Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(9): 127066, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32173198

ABSTRACT

Antagonism of the mGluR2 receptor has the potential to provide therapeutic benefit to cognitive disorders by elevating synaptic glutamate, the primary excitatory neurotransmitter in the brain. Selective antagonism of the mGluR2 receptor, however, has so far been elusive, given the very high homology of this receptor with mGluR3, particularly at the orthosteric binding site. Given that inhibition of mGluR3 has been implicated in undesired effects, we sought to identify selective mGluR2 negative allosteric modulators. Herein we describe the discovery of the highly potent and selective class of mGluR2 negative allosteric modulators, 4-arylquinoline-2-carboxamides, following a successful HTS campaign and medicinal chemistry optimization, showing potent in vivo efficacy in rodent.


Subject(s)
Drug Discovery , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Adjuvants, Anesthesia/toxicity , Amino Acids/pharmacology , Amphetamines/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Glutamic Acid/metabolism , High-Throughput Screening Assays , Mice , Molecular Structure , Scopolamine/toxicity , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 24(12): 2737-40, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24813734

ABSTRACT

Elevated plasma homocysteine (Hcy) levels are an independent risk factor for the onset and progression of Alzheimer's disease. Reduction of Hcy to normal levels therefore presents a new approach for disease modification. Hcy is produced by the cytosolic enzyme S-adenosylhomocysteine hydrolase (AHCY), which converts S-adenosylhomocysteine (SAH) to Hcy and adenosine. Herein we describe the design and characterization of novel, substrate-based S-adenosylhomocysteine hydrolase inhibitors with low nanomolar potency in vitro and robust activity in vivo.


Subject(s)
Adenosine/analogs & derivatives , Drug Design , Hydrolases/antagonists & inhibitors , S-Adenosylhomocysteine , Adenosine/chemistry , Adenosine/pharmacology , Animals , Brain Chemistry , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Homocysteine/blood , Hydrogen Bonding , Inhibitory Concentration 50 , Models, Molecular , Rats , S-Adenosylhomocysteine/chemistry , Substrate Specificity
3.
Bioorg Med Chem Lett ; 17(22): 6280-5, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17900896

ABSTRACT

From HTS lead 1, a novel benzoisoquinolinone class of ATP-competitive Chk1 inhibitors was devised and synthesized via a photochemical route. Using X-ray crystallography as a guide, potency was rapidly enhanced through the installation of a tethered basic amine designed to interact with an acidic residue (Glu91) in the enzyme pocket. Further SAR was explored at the solvent front and near to the H1 pocket and resulted in the discovery of low MW, sub-nanomolar inhibitors of Chk1.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Protein Kinases/drug effects , Quinolones/chemical synthesis , Quinolones/pharmacology , Apoptosis/drug effects , Binding Sites , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Photochemistry , Protein Kinases/chemistry , Quinolones/chemistry , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 16(22): 5907-12, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-16990002

ABSTRACT

Through a comparison of X-ray co-crystallographic data for 1 and 2 in the Chek1 active site, it was hypothesized that the affinity of the indolylquinolinone series (2) for Chek1 kinase would be improved via C6 substitution into the hydrophobic region I (HI) pocket. An efficient route to 6-bromo-3-indolyl-quinolinone (9) was developed, and this series was rapidly optimized for potency by modification at C6. A general trend was observed among these low nanomolar Chek1 inhibitors that compounds with multiple basic amines, or elevated polar surface area (PSA) exhibited poor cell potency. Minimization of these parameters (basic amines, PSA) resulted in Chek1 inhibitors with improved cell potency, and preliminary pharmacokinetic data are presented for several of these compounds.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoles/chemistry , Protein Kinases/drug effects , Quinolones/chemistry , Animals , Binding Sites , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Hydrophobic and Hydrophilic Interactions , Protein Kinases/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 16(11): 3055-60, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16529931

ABSTRACT

Counterscreening compounds from a Merck PPAR program discovered lead 1, as a nanomolar LXR/PPAR dual agonist. SAR optimization developed a series of heterocyclic LXR agonists having excellent selectivity over all PPAR isoforms and possessing high LXR affinity and strong in vivo potency.


Subject(s)
DNA-Binding Proteins/agonists , Drug Design , Receptors, Cytoplasmic and Nuclear/agonists , Acids/chemistry , Amination , Aniline Compounds/chemistry , Animals , Cholesterol, HDL/blood , Cyclization , Indoles/chemistry , Liver X Receptors , Mice , Molecular Structure , Orphan Nuclear Receptors , Structure-Activity Relationship
6.
Biochem Pharmacol ; 71(4): 453-63, 2006 Feb 14.
Article in English | MEDLINE | ID: mdl-16325781

ABSTRACT

Liver X receptor (LXR) alpha and LXRbeta are closely related nuclear receptors that respond to elevated levels of intracellular cholesterol by enhancing transcription of genes that control cholesterol efflux and fatty acid biosynthesis. The consequences of inactivation of either LXR isoform have been thoroughly studied, as have the effects of simultaneous activation of both LXRalpha and LXRbeta by synthetic compounds. We here describe the effects of selective activation of LXRalpha or LXRbeta on lipid metabolism. This was accomplished by treating mice genetically deficient in either LXRalpha or LXRbeta with an agonist with equal potency for both isoforms (Compound B) or a synthetic agonist selective for LXRalpha (Compound A). We also determined the effect of these agonists on gene expression and cholesterol efflux in peritoneal macrophages derived from wild-type and knockout mice. Both compounds raised HDL-cholesterol and increased liver triglycerides in wild-type mice; in contrast, in mice deficient in LXRalpha, Compound B increased HDL-cholesterol but did not cause hepatic steatosis. Compound B induced ATP-binding cassette transporter (ABC) A1 expression and stimulated cholesterol efflux in macrophages from both LXRalpha and LXRbeta-deficient mice. Our data lend further experimental support to the hypothesis that LXRbeta-selective agonists may raise HDL-cholesterol and stimulate macrophage cholesterol efflux without causing liver triglyceride accumulation.


Subject(s)
DNA-Binding Proteins/agonists , Lipid Metabolism/physiology , Receptors, Cytoplasmic and Nuclear/agonists , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Administration, Oral , Animals , Cholesterol/metabolism , Cholesterol, HDL/blood , Cholesterol, HDL/metabolism , Cyclic AMP/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Isoxazoles/pharmacology , Liver/drug effects , Liver/metabolism , Liver X Receptors , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Orphan Nuclear Receptors , Phenylurea Compounds/pharmacology , Protein Isoforms/agonists , Protein Isoforms/genetics , Protein Isoforms/physiology , Pyrazines/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/physiology , Reverse Transcriptase Polymerase Chain Reaction , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Triglycerides/blood , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL