Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Radiat Environ Biophys ; 61(4): 545-559, 2022 11.
Article in English | MEDLINE | ID: mdl-36220965

ABSTRACT

The outcome of the exposure of living organisms to ionizing radiation is determined by the distribution of the associated energy deposition at different spatial scales. Radiation proceeds through ionizations and excitations of hit molecules with an ~ nm spacing. Approaches such as nanodosimetry/microdosimetry and Monte Carlo track-structure simulations have been successfully adopted to investigate radiation quality effects: they allow to explore correlations between the spatial clustering of such energy depositions at the scales of DNA or chromosome domains and their biological consequences at the cellular level. Physical features alone, however, are not enough to assess the entity and complexity of radiation-induced DNA damage: this latter is the result of an interplay between radiation track structure and the spatial architecture of chromatin, and further depends on the chromatin dynamic response, affecting the activation and efficiency of the repair machinery. The heterogeneity of radiation energy depositions at the single-cell level affects the trade-off between cell inactivation and induction of viable mutations and hence influences radiation-induced carcinogenesis. In radiation therapy, where the goal is cancer cell inactivation, the delivery of a homogenous dose to the tumour has been the traditional approach in clinical practice. However, evidence is accumulating that introducing heterogeneity with spatially fractionated beams (mini- and microbeam therapy) can lead to significant advantages, particularly in sparing normal tissues. Such findings cannot be explained in merely physical terms, and their interpretation requires considering the scales at play in the underlying biological mechanisms, suggesting a systemic response to radiation.


Subject(s)
Radiation Exposure , Radiation, Ionizing , Monte Carlo Method , DNA Damage , Chromatin
2.
Cells ; 11(16)2022 08 17.
Article in English | MEDLINE | ID: mdl-36010636

ABSTRACT

DNA double-strand breaks (DSBs) represent the molecular origin of ionizing-radiation inflicted biological effects. An increase in the ionization density causes more complex, clustered DSBs that can be processed by resection also in G1 phase, where repair of resected DSBs is considered erroneous and may contribute to the increased biological effectiveness of heavy ions in radiotherapy. To investigate the resection regulation of complex DSBs, we exposed G1 cells depleted for different candidate factors to heavy ions or α-particle radiation. Immunofluorescence microscopy was used to monitor the resection marker RPA, the DSB marker γH2AX and the cell-cycle markers CENP-F and geminin. The Fucci system allowed to select G1 cells, cell survival was measured by clonogenic assay. We show that in G1 phase the ubiquitin ligase RNF138 functions in resection regulation. RNF138 ubiquitinates the resection factor CtIP in a radiation-dependent manner to allow its DSB recruitment in G1 cells. At complex DSBs, RNF138's participation becomes more relevant, consistent with the observation that also resection is more frequent at these DSBs. Furthermore, deficiency of RNF138 affects both DSB repair and cell survival upon induction of complex DSBs. We conclude that RNF138 is a regulator of resection that is influenced by DSB complexity and can affect the quality of DSB repair in G1 cells.


Subject(s)
DNA Breaks, Double-Stranded , Endodeoxyribonucleases/metabolism , Ubiquitin , Carrier Proteins/genetics , DNA , G1 Phase/genetics , Humans , Ligases , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Front Oncol ; 12: 920017, 2022.
Article in English | MEDLINE | ID: mdl-35875130

ABSTRACT

Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance. We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation. TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K. We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision.

4.
J Gen Physiol ; 154(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35416945

ABSTRACT

Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray-induced clustering of Orai1 and STIM1 and formation of a Ca2+ release-activated Ca2+ (CRAC) channel. A consequence of the x-ray-triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.


