Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 7(7): 719-23, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437084

ABSTRACT

We report the discovery of PDE10A PET tracer AMG 580 developed to support proof of concept studies with PDE10A inhibitors in the clinic. To find a tracer with higher binding potential (BPND) in NHP than our previously reported tracer 1, we implemented a surface plasmon resonance assay to measure the binding off-rate to identify candidates with slower washout rate in vivo. Five candidates (2-6) from two structurally distinct scaffolds were identified that possessed both the in vitro characteristics that would favor central penetration and the structural features necessary for PET isotope radiolabeling. Two cinnolines (2, 3) and one keto-benzimidazole (5) exhibited PDE10A target specificity and brain uptake comparable to or better than 1 in the in vivo LC-MS/MS kinetics distribution study in SD rats. In NHP PET imaging study, [(18)F]-5 produced a significantly improved BPND of 3.1 and was nominated as PDE10A PET tracer clinical candidate for further studies.

2.
J Med Chem ; 58(24): 9663-79, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26551034

ABSTRACT

The HTS-based discovery and structure-guided optimization of a novel series of GKRP-selective GK-GKRP disrupters are revealed. Diarylmethanesulfonamide hit 6 (hGK-hGKRP IC50 = 1.2 µM) was optimized to lead compound 32 (AMG-0696; hGK-hGKRP IC50 = 0.0038 µM). A stabilizing interaction between a nitrogen atom lone pair and an aromatic sulfur system (nN → σ*S-X) in 32 was exploited to conformationally constrain a biaryl linkage and allow contact with key residues in GKRP. Lead compound 32 was shown to induce GK translocation from the nucleus to the cytoplasm in rats (IHC score = 0; 10 mg/kg po, 6 h) and blood glucose reduction in mice (POC = -45%; 100 mg/kg po, 3 h). X-ray analyses of 32 and several precursors bound to GKRP were also obtained. This novel disrupter of GK-GKRP binding enables further exploration of GKRP as a potential therapeutic target for type II diabetes and highlights the value of exploiting unconventional nonbonded interactions in drug design.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Glucokinase/metabolism , Hypoglycemic Agents/chemistry , Sulfonamides/chemistry , Thiophenes/chemistry , Active Transport, Cell Nucleus , Animals , Blood Glucose/metabolism , Cell Nucleus/metabolism , Crystallography, X-Ray , Cytoplasm/metabolism , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Conformation , Protein Binding , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Thiophenes/pharmacokinetics , Thiophenes/pharmacology
3.
J Med Chem ; 58(1): 480-511, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25469863

ABSTRACT

The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.


Subject(s)
Adenosine/pharmacology , Autoimmune Diseases/prevention & control , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Inflammation/prevention & control , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Adenosine/chemistry , Adenosine/metabolism , Animals , Cells, Cultured , Class I Phosphatidylinositol 3-Kinases/chemistry , Class I Phosphatidylinositol 3-Kinases/metabolism , Crystallography, X-Ray , Disease Models, Animal , Drug Discovery , Female , Humans , Mice, Inbred BALB C , Mice, Transgenic , Models, Chemical , Models, Molecular , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/metabolism , Protein Structure, Tertiary , Quinolines/chemistry , Quinolines/metabolism , Rats, Inbred Lew , Sf9 Cells , Structure-Activity Relationship
4.
J Med Chem ; 57(15): 6632-41, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25062128

ABSTRACT

We report the identification of a PDE10A clinical candidate by optimizing potency and in vivo efficacy of promising keto-benzimidazole leads 1 and 2. Significant increase in biochemical potency was observed when the saturated rings on morpholine 1 and N-acetyl piperazine 2 were changed by a single atom to tetrahydropyran 3 and N-acetyl piperidine 5. A second single atom modification from pyrazines 3 and 5 to pyridines 4 and 6 improved the inhibitory activity of 4 but not 6. In the in vivo LC-MS/MS target occupancy (TO) study at 10 mg/kg, 3, 5, and 6 achieved 86-91% occupancy of PDE10A in the brain. Furthermore, both CNS TO and efficacy in PCP-LMA behavioral model were observed in a dose dependent manner. With superior in vivo TO, in vivo efficacy and in vivo PK profiles in multiple preclinical species, compound 5 (AMG 579) was advanced as our PDE10A clinical candidate.


