Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Ginseng Res ; 46(1): 126-137, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35058729

ABSTRACT

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is one of the main chronic liver diseases. NASH is identified by lipid accumulation, inflammation, and fibrosis. Jinan Red Ginseng (JRG) and licorice have been widely used because of their anti-inflammatory and hepatoprotective effects. Hence, this study assessed JRG and licorice extract mixtures' effects on NASH progression. METHODS: Palmitic acid (PA) and the western diet (WD) plus, high glucose-fructose water were used to induce in vitro and in vivo NASH. Mice were orally administered with JRG-single (JRG-S) and JRG-mixtures (JRG-M; JRG-S + licorice) at 0, 50, 100, 200 or 400 mg/kg/day once a day during the last half-period of diet feeding. RESULTS: JRG-S and JRG-M reduced NASH-related pathologies in WD-fed mice. JRG-S and JRG-M consistently decreased the mRNA level of genes related with inflammation, fibrosis, and lipid metabolism. The treatment of JRG-S and JRG-M also diminished the SREBP-1c protein levels and the p-AMPK/AMPK ratio. The FAS protein levels were decreased by JRG-M treatment both in vivo and in vitro but not JRG-S. CONCLUSION: JRG-M effectively reduced lipogenesis by modulating AMPK downstream signaling. Our findings suggest that this mixture can be used as a prophylactic or therapeutic alternative for the remedy of NASH.

3.
Pharm Res ; 38(8): 1455-1466, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34398405

ABSTRACT

PURPOSE: To develop an in vitro culture system for tissue engineering to mimic the in vivo environment and evaluate the applicability of ultrasound and PLGA particle system. METHODS: For tissue engineering, large molecules such as growth factors for cell differentiation should be supplied in a controlled manner into the culture system, and the in vivo microenvironment need to be reproduced in the system for the regulation of cellular function. In this study, portable prototype ultrasound with low intensity was devised and tested for protein release from bovine serum albumin (BSA)-loaded poly(lactic-co-glycolic acid) (PLGA) particles. RESULTS: BSA-loaded PLGA particles were prepared using various types of PLGA reagents and their physicochemical properties were characterized including particle size, shape, or aqueous wetting profiles. The BSA-loaded formulation showed nano-ranged size distribution with optimal physical stability during storage period, and protein release behaviors in a controlled manner. Notably, the application of prototype ultrasound with low intensity influenced protein release patterns in the culture system containing the BSA-loaded PLGA formulation. The results revealed that the portable ultrasound set controlled by the computer could contribute for the protein delivery in the culture medium. CONCLUSIONS: This study suggests that combined application with ultrasound and protein-loaded PLGA encapsulation system could be utilized to improve culture system for tissue engineering or cell regeneration therapy.


Subject(s)
Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Proteins/administration & dosage , Serum Albumin, Bovine/chemistry , Tissue Engineering/methods , Drug Compounding , Drug Delivery Systems , Drug Liberation , Nanoparticles/chemistry , Serum Albumin, Bovine/administration & dosage , Ultrasonics
4.
Pharmaceutics ; 13(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204840

ABSTRACT

Iron oxide nanoparticles (IONPs) possess versatile utility in cancer theranostics, thus, they have drawn enormous interest in the cancer research field. Herein, we prepared polyethylene glycol (PEG)-conjugated and starch-coated IONPs ("PEG-starch-IONPs"), and assessed their applicability for photothermal treatment (PTT) of cancer. The prepared PEG-starch-IONPs were investigated for their physical properties by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and dynamic light scattering (DLS). The pharmacokinetic study results showed a significant extension in the plasma half-life by PEGylation, which led to a markedly increased (5.7-fold) tumor accumulation. When PEG-starch-IONPs were evaluated for their photothermal activity, notably, they displayed marked and reproducible heating effects selectively on the tumor site with laser irradiation. Lastly, efficacy studies demonstrated that PEG-starch-IONPs-based PTT may be a promising mode of cancer therapy.

5.
Pharm Res ; 38(5): 873-883, 2021 May.
Article in English | MEDLINE | ID: mdl-33835356

ABSTRACT

PURPOSE: To develop a hydrogel film containing bovine serum albumin (BSA)-coated silver nanoparticles (BSA/AgNP) and evaluate its applicability for topical photothermal treatment (PTT) of skin cancer. METHODS: BSA/AgNP-loaded hydrogel films were prepared and their swelling, bioadhesive, mechanical, and photothermal properties were characterized in vitro and in vivo. RESULTS: The synthesized BSA/AgNP exhibited a narrow size distribution with good size stability and, notably, possessed great photothermal activity that could stably maintain through repetitive laser irradiation. The BSA/AgNP-loaded hydrogel films showed favorable swelling, bioadhesive, tensile, and photothermal properties. Based on these results, when tested the anti-cancer effects in B16F10 s.c. tumor-bearing mice, the PTT with the topical treatment of BSA/AgNP-loaded hydrogel films could significantly inhibit the tumor growth by a single treatment with no apparent toxicity. CONCLUSIONS: Overall, the results of this study demonstrated that the BSA/AgNP-loaded hydrogel films may serve as an effective but safe topical PTT agent for the treatment of skin cancer.


Subject(s)
Drug Delivery Systems/methods , Methylgalactosides/chemistry , Nanocomposites/administration & dosage , Phototherapy/methods , Skin Neoplasms/drug therapy , Administration, Cutaneous , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Screening Assays, Antitumor , Humans , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Mice , Nanocomposites/chemistry , Serum Albumin, Bovine/administration & dosage , Serum Albumin, Bovine/chemistry , Silver/administration & dosage , Silver/chemistry , Skin Neoplasms/pathology
6.
Pharmaceutics ; 13(4)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920666

ABSTRACT

Silver nanoparticles (NPs) have attracted a considerable interest in the field of cancer research due to their potential utility in cancer therapy. In the present study, we developed bovine serum albumin (BSA)-coated silver NPs (BSA-Silver NPs) and characterized in vitro multimodal therapeutic activities of NPs for the treatment of skin cancer. BSA-Silver NPs were synthesized by a single-step reduction process, and the successful preparation was verified through a list of physical characterizations, including transmission electron microscopy (TEM), ultraviolet-visible (UV-VIS) light spectroscopy, dynamic light scattering (DLS), and Fourier transform infrared (FT-IR) spectroscopy. The synthesized BSA-Silver NPs showed marked cytocidal effects on B16F10 melanoma cells, which was likely caused by oxidative stress. BSA-Silver NPs also elicited significant anti-angiogenic effects on HUVEC (human umbilical vein endothelial cell) by inhibiting their proliferation, migration, and tube formation. Moreover, BSA-Silver NPs showed a considerable light-to-heat conversion ability, suggesting their utility as photothermal agents. Overall, our findings suggest that BSA-Silver NPs may be promising candidates for the multimodal therapy of skin cancer.

7.
Biomaterials ; 257: 120250, 2020 10.
Article in English | MEDLINE | ID: mdl-32736262

ABSTRACT

A common bottleneck challenge for many therapeutic proteins lies in their short plasma half-lives, which often makes the treatment far less compliant or even disables achieving sufficient therapeutic efficacy. To address this problem, we introduce a novel drug delivery strategy based on the genetic fusion of an albumin binding domain (ABD) and an anti-neonatal Fc receptor (FcRn) affibody (AFF) to therapeutic proteins. This ABD-AFF fusion strategy can provide a synergistic effect on extending the plasma residence time by, on one hand, preventing the rapid glomerular filtration via ABD-mediated albumin binding and, on the other hand, increasing the efficiency of FcRn-mediated recycling by AFF-mediated high-affinity binding to the FcRn. In this research, we explored the feasibility of applying the ABD-AFF fusion strategy to exendin-4 (EX), a clinically available anti-diabetic peptide possessing a short plasma half-life. The EX-ABD-AFF produced from the E. coli displayed a remarkably (241-fold) longer plasma half-life than the SUMO tagged-EX (SUMO-EX) (0.7 h) in mice. Furthermore, in high-fat diet (HFD)-fed obese mice model, the EX-ABD-AFF could provide significant hypoglycemic effects for over 12 days, accompanied by a reduction of body weight. In the long-term study, the EX-ABD-AFF could significantly reverse the obesity-related metabolic complications (hyperglycemia, hyperlipidemia, and hepatic steatosis) and, moreover, improve cognitive deficits. Overall, this study demonstrated that the ABD-AFF fusion could be an effective strategy to greatly increase the plasma half-lives of therapeutic proteins and thus markedly improve their druggability.