Subject(s)
Calcium , Leukocytes, Mononuclear , Calcium/metabolism , Calcium Signaling/physiology , Humans , Immunity , Leukocytes, Mononuclear/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , T-Lymphocytes/metabolism , X-Rays
6.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071949

ABSTRACT

Exposing cells to DNA damaging agents, such as ionizing radiation (IR) or cytotoxic chemicals, can cause DNA double-strand breaks (DSBs), which are crucial to repair to maintain genetic integrity. O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a post-translational modification (PTM), which has been reported to be involved in the DNA damage response (DDR) and chromatin remodeling. Here, we investigated the impact of O-GlcNAcylation on the DDR, DSB repair and chromatin status in more detail. We also applied charged particle irradiation to analyze differences of O-GlcNAcylation and its impact on DSB repair in respect of spatial dose deposition and radiation quality. Various techniques were used, such as the γH2AX foci assay, live cell microscopy and Fluorescence Lifetime Microscopy (FLIM) to detect DSB rejoining, protein accumulation and chromatin states after treating the cells with O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) inhibitors. We confirmed that O-GlcNAcylation of MDC1 is increased upon irradiation and identified additional repair factors related to Homologous Recombination (HR), CtIP and BRCA1, which were increasingly O-GlcNAcyated upon irradiation. This is consistent with our findings that the function of HR is affected by OGT inhibition. Besides, we found that OGT and OGA activity modulate chromatin compaction states, providing a potential additional level of DNA-repair regulation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Chromatin/genetics , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , DNA-Binding Proteins/metabolism , HeLa Cells , Homologous Recombination , Humans , Linear Energy Transfer , N-Acetylglucosaminyltransferases/metabolism , Protein Processing, Post-Translational , Radiation, Ionizing
7.
Int J Mol Sci ; 21(6)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168789

ABSTRACT

Chromatin architecture plays major roles in gene regulation as well as in the repair of DNA damaged by endogenous or exogenous factors, such as after radiation. Opening up the chromatin might provide the necessary accessibility for the recruitment and binding of repair factors, thus facilitating timely and correct repair. The observed formation of ionizing radiation-induced foci (IRIF) of factors, such as 53BP1, upon induction of DNA double-strand breaks have been recently linked to local chromatin decompaction. Using correlative light and electron microscopy (CLEM) in combination with DNA-specific contrasting for transmission electron microscopy or tomography, we are able to show that at the ultrastructural level, these DNA damage domains reveal a chromatin compaction and organization not distinguishable from regular euchromatin upon irradiation with carbon or iron ions. Low Density Areas (LDAs) at sites of particle-induced DNA damage, as observed after unspecific uranyl acetate (UA)-staining, are thus unlikely to represent pure chromatin decompaction. RNA-specific terbium-citrate (Tb) staining suggests rather a reduced RNA density contributing to the LDA phenotype. Our observations are discussed in the view of liquid-like phase separation as one of the mechanisms of regulating DNA repair.


Subject(s)
Chromatin/ultrastructure , DNA Damage/radiation effects , Heavy Ions/adverse effects , Animals , Cell Line, Tumor , Chromatin/genetics , DNA Breaks, Double-Stranded/radiation effects , Electron Microscope Tomography , Humans , Mice , Microscopy, Electron , Microscopy, Electron, Transmission , NIH 3T3 Cells , Phenotype
8.
Sci Rep ; 10(1): 1443, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31996740

ABSTRACT

DNA double-strand break (DSB) repair is crucial to maintain genomic stability. The fidelity of the repair depends on the complexity of the lesion, with clustered DSBs being more difficult to repair than isolated breaks. Using live cell imaging of heavy ion tracks produced at a high-energy particle accelerator we visualised simultaneously the recruitment of different proteins at individual sites of complex and simple DSBs in human cells. NBS1 and 53BP1 were recruited in a few seconds to complex DSBs, but in 40% of the isolated DSBs the recruitment was delayed approximately 5 min. Using base excision repair (BER) inhibitors we demonstrate that some simple DSBs are generated by enzymatic processing of base damage, while BER did not affect the complex DSBs. The results show that DSB processing and repair kinetics are dependent on the complexity of the breaks and can be different even for the same clastogenic agent.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/genetics , DNA/genetics , Neoplasms/genetics , Binding Sites/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Heavy Ions , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Synchrotrons , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
9.
Int J Mol Sci ; 19(8)2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30110966

ABSTRACT

In recent years several approaches have been developed to address the chromatin status and its changes in eukaryotic cells under different conditions-but only few are applicable in living cells. Fluorescence lifetime imaging microscopy (FLIM) is a functional tool that can be used for the inspection of the molecular environment of fluorophores in living cells. Here, we present the use of single organic minor groove DNA binder dyes in FLIM for measuring chromatin changes following modulation of chromatin structure in living cells. Treatment with histone deacetylase inhibitors led to an increased fluorescence lifetime indicating global chromatin decompaction, whereas hyperosmolarity decreased the lifetime of the used dyes, thus reflecting the expected compaction. In addition, we demonstrate that time domain FLIM data based on single photon counting should be optimized using pile-up and counting loss correction, which affect the readout even at moderate average detector count rates in inhomogeneous samples. Using these corrections and utilizing Hoechst 34580 as chromatin compaction probe, we measured a pan nuclear increase in the lifetime following irradiation with X-rays in living NIH/3T3 cells thus providing a method to measure radiation-induced chromatin decompaction.


Subject(s)
Benzimidazoles/pharmacology , Chromatin Assembly and Disassembly/radiation effects , DNA/metabolism , Fluorescent Dyes/pharmacology , X-Rays , Animals , Mice , Microscopy, Fluorescence , NIH 3T3 Cells
10.
Radiother Oncol ; 129(3): 600-610, 2018 12.
Article in English | MEDLINE | ID: mdl-30049456

ABSTRACT

BACKGROUND AND PURPOSE: High linear-energy-transfer (LET) irradiation (IR) is characterized by unique depth-dose distribution and advantageous biologic effectiveness compared to low-LET-IR, offering promising alternatives for radio-resistant tumors in clinical oncology. While low-LET-IR induces single DNA lesions such as double-strand breaks (DSBs), localized energy deposition along high-LET particle trajectories induces clustered DNA lesions that are more challenging to repair. During DNA damage response (DDR) 53BP1 and ATM are required for Kap1-dependent chromatin relaxation, thereby sustaining heterochromatic DSB repair. Here, spatiotemporal dynamics of chromatin restructuring were visualized during DDR after high-LET and low-LET-IR. MATERIAL AND METHODS: Human fibroblasts were irradiated with high-LET carbon/calcium ions or low-LET photons. At 0.1 h, 0.5 h, 5 h and 24 h post-IR fluorophore- and gold-labeled repair factors (53BP1, pATM, pKAP-1, pKu70) were visualized by immunofluorescence and transmission electron microscopy, to monitor formation and repair of DNA damage in chromatin ultrastructure. To track chromatin remodeling at damage sites, decondensed regions (DCR) were delineated based on local chromatin concentration densities. RESULTS: Low-LET-IR induced single DNA lesions throughout the nucleus, but nearly all DSBs were efficiently rejoined without visible chromatin decompaction. High-LET-IR induced clustered DNA damage and triggered profound changes in chromatin structure along particle trajectories. In DCR multiple heterochromatic DSBs exhibited delayed repair despite cooperative activity of 53BP1, pATM, pKap-1. These closely localized DSBs may disturb efficient repair and subsequent chromatin restoration, thereby affecting large-scale genome organization. CONCLUSION: Clustered damage concentrated in particle trajectories causes persistent rearrangements in chromatin architecture, which may affect structural and functional organization of cell nuclei.


Subject(s)
Chromatin/radiation effects , DNA Damage , Animals , Cells, Cultured , Chromatin/ultrastructure , DNA Breaks, Double-Stranded , DNA Repair , Humans , Ku Autoantigen/analysis , Linear Energy Transfer , Tumor Suppressor p53-Binding Protein 1/analysis
11.
Proc Natl Acad Sci U S A ; 114(21): 5533-5538, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28484035

ABSTRACT

Brain development and function depend on the directed and coordinated migration of neurons from proliferative zones to their final position. The secreted glycoprotein Reelin is an important factor directing neuronal migration. Loss of Reelin function results in the severe developmental disorder lissencephaly and is associated with neurological diseases in humans. Reelin signals via the lipoprotein receptors very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), but the exact mechanism by which these receptors control cellular function is poorly understood. We report that loss of the signaling scaffold intersectin 1 (ITSN1) in mice leads to defective neuronal migration and ablates Reelin stimulation of hippocampal long-term potentiation (LTP). Knockout (KO) mice lacking ITSN1 suffer from dispersion of pyramidal neurons and malformation of the radial glial scaffold, akin to the hippocampal lamination defects observed in VLDLR or ApoER2 mutants. ITSN1 genetically interacts with Reelin receptors, as evidenced by the prominent neuronal migration and radial glial defects in hippocampus and cortex seen in double-KO mice lacking ITSN1 and ApoER2. These defects were similar to, albeit less severe than, those observed in Reelin-deficient or VLDLR/ ApoER2 double-KO mice. Molecularly, ITSN1 associates with the VLDLR and its downstream signaling adaptor Dab1 to facilitate Reelin signaling. Collectively, these data identify ITSN1 as a component of Reelin signaling that acts predominantly by facilitating the VLDLR-Dab1 axis to direct neuronal migration in the cortex and hippocampus and to augment synaptic plasticity.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix Proteins/metabolism , Hippocampus/metabolism , Nerve Tissue Proteins/metabolism , Neuronal Plasticity , Neurons/physiology , Serine Endopeptidases/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Movement , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Mice, Knockout , Receptors, LDL/metabolism , Receptors, N-Methyl-D-Aspartate/isolation & purification , Receptors, N-Methyl-D-Aspartate/metabolism , Reelin Protein
12.
Methods Mol Biol ; 1599: 287-302, 2017.
Article in English | MEDLINE | ID: mdl-28477127

ABSTRACT

Measurements of protein recruitment and the formation of repair complexes at DNA double-strand breaks in real time provide valuable insight into the regulation of the early DNA damage response. Here, we describe the use of live cell microscopy in combination with ionizing radiation as a tool to evaluate the influence of ATM and its site-specific phosphorylation of target proteins on these processes. Recommendations are made for the preparation of the cells and the design of specialized cell chambers for the localized (and/or targeted) irradiation with charged particles at accelerator beamlines as well as the microscopic equipment and protocol to obtain high-resolution, sensitive fluorescence measurements.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Damage/radiation effects , DNA Breaks, Double-Stranded/radiation effects , DNA Damage/genetics , DNA Repair/genetics , DNA Repair/radiation effects , Humans , Radiation, Ionizing
13.
Radiother Oncol ; 121(1): 154-161, 2016 10.
Article in English | MEDLINE | ID: mdl-27637859

ABSTRACT

BACKGROUND AND PURPOSE: High linear energy transfer (LET) radiotherapy offers superior dose conformity and biological effectiveness compared with low-LET radiotherapy, representing a promising alternative for radioresistant tumours. A prevailing hypothesis is that energy deposition along the high-LET particle trajectories induces DNA lesions that are more complex and clustered and therefore more challenging to repair. The precise molecular mechanisms underlying the differences in radiobiological effects between high-LET and low-LET radiotherapies remain unclear. MATERIAL AND METHODS: Human fibroblasts were irradiated with high-LET carbon ions or low-LET photons. At 0.5h and 5h post exposure, the DNA-damage pattern in the chromatin ultrastructure was visualised using gold-labelled DNA-repair factors. The induction and repair of single-strand breaks, double-strand breaks (DSBs), and clustered lesions were analysed in combination with terminal dUTP nick-end labelling of DNA breaks. RESULTS: High-LET irradiation induced clustered lesions with multiple DSBs along ion trajectories predominantly in heterochromatic regions. The cluster size increased over time, suggesting inefficient DSB repair. Low-LET irradiation induced many isolated DSBs throughout the nucleus, most of which were efficiently rejoined. CONCLUSIONS: The clustering of DSBs in heterochromatin following high-LET irradiation perturbs efficient DNA repair, leading to greater biological effectiveness of high-LET irradiation versus that of low-LET irradiation.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , DNA/radiation effects , Fibroblasts/radiation effects , Heterochromatin/genetics , Cells, Cultured , Humans , Linear Energy Transfer , Radiotherapy
14.
Nucleic Acids Res ; 44(4): 1732-45, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26712563

ABSTRACT

Multiple DNA double-strand break (DSB) repair pathways are active in S phase of the cell cycle; however, DSBs are primarily repaired by homologous recombination (HR) in this cell cycle phase. As the non-homologous end-joining (NHEJ) factor, Ku70/80 (Ku), is quickly recruited to DSBs in S phase, we hypothesized that an orchestrated mechanism modulates pathway choice between HR and NHEJ via displacement of the Ku heterodimer from DSBs to allow HR. Here, we provide evidence that phosphorylation at a cluster of sites in the junction of the pillar and bridge regions of Ku70 mediates the dissociation of Ku from DSBs. Mimicking phosphorylation at these sites reduces Ku's affinity for DSB ends, suggesting that phosphorylation of Ku70 induces a conformational change responsible for the dissociation of the Ku heterodimer from DNA ends. Ablating phosphorylation of Ku70 leads to the sustained retention of Ku at DSBs, resulting in a significant decrease in DNA end resection and HR, specifically in S phase. This decrease in HR is specific as these phosphorylation sites are not required for NHEJ. Our results demonstrate that the phosphorylation-mediated dissociation of Ku70/80 from DSBs frees DNA ends, allowing the initiation of HR in S phase and providing a mechanism of DSB repair pathway choice in mammalian cells.


Subject(s)
Antigens, Nuclear/genetics , DNA Breaks, Double-Stranded , DNA End-Joining Repair/genetics , DNA-Binding Proteins/genetics , S Phase/genetics , Animals , DNA Damage/genetics , DNA Repair/genetics , Fibroblasts/metabolism , HCT116 Cells , Homologous Recombination , Humans , Ku Autoantigen , Mice , Signal Transduction
15.
Sci Rep ; 5: 13861, 2015 Sep 09.
Article in English | MEDLINE | ID: mdl-26350345

ABSTRACT

Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.


Subject(s)
Hydrogen Peroxide/metabolism , Potassium Channels/metabolism , Signal Transduction/radiation effects , X-Rays , Calcium/metabolism , Cell Line , Cell Nucleus/metabolism , Cytosol/metabolism , Glutathione/metabolism , Humans , Oxidation-Reduction
16.
Nucleic Acids Res ; 43(17): 8352-67, 2015 Sep 30.
Article in English | MEDLINE | ID: mdl-26240375

ABSTRACT

The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/metabolism , Recombinational DNA Repair , Signal Transduction , Cell Line , Cell Line, Tumor , DNA Damage , DNA-Binding Proteins/chemistry , Humans , Phosphorylation , Radiation, Ionizing
17.
PLoS One ; 10(6): e0129416, 2015.
Article in English | MEDLINE | ID: mdl-26067661

ABSTRACT

We present here an analysis of DSB induction and processing after irradiation with X-rays in an extended dose range based on the use of the γH2AX assay. The study was performed by quantitative flow cytometry measurements, since the use of foci counting would result in reasonable accuracy only in a limited dose range of a few Gy. The experimental data are complemented by a theoretical analysis based on the GLOBLE model. In fact, original aim of the study was to test GLOBLE predictions against new experimental data, in order to contribute to the validation of the model. Specifically, the γH2AX signal kinetics has been investigated up to 24 h after exposure to increasing photon doses between 2 and 500 Gy. The prolonged persistence of the signal at high doses strongly suggests dose dependence in DSB processing after low LET irradiation. Importantly, in the framework of our modelling analysis, this is related to a gradually increased fraction of DSB clustering at the micrometre scale. The parallel study of γH2AX dose response curves shows the onset of a pronounced saturation in two cell lines at a dose of about 20 Gy. This dose is much lower than expected according to model predictions based on the values usually adopted for the DSB induction yield (≈ 30 DSB/Gy) and for the γH2AX foci extension of approximately 2 Mbp around the DSB. We show and discuss how theoretical predictions and experimental findings can be in principle reconciled by combining an increased DSB induction yield with the assumption of a larger genomic extension for the single phosphorylated regions. As an alternative approach, we also considered in our model the possibility of a 3D spreading-mechanism of the H2AX phosphorylation around the induced DSB, and applied it to the analysis of both the aspects considered. Our results are found to be supportive for the basic assumptions on which GLOBLE is built. Apart from giving new insights into the H2AX phosphorylation process, experiments performed at high doses are of relevance in the context of radiation therapy, where hypo-fractionated schemes become increasingly popular.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , Dose-Response Relationship, Radiation , Histones/metabolism , Models, Molecular , Animals , CHO Cells , Cell Nucleus/chemistry , Cell Nucleus/genetics , Cell Nucleus/radiation effects , Cells, Cultured , Cricetulus , Fibroblasts/radiation effects , Fluorescence , Histones/chemistry , Histones/radiation effects , Kinetics , Phosphorylation , Signal Transduction/radiation effects , X-Rays
18.
DNA Repair (Amst) ; 28: 93-106, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25659339

ABSTRACT

Low- and high-linear energy transfer (LET) ionising radiation are effective cancer therapies, but produce structurally different forms of DNA damage. Isolated DNA damage is repaired efficiently; however, clustered lesions may be more difficult to repair, and are considered as significant biological endpoints. We investigated the formation and repair of DNA double-strand breaks (DSBs) and clustered lesions in human fibroblasts after exposure to sparsely (low-LET; delivered by photons) and densely (high-LET; delivered by carbon ions) ionising radiation. DNA repair factors (pKu70, 53BP1, γH2AX, and pXRCC1) were detected using immunogold-labelling and electron microscopy, and spatiotemporal DNA damage patterns were analysed within the nuclear ultrastructure at the nanoscale level. By labelling activated Ku-heterodimers (pKu70) the number of DSBs was determined in electron-lucent euchromatin and electron-dense heterochromatin. Directly after low-LET exposure (5 min post-irradiation), single pKu70 dimers, which reflect isolated DSBs, were randomly distributed throughout the entire nucleus with a linear dose correlation up to 30 Gy. Most euchromatic DSBs were sensed and repaired within 40 min, whereas heterochromatic DSBs were processed with slower kinetics. Essentially all DNA lesions induced by low-LET irradiation were efficiently rejoined within 24h post-irradiation. High-LET irradiation caused localised energy deposition within the particle tracks, and generated highly clustered DNA lesions with multiple DSBs in close proximity. The dimensions of these clustered lesions along the particle trajectories depended on the chromatin packing density, with huge DSB clusters predominantly localised in condensed heterochromatin. High-LET irradiation-induced clearly higher DSB yields than low-LET irradiation, with up to ∼ 500 DSBs per µm(3) track volume, and large fractions of these heterochromatic DSBs remained unrepaired. Hence, the spacing and quantity of DSBs in clustered lesions influence DNA repair efficiency, and may determine the radiobiological outcome.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , Linear Energy Transfer , Radiation, Ionizing , Heterochromatin , Humans , Kinetics , Microscopy, Electron
19.
Cell Cycle ; 13(16): 2509-16, 2014.
Article in English | MEDLINE | ID: mdl-25486192

ABSTRACT

Repair of DNA double strand breaks (DSBs) is influenced by the chemical complexity of the lesion. Clustered lesions (complex DSBs) are generally considered more difficult to repair and responsible for early and late cellular effects after exposure to genotoxic agents. Resection is commonly used by the cells as part of the homologous recombination (HR) pathway in S- and G2-phase. In contrast, DNA resection in G1-phase may lead to an error-prone microhomology-mediated end joining. We induced DNA lesions with a wide range of complexity by irradiation of mammalian cells with X-rays or accelerated ions of different velocity and mass. We found replication protein A (RPA) foci indicating DSB resection both in S/G2- and G1-cells, and the fraction of resection-positive cells correlates with the severity of lesion complexity throughout the cell cycle. Besides RPA, Ataxia telangiectasia and Rad3-related (ATR) was recruited to complex DSBs both in S/G2- and G1-cells. Resection of complex DSBs is driven by meiotic recombination 11 homolog A (MRE11), CTBP-interacting protein (CtIP), and exonuclease 1 (EXO1) but seems not controlled by the Ku heterodimer or by phosphorylation of H2AX. Reduced resection capacity by CtIP depletion increased cell killing and the fraction of unrepaired DSBs after exposure to densely ionizing heavy ions, but not to X-rays. We conclude that in mammalian cells resection is essential for repair of complex DSBs in all phases of the cell-cycle and targeting this process sensitizes mammalian cells to cytotoxic agents inducing clustered breaks, such as in heavy-ion cancer therapy.


Subject(s)
DNA Breaks, Double-Stranded/radiation effects , DNA End-Joining Repair , G1 Phase , Cell Line , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , G1 Phase/genetics , G2 Phase/genetics , Histones/genetics , Histones/metabolism , Humans , MRE11 Homologue Protein , Phosphorylation , S Phase/genetics , X-Rays
20.
PLoS One ; 9(3): e92640, 2014.
Article in English | MEDLINE | ID: mdl-24651490

ABSTRACT

Ionizing radiation induces DNA double strand breaks (DSBs) which can lead to the formation of chromosome rearrangements through error prone repair. In mammalian cells the positional stability of chromatin contributes to the maintenance of genome integrity. DSBs exhibit only a small, submicron scale diffusive mobility, but a slight increase in the mobility of chromatin domains by the induction of DSBs might influence repair fidelity and the formation of translocations. The radiation-induced local DNA decondensation in the vicinity of DSBs is one factor potentially enhancing the mobility of DSB-containing chromatin domains. Therefore in this study we focus on the influence of different chromatin modifying proteins, known to be activated by the DNA damage response, on the mobility of DSBs. IRIF (ionizing radiation induced foci) in U2OS cells stably expressing 53BP1-GFP were used as a surrogate marker of DSBs. Low angle charged particle irradiation, known to trigger a pronounced DNA decondensation, was used for the defined induction of linear tracks of IRIF. Our results show that movement of IRIF is independent of the investigated chromatin modifying proteins like ACF1 or PARP1 and PARG. Also depletion of proteins that tether DNA strands like MRE11 and cohesin did not alter IRIF dynamics significantly. Inhibition of ATM, a key component of DNA damage response signaling, resulted in a pronounced confinement of DSB mobility, which might be attributed to a diminished radiation induced decondensation. This confinement following ATM inhibition was confirmed using X-rays, proving that this effect is not restricted to densely ionizing radiation. In conclusion, repair sites of DSBs exhibit a limited mobility on a small spatial scale that is mainly unaffected by depletion of single remodeling or DNA tethering proteins. However, it relies on functional ATM kinase which is considered to influence the chromatin structure after irradiation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Breaks, Double-Stranded , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Chromatin Assembly and Disassembly , Chromosomal Proteins, Non-Histone/metabolism , DNA Repair , Gene Expression , Gene Knockdown Techniques , Genes, Reporter , Humans , Multiprotein Complexes/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Transcription Factors/metabolism , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...