at 10.4 eV up to a photon energy of 15 eV. The absolute scale was calibrated at the fixed photon energy of 11.2 eV using the known values of H2S and S as references. SH and S were produced in a microwave discharge flow-tube reactor by hydrogen abstraction of the H2S precursor. The measured photoionization cross-section of SH dramatically differs from the one currently employed to model the presence of this species in a number of astronomical environments, where SH along with its ionic counterpart SH+ have been detected. The cation spectroscopy and fragmentation of H2S, SH and S in the 9.2-15.0 eV energy range obtained using threshold photoelectron techniques is also presented and discussed in the context of existing literature.

6.
J Phys Chem A ; 123(42): 9193-9198, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31556614

ABSTRACT

We report on the photoionization of the resonance-stabilized anilino radical (C6H5NH) formed by H atom abstraction from aniline by F atoms in a flow tube. The spectra were recorded from 7.8 to 9.7 eV by using a double-imaging photoelectron/photoion coincidence spectrometer with VUV radiation provided by the DESIRS beamline at the SOLEIL synchrotron. The vibrationally resolved recorded threshold photoelectron spectrum of the anilino radical showed transitions to the ground X+1A' ← X2A″ and first excited states a+3A″ ← X2A″ of the cation, which were assigned through comparison with theoretically simulated spectra, yielding an adiabatic ionization energy of 8.02 ± 0.02 eV. These results are discussed in light of existing data on the picolyl structural isomers and are of interest for the analytical applications of coincidence techniques in real-time combustion analysis where these intermediates are found.

7.
Phys Chem Chem Phys ; 21(24): 12763-12766, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31179449

ABSTRACT

We present the photoelectron spectroscopy of the simplest Criegee intermediate, CH2OO, close to the first ionization energy. Comparison with existing theoretical data yields the experimental adiabatic ionization energy and provides a benchmark for theoretical studies on larger Criegee intermediates, which play an important role in the ozonolysis of alkenes.

8.
Phys Chem Chem Phys ; 21(26): 14053-14062, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-30652173

ABSTRACT

Propynal (HCCCHO) is a complex organic compound (COM) of astrochemical and astrobiological interest. We present a combined theoretical and experimental investigation on the single photon ionization of gas-phase propynal, in the 10 to 15.75 eV energy range. Fragmentation pathways of the resulting cation were investigated both theoretically and experimentally. The adiabatic ionization energy (AIE) has been measured to be AIEexp = 10.715 ± 0.005 eV using tunable VUV synchrotron radiation coupled with a double imaging photoelectron photoion coincidence (i2PEPICO) spectrometer. In the energy range under study, three fragments formed by dissociative photoionization were identified experimentally: HC3O+, HCO+ and C2H2+, and their respective appearance energies (AE) were found to be AE = 11.26 ± 0.03, 13.4 ± 0.3 and 11.15 ± 0.03 eV, respectively. Using explicitly correlated coupled cluster calculations and after inclusion of the zero point vibrational energy, core-valence and scalar relativistic effects, the AIE is calculated to be AIEcalc = 10.717 eV, in excellent agreement with the experimental finding. The appearance energies of the fragments were calculated using a similar methodological approach. To further interpret the observed vibrational structure, anharmonic frequencies were calculated for the fundamental electronic state of the propynal cation. Moreover, MRCI calculations were carried out to understand the population of excited states of the cationic species. This combined experimental and theoretical study will help to understand the presence and chemical evolution of propynal in the external parts of interstellar clouds where it has been observed.

9.
Beilstein J Nanotechnol ; 9: 555-579, 2018.
Article in English | MEDLINE | ID: mdl-29527432

ABSTRACT

In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12.

10.
Phys Chem Chem Phys ; 19(18): 11354-11365, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28421209

ABSTRACT

Velocity map imaging (VMI) data and mass resolved REMPI spectra are complementarily utilized to elucidate the involvement of homogeneous multistate interactions in excited state dynamics of HBr. The H1Σ+(v' = 0) and E1Σ+(v' = 1) Rydberg states and the V1Σ+(v'= m + 7) and V1Σ+(v'= m + 8) ion-pair states are explored as a function of rotational quantum number in the two-photon excitation region of 79 100-80 700 cm-1. H+ and Br+ images were recorded by one- as well as two-color excitation schemes. Kinetic energy release (KER) spectra and angular distributions were extracted from the data. Strong-to-medium interactions between the E(1) and V(m + 8)/V(m + 7) states on one hand and the H(0) and V(m + 7)/V(m + 8) states on the other hand were quantified from peak shifts and intensity analysis of REMPI spectra. The effects of those interactions on subsequent photoionization and photolytic pathways of HBr were evaluated in one-color VMI experiments of the H+ and two-color VMI experiments of the Br+ photoproducts.