Subject(s)
Antipsychotic Agents/chemistry , Benzimidazoles/chemistry , Phosphodiesterase Inhibitors/chemistry , Phosphoric Diester Hydrolases/metabolism , Pyrazines/chemistry , Administration, Oral , Animals , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/pharmacology , Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Biological Availability , Brain/metabolism , Dogs , Humans , Male , Motor Activity/drug effects , Phosphodiesterase Inhibitors/chemical synthesis , Phosphodiesterase Inhibitors/pharmacology , Phosphoric Diester Hydrolases/chemistry , Primates , Protein Conformation , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Rats, Sprague-Dawley , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 22(2): 1061-7, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22197141

ABSTRACT

In a series of bradykinin B1 antagonists, we discovered that replacement of oxopiperazine acetamides with dehydro-oxopiperazine acetamides provided compounds with enhanced activity against the B1 receptor. The synthesis and SAR leading to potent analogs with reduced molecular weight will be discussed.


Subject(s)
Acetamides/pharmacology , Bradykinin B1 Receptor Antagonists , Piperazines/pharmacology , Acetamides/chemical synthesis , Acetamides/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Stereoisomerism , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 21(18): 5206-9, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21840217

ABSTRACT

A bis-amide antagonist of Smoothened, a seven-transmembrane receptor in the Hedgehog signaling pathway, was discovered via high throughput screening. In vitro and in vivo experiments demonstrated that the bis-amide was susceptible to N-acyl transferase mediated amide scission. Several bioisosteric replacements of the labile amide that maintained in vitro potency were identified and shown to be metabolically stable in vitro and in vivo.


Subject(s)
Acyltransferases/antagonists & inhibitors , Amides/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Acyltransferases/metabolism , Amides/chemistry , Amides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , High-Throughput Screening Assays , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 21(11): 3384-9, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21514825

ABSTRACT

The discovery of novel and highly potent oxopiperazine based B1 receptor antagonists is described. Compared to the previously described arylsulfonylated (R)-3-amino-3-phenylpropionic acid series, the current compounds showed improved in vitro potency and metabolic stability. Compound 17, 2-((2R)-1-((4-methylphenyl)sulfonyl)-3-oxo-2-piperazinyl)-N-((1R)-6-(1-piperidinylmethyl)-1,2,3,4-tetrahydro-1-naphthalenyl)acetamide, showed EC(50) of 10.3 nM in a rabbit biochemical challenge model. The practical syntheses of chiral arylsulfonylated oxopiperazine acetic acids are also described.


Subject(s)
Acetamides/therapeutic use , Bradykinin B1 Receptor Antagonists , Inflammation/drug therapy , Pain/drug therapy , Piperazines/therapeutic use , Acetamides/chemical synthesis , Acetamides/chemistry , Animals , Dogs , Inhibitory Concentration 50 , Mice , Models, Animal , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Rabbits , Rats , Receptor, Bradykinin B1/chemistry , Stereoisomerism , Structure-Activity Relationship
10.
J Comb Chem ; 12(5): 676-86, 2010 Sep 13.
Article in English | MEDLINE | ID: mdl-20666436

ABSTRACT

Intracellular levels of the hypoxia-inducible transcription factor (HIF) are regulated under normoxic conditions by prolyl hydroxylases (PHD1, 2, and 3). Treatment of cells with PHD inhibitors stabilizes HIF-1α, eliciting an artificial hypoxic response that includes the transcription of genes involved in erythropoiesis, angiogenesis, and glycolysis. The different in vivo roles of the three PHD isoforms are not yet known, making a PHD-selective inhibitor useful as a biological tool. Although several chemical series of PHD inhibitors have been described, significant isoform selectivity has not been reported. Here we report the synthesis and activity of dipeptidyl analogues derived from a potent but non-selective quinolone scaffold. The compounds were prepared by Pd-catalyzed reductive carbonylation of the 6-iodoquinolone derivative to form the aldehyde directly, which was then attached to a solid support via reductive amination. Amino acids were coupled, and the resulting dipeptidyl-quinolone derivatives were screened, revealing retention of PHD inhibitory activity but an altered PHD1, 2, and 3 selectivity profile. The compounds were found to be ∼10-fold more potent against PHD1 and PHD3 than against PHD2, whereas the specific parent compound had shown no appreciable selectivity among the different PHD isoforms.


Subject(s)
Dipeptides/pharmacology , Enzyme Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Quinolones/pharmacology , Combinatorial Chemistry Techniques , Dipeptides/chemical synthesis , Dipeptides/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Structure , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/metabolism , Quinolones/chemical synthesis , Quinolones/chemistry , Stereoisomerism , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 20(15): 4607-10, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20594845

ABSTRACT

Pyridopyridazine antagonists of the hedgehog signaling pathway are described. Designed to optimize our previously described phthalazine smoothened antagonists, a representative compound eliminates a PXR liability while retaining potency and in vitro metabolic stability. Moreover, the compound has improved efficacy in a hedgehog/smoothened signaling mouse pharmacodynamic model.


