Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826484

ABSTRACT

Transient Receptor Potential (TRP) channels are a large and diverse family of tetrameric cation selective channels that are activated by many different types of stimuli, including noxious heat or cold, organic ligands such as vanilloids or cooling agents, or intracellular Ca2+. Structures available for all subtypes of TRP channels reveal that the transmembrane domains are closely related despite their unique sensitivity to activating stimuli. Here we use computational and electrophysiological approaches to explore the conservation of the cooling agent binding pocket identified within the S1-S4 domain of the Melastatin subfamily member TRPM8, the mammalian sensor of noxious cold, with other TRPM channel subtypes. We find that a subset of TRPM channels, including TRPM2, TRPM4 and TRPM5, contain well-conserved cooling agent binding pockets. We then show how the cooling agent icilin modulates activation of TRPM4 to intracellular Ca2+, enhancing the sensitivity of the channel to Ca2+ and diminishing outward-rectification to promote opening at negative voltages. Mutations known to promote or diminish activation of TRPM8 by icilin similarly alter activation of TRPM4 by the cooling agent, suggesting that icilin binds to the cooling agent binding pocket to promote opening of the channel. These findings demonstrate that TRPM4 and TRPM8 channels share related cooling agent binding pockets that are allosterically coupled to opening of the pore.

2.
Trends Biochem Sci ; 49(5): 417-430, 2024 May.
Article in English | MEDLINE | ID: mdl-38514273

ABSTRACT

Ion channels establish the voltage gradient across cellular membranes by providing aqueous pathways for ions to selectively diffuse down their concentration gradients. The selectivity of any given channel for its favored ions has conventionally been viewed as a stable property, and in many cation channels, it is determined by an ion-selectivity filter within the external end of the ion-permeation pathway. In several instances, including voltage-activated K+ (Kv) channels, ATP-activated P2X receptor channels, and transient receptor potential (TRP) channels, the ion-permeation pathways have been proposed to dilate in response to persistent activation, dynamically altering ion permeation. Here, we discuss evidence for dynamic ion selectivity, examples where ion selectivity filters exhibit structural plasticity, and opportunities to fill gaps in our current understanding.


Subject(s)
Ion Channels , Humans , Ion Channels/metabolism , Ion Channels/chemistry , Cations/metabolism , Cations/chemistry , Animals , Ion Channel Gating
3.
Nature ; 622(7982): 410-417, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37758949

ABSTRACT

The Kv2.1 voltage-activated potassium (Kv) channel is a prominent delayed-rectifier Kv channel in the mammalian central nervous system, where its mechanisms of activation and inactivation are critical for regulating intrinsic neuronal excitability1,2. Here we present structures of the Kv2.1 channel in a lipid environment using cryo-electron microscopy to provide a framework for exploring its functional mechanisms and how mutations causing epileptic encephalopathies3-7 alter channel activity. By studying a series of disease-causing mutations, we identified one that illuminates a hydrophobic coupling nexus near the internal end of the pore that is critical for inactivation. Both functional and structural studies reveal that inactivation in Kv2.1 results from dynamic alterations in electromechanical coupling to reposition pore-lining S6 helices and close the internal pore. Consideration of these findings along with available structures for other Kv channels, as well as voltage-activated sodium and calcium channels, suggests that related mechanisms of inactivation are conserved in voltage-activated cation channels and likely to be engaged by widely used therapeutics to achieve state-dependent regulation of channel activity.


Subject(s)
Ion Channel Gating , Mutation , Shab Potassium Channels , Animals , Humans , Cryoelectron Microscopy , Hydrophobic and Hydrophilic Interactions , Ion Channel Gating/genetics , Shab Potassium Channels/genetics , Shab Potassium Channels/metabolism , Shab Potassium Channels/ultrastructure , Spasms, Infantile/genetics
4.
Elife ; 122023 03 20.
Article in English | MEDLINE | ID: mdl-36940138

ABSTRACT

P2X receptor channels are trimeric ATP-activated ion channels expressed in neuronal and non-neuronal cells that are attractive therapeutic targets for human disorders. Seven subtypes of P2X receptor channels have been identified in mammals that can form both homomeric and heteromeric channels. P2X1-4 and P2X7 receptor channels are cation-selective, whereas P2X5 has been reported to have both cation and anion permeability. P2X receptor channel structures reveal that each subunit is comprised of two transmembrane helices, with both N-and C-termini on the intracellular side of the membrane and a large extracellular domain that contains the ATP binding sites at subunit interfaces. Recent structures of ATP-bound P2X receptors with the activation gate open reveal the unanticipated presence of a cytoplasmic cap over the central ion permeation pathway, leaving lateral fenestrations that may be largely buried within the membrane as potential pathways for ions to permeate the intracellular end of the pore. In the present study, we identify a critical residue within the intracellular lateral fenestrations that is readily accessible to thiol-reactive compounds from both sides of the membrane and where substitutions influence the relative permeability of the channel to cations and anions. Taken together, our results demonstrate that ions can enter or exit the internal pore through lateral fenestrations that play a critical role in determining the ion selectivity of P2X receptor channels.


Subject(s)
Adenosine Triphosphate , Ion Channels , Animals , Humans , Ion Channels/metabolism , Binding Sites , Protein Structure, Secondary , Ions/metabolism , Adenosine Triphosphate/metabolism , Receptors, Purinergic P2X2/metabolism , Receptors, Purinergic P2X7/genetics , Receptors, Purinergic P2X7/metabolism , Mammals/metabolism
5.
Sci Adv ; 8(11): eabm7814, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35302848

ABSTRACT

Voltage-activated potassium (Kv) channels open upon membrane depolarization and proceed to spontaneously inactivate. Inactivation controls neuronal firing rates and serves as a form of short-term memory and is implicated in various human neurological disorders. Here, we use high-resolution cryo-electron microscopy and computer simulations to determine one of the molecular mechanisms underlying this physiologically crucial process. Structures of the activated Shaker Kv channel and of its W434F mutant in lipid bilayers demonstrate that C-type inactivation entails the dilation of the ion selectivity filter and the repositioning of neighboring residues known to be functionally critical. Microsecond-scale molecular dynamics trajectories confirm that these changes inhibit rapid ion permeation through the channel. This long-sought breakthrough establishes how eukaryotic K+ channels self-regulate their functional state through the plasticity of their selectivity filters.

SELECTION OF CITATIONS
SEARCH DETAIL
...