Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biomolecules ; 13(2)2023 02 07.
Article in English | MEDLINE | ID: mdl-36830678

ABSTRACT

Serotonin (5-HT) plays an important role in the regulation of several basic functions of the central and peripheral nervous system. Among the 5-HT receptors, serotonin-6 (5-HT6) receptor has been an area of substantial research. 5-HT6 receptor is a G-protein-coupled receptor mediating its effects through diverse signaling pathways. Exceptional features of the receptors fueling drug discovery efforts include unique localization and specific distribution in the brain regions having a role in learning, memory, mood, and behavior, and the affinity of several clinically used psychotropic agents. Although non-clinical data suggest that both agonist and antagonist may have similar behavioral effects, most of the agents that entered clinical evaluation were antagonists. Schizophrenia was the initial target; more recently, cognitive deficits associated with Alzheimer's disease (AD) or other neurological disorders has been the target for clinically evaluated 5-HT6 receptor antagonists. Several 5-HT6 receptor antagonists (idalopirdine, intepirdine and latrepirdine) showed efficacy in alleviating cognitive deficits associated with AD in the proof-of-concept clinical studies; however, the outcomes of the subsequent phase 3 studies were largely disappointing. The observations from both non-clinical and clinical studies suggest that 5-HT6 receptor antagonists may have a role in the management of neuropsychiatric symptoms in dementia. Masupirdine, a selective 5-HT6 receptor antagonist, reduced agitation/aggression-like behaviors in animal models, and a post hoc analysis of a phase 2 trial suggested potential beneficial effects on agitation/aggression and psychosis in AD. This agent will be assessed in additional trials, and the outcome of the trials will inform the use of 5-HT6 receptor antagonists in the treatment of agitation in dementia of the Alzheimer's type.


Subject(s)
Alzheimer Disease , Serotonin , Animals , Alzheimer Disease/metabolism , Receptors, Serotonin/metabolism , Serotonin Antagonists/therapeutic use
2.
Article in English | MEDLINE | ID: mdl-36168659

ABSTRACT

OBJECTIVES: The effects of masupirdine on the neuropsychiatric symptoms were explored. METHODS: Masupirdine (SUVN-502) was evaluated for its effects on cognition in patients with moderate AD. The prespecified primary outcome showed no drug-placebo difference. Post hoc analyses of domains of the 12-item neuropsychiatric inventory scale were carried out. RESULTS: In a subgroup of patients (placebo, n = 57; masupirdine 50 mg, n = 53; masupirdine 100 mg, n = 48) with baseline agitation/aggression symptoms ≥1, a statistically significant reduction in agitation/aggression scores was observed in masupirdine 50 mg (95% confidence interval (CI), -1.9 to -0.5, p < 0.001) and masupirdine 100 mg (95% CI, -1.7 to -0.3, p = 0.007) treated arms at Week 13 in comparison to placebo and the effect was sustained for trial duration of 26 weeks in the masupirdine 50 mg treatment arm (95% CI, -2.3 to -0.8, p < 0.001). Similar observations were noted in the subgroup of patients (placebo, n = 29; masupirdine 50 mg, n = 30; masupirdine 100 mg, n = 21) with baseline agitation/aggression symptoms ≥3. In the subgroup of patients (placebo, n = 28; masupirdine 50 mg, n = 28; masupirdine 100 mg, n = 28) who had baseline psychosis symptoms and/or symptom emergence, a significant reduction in psychosis scores was observed in the masupirdine 50 mg (Week 4: 95% CI, -2.8 to -1.4, p < 0.001; Week 13: 95% CI, -3.3 to -1.3, p < 0.001) and masupirdine 100 mg (Week 4: 95% CI, -1.4 to 0, p = 0.046; Week 13: 95% CI, -1.9 to 0.1, p = 0.073) treatment arms in comparison to placebo. CONCLUSION: Further research is warranted to explore the potential beneficial effects of masupirdine on NPS.


Subject(s)
Alzheimer Disease , Psychotic Disorders , Aggression , Alzheimer Disease/psychology , Double-Blind Method , Humans , Indoles , Piperazines , Psychomotor Agitation/drug therapy , Psychomotor Agitation/etiology , Psychomotor Agitation/psychology , Psychotic Disorders/drug therapy , Psychotic Disorders/psychology , Treatment Outcome
3.
Neurol Ther ; 11(4): 1583-1594, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35908254

ABSTRACT

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration in cognition, memory and activities of daily living. Selective blockade of serotonin-6 (5-HT6) receptors, which are exclusively localized to the central nervous system, is reported to play an important role in learning and memory. Masupirdine is a potent and selective 5-HT6 receptor antagonist with pro-cognitive properties in animal models of cognition. METHODS: The efficacy and safety of masupirdine were evaluated in patients with moderate AD concurrently treated with donepezil and memantine. A total of 564 patients were randomized in a 1:1:1 ratio. The study consisted of a 26-week double-blind treatment period. The primary efficacy outcome was the 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog 11). Changes from baseline were analyzed using a mixed effects model for repeated measures (MMRM). In exploratory post hoc analyses, patients were subdivided based on the use of memantine dosage forms and memantine plasma concentrations, to evaluate the impact of memantine on the efficacy of masupirdine. RESULTS: In an exploratory post hoc analysis, less worsening in cognition (ADAS-Cog 11 scores) was observed with masupirdine treatment as compared with placebo in patients whose trough memantine plasma concentrations were ≤ 100 ng/mL. CONCLUSIONS: Although prespecified study endpoints of the phase 2 study were not met, these exploratory post hoc subgroup observations are hypothesis-generating and suggest that the efficacy of masupirdine was adversely affected by concurrent therapy with memantine. Further assessment of masupirdine to determine its potential role as a treatment option for cognitive deficits associated with AD is warranted. TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov (NCT02580305).

4.
Alzheimers Dement (N Y) ; 8(1): e12307, 2022.
Article in English | MEDLINE | ID: mdl-35662833

ABSTRACT

Introduction: This study explored the efficacy and safety of a serotonin-6 receptor antagonist, masupirdine, as adjunct treatment in patients with moderate Alzheimer's disease (AD) concomitantly treated with donepezil and memantine. Methods: The effects of masupirdine were evaluated in patients with moderate AD dementia on background treatment with donepezil and memantine. Five hundred thirty-seven patients were expected to be randomized in a 1:1:1 ratio, using permuted blocked randomization. After a 2- to 4-week screening period, the study consisted of a 26-week double-blind treatment period, and a 4-week washout period. The primary efficacy measure was the 11-item cognitive subscale of the Alzheimer's Disease Assessment Scale (ADAS-Cog 11). Secondary efficacy measures were Clinical Dementia Rating Scale-Sum of Boxes, Mini-Mental State Examination, 23-item Alzheimer's Disease Co-operative Study Activities of Daily Living, and 12-item Neuropsychiatric Inventory. Changes from baseline were analyzed using a mixed effects model for repeated measures (MMRM). A total of 564 patients were randomized to receive either daily masupirdine 50 mg (190 patients), masupirdine 100 mg (185 patients), or placebo (189 patients). The study is registered at ClinicalTrials.gov (NCT02580305). Results: The MMRM results showed statistically non-significant treatment differences in change from baseline in ADAS-Cog 11 scores at week 26, comparing each masupirdine dose arm to the placebo arm. No significant treatment effects were observed in the secondary evaluations. Discussion: Masupirdine was generally safe and well tolerated. Possible reasons for the observed trial results are discussed. Highlights: Masupirdine was evaluated in moderate Alzheimer's disease patients.First trial in class with background treatment of donepezil and memantine.Masupirdine was generally safe and well tolerated.Possible reasons for the observed trial results are discussed.

5.
Psychopharmacology (Berl) ; 239(7): 2215-2232, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35298691

ABSTRACT

RATIONALE: Ropanicant (SUVN-911) (3-(6-Chloropyridine-3-yloxymethyl)-2-azabicyclo (3.1.0) hexane hydrochloride) is a novel α4ß2 nicotinic acetylcholine receptor (nAChR) antagonist being developed for the treatment of depressive disorders. OBJECTIVES: Pharmacological and neurochemical characterization of Ropanicant to support a potential molecule for the treatment of depressive disorders. METHODS: Ropanicant was assessed for antidepressant-like activity using the rat forced swimming test (FST) and differential reinforcement of low rate -72 s (DRL-72 s). Alleviation of anhedonia was assessed in chronic mild stress model using sucrose preference test. To understand the mechanism of action, serotonin levels, ionized calcium-binding adaptor molecule 1 (Iba1), and brain-derived neurotrophic factor (BDNF) were determined. The onset of antidepressant-like activity was determined using the reduction in submissive behavior assay. The effects on cognition and sexual functions were assessed using the object recognition task and sexual dysfunction assay respectively. Interaction of Ropanicant, TC-5214, and methyllycaconitine (MLA) with citalopram was investigated individually in mice FST. RESULTS: Ropanicant exhibited antidepressant like properties in the FST and DRL-72 s. A significant reduction in anhedonia was observed in the sucrose preference test. Oral administration of Ropanicant produced a significant increase in serotonin and BDNF levels, with a reduction in the Iba1 activity. The onset of antidepressant like effect with Ropanicant was within a week of treatment, and was devoid of cognitive dulling and sexual dysfunction. While Ropanicant potentiated the effect of citalopram in FST, such an effect was not observed with MLA or TC-5214. CONCLUSIONS: Preclinical studies with Ropanicant support the likelihood of its therapeutic utility in the treatment of depressive disorders.


Subject(s)
Antidepressive Agents , Depressive Disorder , Nicotinic Antagonists , Anhedonia , Animals , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor , Citalopram/pharmacology , Depressive Disorder/drug therapy , Disease Models, Animal , Mice , Nicotinic Antagonists/pharmacology , Rats , Receptors, Nicotinic , Serotonin , Sucrose , Swimming
6.
J Med Chem ; 64(15): 10641-10665, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34251799

ABSTRACT

A series of oxadiazole derivatives were synthesized and evaluated as 5-hydroxytryptamine-4 receptor (5-HT4R) partial agonists for the treatment of cognitive deficits associated with Alzheimer's disease. Starting from a reported 5-HT4R antagonist, a systematic structure-activity relationship was conducted, which led to the discovery of potent and selective 5-HT4R partial agonist 1-isopropyl-3-{5-[1-(3-methoxypropyl) piperidin-4-yl]-[1,3,4]oxadiazol-2-yl}-1H-indazole oxalate (Usmarapride, 12l). It showed balanced physicochemical-pharmacokinetic properties with robust nonclinical efficacy in cognition models. It also showed disease-modifying potential, as it increased neuroprotective soluble amyloid precursor protein alpha levels, and dose-dependent target engagement and correlation of efficacy with oral exposures. Phase 1 clinical studies have been completed and projected efficacious concentration was achieved without any major safety concerns. Phase 2 enabling long-term safety studies have been completed with no concerns for further development.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Drug Discovery , Neuroprotective Agents/pharmacology , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/pharmacology , Alzheimer Disease/metabolism , Cognition Disorders/metabolism , Dose-Response Relationship, Drug , Humans , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Serotonin 5-HT4 Receptor Agonists/chemical synthesis , Serotonin 5-HT4 Receptor Agonists/chemistry , Structure-Activity Relationship
7.
J Psychopharmacol ; 35(6): 713-729, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33546570

ABSTRACT

BACKGROUND: Central histamine H3 receptors are a family of presynaptic auto and heteroreceptors. Blockade of the presynaptic H3 receptors activates the downstream pathway(s) involved in the processes of learning and memory, making it a potential therapeutic option for ameliorating cognitive dysfunction. Samelisant (SUVN-G3031) is a potent and selective inverse agonist at the H3 receptors. AIM: The aim of this research is to study the effects of Samelisant in diverse animal models of cognitive functions. METHODS: The effects of Samelisant on cognitive functions were studied using social recognition, object recognition and Morris water maze tasks. Neurochemical and electrophysiological effects of Samelisant were monitored using microdialysis and electroencephalography techniques. RESULTS: Samelisant showed procognitive effects in diverse animal models of cognition at doses ranging from 0.3 to 3 mg/kg, per os (p.o.) (social recognition and object recognition task). Samelisant significantly increased the brain acetylcholine levels in the cortex at doses of 10 and 20 mg/kg, p.o. In the Morris water maze task, combined administration of suboptimal doses of Samelisant and donepezil resulted in procognitive effects significantly larger than the either treatment. Similarly, Samelisant significantly potentiated the effects of donepezil on pharmacodynamic biomarkers of cognition i.e. acetylcholine levels in brain and neuronal theta oscillations. CONCLUSION: Samelisant may have potential utility in the treatment of cognitive deficits associated with hypocholinergic state.


Subject(s)
Cognition/drug effects , Histamine Agonists/pharmacology , Morpholines/pharmacology , Piperidines/pharmacology , Receptors, Histamine H3/drug effects , Animals , Cognition Disorders/drug therapy , Donepezil/administration & dosage , Donepezil/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , Histamine Agonists/administration & dosage , Male , Maze Learning/drug effects , Morpholines/administration & dosage , Nootropic Agents/administration & dosage , Nootropic Agents/pharmacology , Piperidines/administration & dosage , Rats , Rats, Wistar , Receptors, Histamine H3/metabolism
8.
Psychopharmacology (Berl) ; 238(6): 1495-1511, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33550481

ABSTRACT

RATIONALE: Samelisant (SUVN-G3031) is a potent and selective histamine H3 receptor (H3R) inverse agonist with good brain penetration and oral bioavailability. OBJECTIVES: Pharmacological and neurochemical characterisation to support the utility of Samelisant (SUVN-G3031) in the treatment of sleep-related disorders like narcolepsy. METHODS: Samelisant (SUVN-G3031) was tested in rat brain microdialysis studies for evaluation of modulation in histamine, dopamine and norepinephrine. Sleep EEG studies were carried out in orexin knockout mice to study the effects of Samelisant (SUVN-G3031) on the sleep-wake cycle and cataplexy. RESULTS: Samelisant (SUVN-G3031) has a similar binding affinity towards human (hH3R; Ki = 8.7 nM) and rat (rH3R; Ki = 9.8 nM) H3R indicating no inter-species differences. Samelisant (SUVN-G3031) displays inverse agonist activity and it exhibits very high selectivity towards H3R. Samelisant (SUVN-G3031) treatment in mice produced a dose-dependent increase in tele-methylhistamine levels indicating the activation of histaminergic neurotransmission. Apart from increasing the levels of histamine, Samelisant (SUVN-G3031) also modulates dopamine and norepinephrine levels in the cerebral cortex while it has no effects on dopamine levels in the striatum or nucleus accumbens. Treatment with Samelisant (SUVN-G3031; 10 and 30 mg/kg, p.o.) produced a significant increase in wakefulness with a concomitant decrease in NREM sleep in orexin knockout mice subjected to sleep EEG. Samelisant (SUVN-G3031) also produced a significant decrease in Direct REM sleep onset (DREM) episodes, demonstrating its anticataplectic effects in an animal model relevant to narcolepsy. Modulation in cortical levels of histamine, norepinephrine and dopamine provides the neurochemical basis for wake-promoting and anticataplectic effects observed in orexin knockout mice. CONCLUSIONS: Pre-clinical studies of Samelisant (SUVN-G3031) provide a strong support for utility in the treatment of sleep-related disorders related to EDS and is currently being evaluated in a phase 2 proof of concept study in the USA for the treatment of narcolepsy with and without cataplexy.


Subject(s)
Histamine Agonists/pharmacology , Morpholines/pharmacology , Narcolepsy/drug therapy , Piperidines/pharmacology , Animals , Electroencephalography , Histamine/metabolism , Humans , Male , Methylhistamines/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Orexins/genetics , Rats , Rats, Wistar , Sleep/drug effects , Wakefulness/drug effects
9.
J Med Chem ; 63(6): 2833-2853, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32026697

ABSTRACT

A series of chemical optimizations guided by in vitro affinity at the α4ß2 receptor in combination with selectivity against the α3ß4 receptor, pharmacokinetic evaluation, and in vivo efficacy in a forced swim test resulted in identification of 3-(6-chloropyridine-3-yloxymethyl)-2-azabicyclo[3.1.0]hexane hydrochloride (9h, SUVN-911) as a clinical candidate. Compound 9h is a potent α4ß2 receptor ligand with a Ki value of 1.5 nM. It showed >10 µM binding affinity toward the ganglionic α3ß4 receptor apart from showing selectivity over 70 other targets. It is orally bioavailable and showed good brain penetration in rats. Marked antidepressant activity and dose-dependent receptor occupancy in rats support its potential therapeutic utility in the treatment of depression. It does not affect the locomotor activity at doses several folds higher than its efficacy dose. It is devoid of cardiovascular and gastrointestinal side effects. Successful long-term safety studies in animals and phase-1 evaluation in healthy humans for safety, tolerability, and pharmacokinetics paved the way for its further development.


Subject(s)
Antidepressive Agents/pharmacology , Nicotinic Antagonists/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/metabolism , Administration, Oral , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/chemistry , Bridged Bicyclo Compounds/administration & dosage , Bridged Bicyclo Compounds/chemistry , Bridged Bicyclo Compounds/pharmacology , Depression/drug therapy , Halogenation , Humans , Male , Nicotinic Antagonists/administration & dosage , Nicotinic Antagonists/chemistry , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Rats, Wistar
10.
J Med Chem ; 62(3): 1203-1217, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30629436

ABSTRACT

A series of chemical optimizations guided by in vitro affinity at a histamine H3 receptor (H3R), physicochemical properties, and pharmacokinetics in rats resulted in identification of N-[4-(1-cyclobutyl-piperidin-4-yloxy)phenyl]-2-(morpholin-4-yl)acetamide dihydrochloride (17v, SUVN-G3031) as a clinical candidate. Compound 17v is a potent (hH3R Ki = 8.73 nM) inverse agonist at H3R with selectivity over other 70 targets, Compound 17v has adequate oral exposures and favorable elimination half-lives both in rats and dogs. It demonstrated high receptor occupancy and marked wake-promoting effects with decreased rapid-eye-movement sleep in orexin-B saporin lesioned rats supporting its potential therapeutic utility in treating human sleep disorders. It had no effect on the locomotor activity at doses several fold higher than its efficacious dose. It is devoid of hERG and phospholipidosis issues. Phase-1 evaluation for safety, tolerability, and pharmacokinetics, and long-term safety studies in animals have been successfully completed without any concern for further development.


Subject(s)
Drug Development , Drug Discovery , Drug Inverse Agonism , Histamine Agonists/pharmacology , Morpholines/pharmacology , Piperidines/pharmacology , Receptors, Histamine H3/drug effects , Wakefulness/drug effects , Administration, Oral , Animals , Caco-2 Cells , Dogs , Histamine Agonists/administration & dosage , Histamine Agonists/chemistry , Humans , Male , Morpholines/administration & dosage , Morpholines/chemistry , Morpholines/pharmacokinetics , Piperidines/administration & dosage , Piperidines/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship
11.
Behav Pharmacol ; 30(1): 16-35, 2019 02.
Article in English | MEDLINE | ID: mdl-29847336

ABSTRACT

Research in Alzheimer's disease is going through a big turnaround. New palliative therapies are being reconsidered for the effective management of disease because of setbacks in the development of disease-modifying therapies. Serotonin 6 (5-HT6) receptor has long been pursued as a potential target for the symptomatic treatment of Alzheimer's disease. SUVN-502 is a novel 5-HT6 receptor antagonist (Ki=2.04 nmol/l) with high receptor affinity and high degree of selectivity. SUVN-502 at doses ranging from 1 to 10 mg/kg, per os (p.o.) demonstrated procognitive effects in various behavioral animal models (object recognition task, water maze, and radial arm maze), and it acts on three phases of cognition, viz., acquisition, consolidation, and retention (object recognition task). SUVN-502 (3 and 10 mg/kg, p.o.) modulated glutamate levels when administered alone (microdialysis). At doses ranging from 1 to 10 mg/kg p.o., SUVN-502 potentiated the effects of donepezil (microdialysis). SUVN-502 [1 mg/kg, intravenous (i.v.)] also potentiated pharmacological effects of memantine (1 mg/kg, i.v.) and/or donepezil (0.3 mg/kg, i.v.) (θ modulation). The beneficial effects of SUVN-502 on learning and memory might be mediated through the modulation of cholinergic and/or glutamatergic neurotransmission in relevant brain regions. In summary, behavioral, neurochemical, and electrophysiological outcomes indicate that SUVN-502 may augment the beneficial effects of donepezil and memantine combination.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Indoles/pharmacology , Piperazines/pharmacology , Serotonin Antagonists/pharmacology , Acetylcholine/pharmacology , Animals , Brain Waves/drug effects , CHO Cells , Cricetulus , Culture Media, Serum-Free/pharmacology , Dizocilpine Maleate/pharmacology , Donepezil/pharmacology , Dose-Response Relationship, Drug , Electroencephalography , Glutamic Acid/pharmacology , Male , Maze Learning/drug effects , Memantine/pharmacology , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Microdialysis , Nootropic Agents/pharmacology , Rats , Rats, Wistar , Receptors, Serotonin/metabolism , Recognition, Psychology/drug effects , Scopolamine/toxicity , Serotonin/metabolism
12.
J Med Chem ; 60(5): 1843-1859, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28212021

ABSTRACT

Optimization of a novel series of 3-(piperazinylmethyl) indole derivatives as 5-hydroxytryptamine-6 receptor (5-HT6R) antagonists resulted in identification of 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole dimesylate monohydrate (5al, SUVN-502) as a clinical candidate for potential treatment of cognitive disorders. It has high affinity at human 5-HT6R (Ki = 2.04 nM) and selectivity over 100 target sites which include receptors, enzymes, peptides, growth factors, ion channels, steroids, immunological factors, second messengers, and prostaglandins. It has high selectivity over 5-HT2A receptor. It is orally bioavailable and brain penetrant with robust preclinical efficacy. The combination of 5al, donepezil, and memantine (triple combination) produces synergistic effects in extracellular levels of acetylcholine in the ventral hippocampus. Preclinical efficacy in triple combination and high selectivity over 5-HT2A receptors are the differentiating features which culminated in selection of 5al for further development. The Phase-1 evaluation of safety and pharmacokinetics has been completed, allowing for the initiation of a Phase-2 proof of concept study.


Subject(s)
Alzheimer Disease/drug therapy , Indoles/pharmacology , Piperazines/pharmacology , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , Administration, Oral , Animals , Drug Discovery , Humans , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacokinetics , Male , Piperazines/administration & dosage , Piperazines/chemistry , Piperazines/pharmacokinetics , Rats , Rats, Wistar , Serotonin Antagonists/pharmacokinetics , Serotonin Antagonists/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...