Subject(s)
Hedgehog Proteins/antagonists & inhibitors , Phthalazines/chemistry , Piperazines/chemistry , Pyridazines/chemistry , Receptors, Steroid/chemistry , Animals , Hedgehog Proteins/metabolism , Humans , Mice , Microsomes, Liver/metabolism , Phthalazines/chemical synthesis , Phthalazines/pharmacokinetics , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Pregnane X Receptor , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Rats , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Receptors, Steroid/metabolism , Signal Transduction , Smoothened Receptor , Structure-Activity Relationship , Tylosin/analogs & derivatives
12.
Bioorg Med Chem Lett ; 20(15): 4593-7, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20573508

ABSTRACT

The bradykinin B1 receptor has been shown to mediate pain response and is rapidly induced upon injury. Blocking this receptor may provide a promising treatment for inflammation and pain. We previously reported tetralin benzyl amines as potent B1 antagonists. Here we describe the synthesis and SAR of B1 receptor antagonists with homobenzylic amines. The SAR of different linkers led to the discovery of tetralin allylic amines as potent and selective B1 receptor antagonists (hB1 IC(50)=1.3 nM for compound 16). Some of these compounds showed modest oral bioavailability in rats.


Subject(s)
Benzylamines/chemistry , Bradykinin B1 Receptor Antagonists , Sulfonamides/chemistry , Tetrahydronaphthalenes/chemistry , Administration, Oral , Animals , Pain/drug therapy , Rats , Receptor, Bradykinin B1/metabolism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use
13.
J Med Chem ; 53(11): 4481-7, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20465278

ABSTRACT

Thiazolones with an exo-norbornylamine at the 2-position and an isopropyl group on the 5-position are potent 11beta-HSD1 inhibitors. However, the C-5 center was prone to epimerization in vitro and in vivo, forming a less potent diastereomer. A methyl group was added to the C-5 position to eliminate epimerization, leading to the discovery of (S)-2-((1S,2S,4R)-bicyclo[2.2.1]heptan-2-ylamino)-5-isopropyl-5-methylthiazol-4(5H)-one (AMG 221). This compound decreased fed blood glucose and insulin levels and reduced body weight in diet-induced obesity mice.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Drug Discovery/methods , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/pharmacology , Thiazoles/administration & dosage , Thiazoles/pharmacology , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , Administration, Oral , Animals , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Male , Mice , Models, Molecular , Protein Conformation , Rats , Thiazoles/chemistry , Thiazoles/pharmacokinetics
14.
Bioorg Med Chem Lett ; 20(12): 3618-22, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20493695

ABSTRACT

The Hedgehog (Hh) signaling pathway regulates cell proliferation and differentiation in developing tissues, and abnormal activation of the Hh pathway has been linked to several tumor subsets. As a transducer of Hh signaling, the GPCR-like protein Smoothened (Smo) is a promising target for disruption of unregulated Hh signaling. A series of 1-amino-4-arylphthalazines was developed as potent and orally bioavailable inhibitors of Smo. A representative compound from this class demonstrated significant tumor volume reduction in a mouse medulloblastoma model.


Subject(s)
Phthalazines/chemistry , Phthalazines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Administration, Oral , Animals , Biological Availability , Cell Line, Tumor , Cytochrome P-450 Enzyme System/drug effects , Drug Design , Hedgehog Proteins , Humans , Medulloblastoma/drug therapy , Medulloblastoma/pathology , Mice , Phthalazines/chemical synthesis , Signal Transduction , Smoothened Receptor
15.
Bioorg Med Chem Lett ; 20(5): 1652-6, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20137932

ABSTRACT

A series of 2-aminothiadiazole of inhibitors of AKT1 is described. SAR relationships are discussed, along with selectivity for protein kinase A (PKA) and cyclin-dependent kinase 2 (CDK2). Moderate selectivity observed in several compounds for AKT1 versus PKA is rationalized by X-ray crystallographic analysis. Key compounds showed activity in cellular assays measuring phosphorylation of two AKT substrates, PRAS40 and FKHRL1. Compound 30 was advanced to a mouse liver PD assay, where it showed dose-dependent inhibition of AKT activity, as measured by the inhibition of phospho-PRAS40.