11.
Phys Chem Chem Phys ; 17(48): 32517-27, 2015 Dec 28.
Article in English | MEDLINE | ID: mdl-26593395

ABSTRACT

High energy regions of molecular electronic states are largely characterized by the nature and involvement of Rydberg states. Whereas there are a number of observed dynamical processes that are due to interactions between Rydberg and valence states, reports on the corresponding effect of Rydberg-Rydberg state interaction in the literature are scarce. Here we report a detailed characterization of the effects of interactions between two Rydberg states on photofragmentation processes, for a hydrogen halide molecule. Perturbation effects, showing as rotational line shifts, intensity alterations and line-broadenings in REMPI spectra of HI, for two-photon resonance excitations to the j(3)Σ(-)(0(+); v' = 0) and k(3)Π1(v' = 2) Rydberg states, are analyzed. The data reveal pathways of further photofragmentation processes involving photodissociation, autoionization and photoionization affected by the Rydberg-Rydberg state interactions as well as the involvement of other states, close in energy. Detailed mechanisms of the involved processes are proposed.

12.
J Chem Phys ; 142(24): 244312, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26133433

ABSTRACT

Hydrogen iodide, a Hund's case (c) molecule, serves as a benchmark compound for studying rich molecular state interactions between Rydberg and valence states as well as between Rydberg states at high energies (72,300-74,600 cm(-1)) by mass resolved resonance enhanced multiphoton ionization (REMPI). Perturbations in the spectra appearing as deformations in line-positions, line-intensities, and linewidths are found to be either due to near-degenerate or non-degenerate interactions, both homogeneous and heterogeneous in nature. Perturbation analyses allow indirect observation as well as characterization of "hidden states" to some extent. Furthermore, new observable spectral features are assigned and characterized.

13.
J Chem Phys ; 140(24): 244304, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24985635

ABSTRACT

Mass resolved resonance enhanced multiphoton ionization data for hydrogen iodide (HI), for two-photon resonance excitation to Rydberg and ion-pair states in the 69,600-72,400 cm(-1) region were recorded and analyzed. Spectral perturbations due to homogeneous and heterogeneous interactions between Rydberg and ion-pair states, showing as deformations in line-positions, line-intensities, and line-widths, were focused on. Parameters relevant to photodissociation processes, state interaction strengths and spectroscopic parameters for deperturbed states were derived. Overall interaction and dynamical schemes to describe the observations are proposed.

14.
J Chem Phys ; 136(21): 214315, 2012 Jun 07.
Article in English | MEDLINE | ID: mdl-22697551

ABSTRACT

Mass spectra were recorded for one-colour resonance enhanced multiphoton ionization (REMPI) of H(i)Br (i = 79, 81) for the two-photon resonance excitation region 79,040-80,300 cm(-1) to obtain two-dimensional REMPI data. The data were analysed in terms of rotational line positions, intensities, and line-widths. Quantitative analysis of the data relevant to near-resonance interactions between the F(1)Δ(2)(v' = 1) and V(1)Σ(+)(v' = m + 7) states gives interaction strengths, fractional state mixing, and parameters relevant to dissociation of the F state. Qualitative analysis further reveals the nature of state interactions between ion-pair states and the E(1)Σ(+) (v' = 1) and H(1)Σ(+)(v' = 0) Rydberg states in terms of relative strengths and J' dependences. Large variety in line-widths, depending on electronic states and J' quantum numbers, is indicative of number of different predissociation channels. The relationship between line-widths, line-shifts, and signal intensities reveals dissociation mechanisms involving ion-pair to Rydberg state interactions prior to direct or indirect predissociations of Rydberg states. Quantum interference effects are found to be important. Moreover, observed bromine atom (2 + 1) REMPI signals support the importance of Rydberg state predissociation channels. A band system, not previously observed in REMPI, was observed and assigned to the k(3)Π(0)(v' = 0) ←← X transition with band origin 80,038 cm(-1) and rotational parameter B(v('))=7.238 cm(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...