Subject(s)
Escherichia coli , Genetic Engineering , Animals , Cognition , Exenatide/therapeutic use , Half-Life , Mice , Obesity/complications , Obesity/drug therapy , Recombinant Fusion Proteins
9.
Toxins (Basel) ; 12(5)2020 05 10.
Article in English | MEDLINE | ID: mdl-32397648

ABSTRACT

Toxin peptides derived from the skin secretions of amphibians possess unique hypoglycemic activities. Many of these peptides share cationic and amphipathic structural similarities and appear to possess cell-penetrating abilities. The mechanism of their insulinotropic action is yet not elucidated, but they have shown great potential in regulating the blood glucose levels in animal models. Therefore, they have emerged as potential drug candidates as therapeutics for type 2 diabetes. Despite their anti-diabetic activity, there remain pharmaceutical challenges to be addressed for their clinical applications. Here, we present an overview of recent studies related to the toxin-derived anti-diabetic peptides derived from the skin secretions of amphibians. In the latter part, we introduce the bottleneck challenges for their delivery in vivo and general drug delivery strategies that may be applicable to extend their blood circulation time. We focus our research on the strategies that have been successfully applied to improve the plasma half-life of exendin-4, a clinically available toxin-derived anti-diabetic peptide drug.


Subject(s)
Amphibian Venoms/therapeutic use , Blood Glucose/drug effects , Diabetes Mellitus, Type 2/drug therapy , Drug Carriers , Drug Delivery Systems , Exenatide/therapeutic use , Hypoglycemic Agents/therapeutic use , Toxins, Biological/therapeutic use , Amphibian Venoms/chemistry , Amphibian Venoms/pharmacokinetics , Animals , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/blood , Drug Compounding , Exenatide/chemistry , Exenatide/pharmacokinetics , Half-Life , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Toxins, Biological/chemistry , Toxins, Biological/pharmacokinetics
10.
Biomed Pharmacother ; 117: 109066, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31226639

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Korean red ginseng is a Korean traditional medicine. In this study, we estimated the effects of Korean red ginseng water extract (RGE) in the 1-chloro-2,4-dinitrobenzene (DNCB)-induced BALB/c mouse model which develops AD-like lesions. After RGE administration (100, 200, and 400 mg/kg) to DNCB-induced mice there were improvements in the dermatitis score and skin pH, a decrease in trans-epidermal water loss, and improved skin hydration. RGE also significantly inhibited eosinophil infiltration, increased filaggrin protein levels, and decreased serum IgE levels, epidermal thickness, mast cell infiltration, and ceramidase release. Compared with that in DNCB-induced mice, RGE effectively decreased the mRNA expression levels of interleukin-6 (IL-6), thymic stromal lymphopoietin (TSLP), and tumor necrosis factor-α (TNF-α), as well as the protein level of thymus and activation-regulated chemokine (TARC). These inhibitory RGE effects are mediated by inhibiting the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. Furthermore, we confirmed that RGE suppresses interferon-γ (IFN-γ) and TNF-α-induced expression of macrophage-derived chemokine (MDC) and TARC genes in human keratinocyte (HaCaT) cells. Taken together, these results demonstrate that RGE may exert anti-atopic related to responses by suppression the expression of inflammatory mediators, cytokines, and chemokines via downregulation of MAPK signaling pathways, suggesting that RGE may be an effective therapeutic approach for prevention of AD-like disease.


Subject(s)
Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/enzymology , Inflammation/drug therapy , MAP Kinase Signaling System , Panax/chemistry , Plant Extracts/therapeutic use , Water/chemistry , Animals , Cell Survival/drug effects , Chemokines/metabolism , Dermatitis, Atopic/pathology , Dinitrochlorobenzene , Disease Models, Animal , Filaggrin Proteins , Humans , Inflammation/pathology , Inflammation Mediators/metabolism , Keratinocytes/drug effects , Keratinocytes/metabolism , Keratinocytes/pathology , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred BALB C , Phosphorylation/drug effects , Plant Extracts/pharmacology , Skin/drug effects , Skin/pathology , Water Loss, Insensible/drug effects
11.
J Med Food ; 18(4): 421-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25658580

ABSTRACT

Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cell Survival/drug effects , Lacticaseibacillus rhamnosus/metabolism , Panax/chemistry , Panax/microbiology , Plant Extracts/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Apoptosis/drug effects , Cell Line, Tumor , Fermentation , Hep G2 Cells , Humans , Panax/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Republic of Korea
SELECTION OF CITATIONS
SEARCH DETAIL
...