Subject(s)
Antineoplastic Agents/chemistry , Isoquinolines/chemistry , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Thiadiazoles/chemistry , Thiazoles/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Catalytic Domain , Crystallography, X-Ray , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Isoquinolines/chemical synthesis , Isoquinolines/pharmacokinetics , Mice , Neoplasms/drug therapy , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacokinetics , Thiazoles/chemical synthesis , Thiazoles/pharmacokinetics
16.
Bioorg Med Chem Lett ; 20(5): 1559-64, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20137943

ABSTRACT

Through a combination of screening and structure-based rational design, we have discovered a series of N(1)-(5-(heterocyclyl)-thiazol-2-yl)-3-(4-trifluoromethylphenyl)-1,2-propanediamines that were developed into potent ATP competitive inhibitors of AKT. Studies of linker strand-binding adenine isosteres identified SAR trends in potency and selectivity that were consistent with binding interactions observed in structures of the inhibitors bound to AKT1 and to the counter-screening target PKA. One compound was shown to have acceptable pharmacokinetic properties and to be a potent inhibitor of AKT signaling and of in vivo xenograft tumor growth in a preclinical model of glioblastoma.


Subject(s)
Antineoplastic Agents/chemistry , Azoles/chemistry , Neoplasms/drug therapy , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Azoles/pharmacokinetics , Azoles/therapeutic use , Binding Sites , Crystallography, X-Ray , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Drug Design , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Xenograft Model Antitumor Assays
17.
J Med Chem ; 52(22): 7044-53, 2009 Nov 26.
Article in English | MEDLINE | ID: mdl-19856920

ABSTRACT

Tumor protein 53 (p53) is a critical regulator of cell cycle and apoptosis that is frequently disabled in human tumors. In many tumor types, p53 is deleted or mutated, but in others p53 is inactivated by overexpression or amplification of its negative regulator mouse double minute 2 (MDM2). A high-throughput screening effort identified 6,7-bis(4-bromophenyl)-7,12-dihydro-6H-chromeno[4,3-d][1,2,4]triazolo[1,5-a]pyrimidine as a potent inhibitor of the MDM2-p53 protein-protein interaction. This screening hit was found to be chemically unstable and difficult to handle due to poor DMSO solubility. Co-crystallization with the target protein helped to direct further optimization and provided a tractable lead series of novel MDM2-p53 inhibitors. In cellular assays, these compounds were shown to upregulate p53 protein levels and p53 signaling and to cause p53-dependent inhibition of proliferation and apoptosis.


Subject(s)
Drug Discovery , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacology , Tumor Suppressor Protein p53/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , HCT116 Cells , Humans , Inhibitory Concentration 50 , Models, Molecular , Molecular Conformation , Protein Binding/drug effects , Stereoisomerism , Structure-Activity Relationship
18.
J Org Chem ; 74(16): 5975-82, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19586010

ABSTRACT

A di-O-TBS protected glyceraldehyde synthon was condensed with Ellman's reagent to form a bench-stable N-tert-butanesulfinyl imine 6, which served as a common intermediate for the stereoselective introduction of various R groups. The Ellman adducts were converted to useful multifunctional intermediates 18a-i in one pot. The alcohols 18a-i were efficiently elaborated to both known and novel anti-N-protected-3-amino-1,2-epoxides in two steps. Compound 2a is a key intermediate toward HIV protease inhibitors.


Subject(s)
Epoxy Compounds/chemistry , Epoxy Compounds/chemical synthesis , Glyceraldehyde/chemistry , Nitrogen/chemistry , Sulfonium Compounds/chemistry , Amino Acids/chemistry , Stereoisomerism , Substrate Specificity
19.
Bioorg Med Chem Lett ; 19(6): 1797-801, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19217779

ABSTRACT

Discovery and optimization of a piperidyl benzamide series of 11beta-HSD1 inhibitors is described. This series was derived from a cyclohexyl benzamide lead structures to address PXR selectivity, high non-specific protein binding, poor solubility, limited in vivo exposure, and in vitro cytotoxicity issues observed with the cyclohexyl benzamide structures. These efforts led to the discovery of piperidyl benzamide 15 which features improved properties over the cyclohexyl benzamide derivatives.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Benzamides/chemical synthesis , Diabetes Mellitus, Type 2/drug therapy , Insulin/metabolism , Piperidines/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , Benzamides/pharmacology , Crystallography, X-Ray/methods , Drug Design , Hepatocytes/drug effects , Humans , Inhibitory Concentration 50 , Microsomes/metabolism , Models, Chemical , Molecular Structure , Solubility , Structure-Activity Relationship
20.
Bioorg Med Chem Lett ; 19(5): 1446-50, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19185488

ABSTRACT

Novel 4,4-disubstituted cyclohexylbenzamide inhibitors of 11beta-HSD1 were optimized to account for liabilities relating to in vitro pharmacokinetics, cytotoxicity and protein-related shifts in potency. A representative compound showing favorable in vivo pharmacokinetics was found to be an efficacious inhibitor of 11beta-HSD1 in a rat pharmacodynamic model (ED(50)=10mg/kg).


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Benzamides/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Animals , Benzamides/pharmacology , Dose-Response Relationship, Drug , HeLa Cells , Humans , Macaca fascicularis , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL