Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Geroscience ; 46(1): 841-852, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37217631

ABSTRACT

In humans, social participation and integration wane with advanced age, a pattern hypothesized to stem from cognitive or physical decrements. Similar age-related decreases in social participation have been observed in several nonhuman primate species. Here, we investigated cross-sectional age-related associations between social interactions, activity patterns, and cognitive function in 25 group-living female vervets (a.k.a. African green monkeys, Chlorocebus sabaeus) aged 8-29 years. Time spent in affiliative behavior decreased with age, and time spent alone correspondingly increased. Furthermore, time spent grooming others decreased with age, but the amount of grooming received did not. The number of social partners to whom individuals directed grooming also decreased with age. Grooming patterns mirrored physical activity levels, which also decreased with age. The relationship between age and grooming time was mediated, in part, by cognitive performance. Specifically, executive function significantly mediated age's effect on time spent in grooming interactions. In contrast, we did not find evidence that physical performance mediated age-related variation in social participation. Taken together, our results suggest that aging female vervets were not socially excluded but decreasingly engaged in social behavior, and that cognitive deficits may underlie this relationship.


Subject(s)
Executive Function , Social Behavior , Humans , Animals , Chlorocebus aethiops , Female , Cross-Sectional Studies , Aging , Social Integration
2.
Am J Primatol ; 86(2): e23582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38050788

ABSTRACT

Nonhuman primates (NHPs) are valuable models for studying healthspan, including frailty development. Frailty metrics in people centers on functional measures, including usual gait speed which can be predictive of all-cause mortality. This concept that physical competencies are able to prognosticate an individual's health trajectory over chronologic aging is well-accepted and has led to refinements in how physical function is evaluated, and include measures of strength and power along with walking speed. NHP studies of aging require evaluation of physical function, which can be difficult in field and research settings. We compared stair climb velocity to usual walking speed in 28 peri-geriatric to geriatric NHPs, as incorporating a climbing obstacle integrates multiple components of physical function: isolated leg and back strength, proprioception, balance, and range of motion. We find that stair climbing speed was reliable between observers, and whether timing was in-person take from video capture. The stair climb rates were 50% more associated with chronological age than walking speed (R = -0.68 vs. -0.45) and only stair climbing speeds were retained as predictive of age when walking speed and bodyweight were included in multivariate models (overall R2 = 0.44; p < 0.0001). When comparing young (10-16 years) versus geriatric (16-29 years) stair climbing speed was significantly different (p < 0.001), while walking speeds only tended to be slower (p = 0.12) suggesting that the additional challenge of a stair climb better unmasks subclinical frailty development that usual walking speed.


Subject(s)
Frailty , Animals , Aging , Primates
3.
J Med Chem ; 66(13): 9120-9129, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37315328

ABSTRACT

G-protein-coupled receptor 119 (GPR119) has emerged as a promising target for treating type 2 diabetes mellitus. Activating GPR119 improves glucose homeostasis, while suppressing appetite and weight gain. Measuring GPR119 levels in vivo could significantly advance GPR119-based drug development strategies including target engagement, occupancy, and distribution studies. To date, no positron emission tomography (PET) ligands are available to image GPR119. In this paper, we report the synthesis, radiolabeling, and preliminary biological evaluations of a novel PET radiotracer [18F]KSS3 to image GPR119. PET imaging will provide information on GPR119 changes with diabetic glycemic loads and the efficacy of GPR119 agonists as antidiabetic drugs. Our results demonstrate [18F]KSS3's high radiochemical purity, specific activity, cellular uptake, and in vivo and ex vivo uptake in pancreas, liver, and gut regions, with high GPR119 expression. Cell pretreatment with nonradioactive KSS3, rodent PET imaging, biodistribution, and autoradiography studies showed significant blocking in the pancreas showing [18F]KSS3's high specificity.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Ligands , Diabetes Mellitus, Type 2/drug therapy , Radiochemistry , Tissue Distribution , Positron-Emission Tomography/methods , Fluorine Radioisotopes , Receptors, G-Protein-Coupled/metabolism
4.
NPJ Vaccines ; 8(1): 45, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36949051

ABSTRACT

Respiratory syncytial virus (RSV) is a leading cause of severe respiratory disease for which no licensed vaccine is available. We have previously shown that a prefusion (preF) conformation-stabilized RSV F protein antigen and an adenoviral vector encoding RSV preF protein (Ad26.RSV.preF) are immunogenic and protective in animals when administered as single components. Here, we evaluated a combination of the 2 components, administered as a single injection. Strong induction of both humoral and cellular responses was shown in RSV-naïve and pre-exposed mice and pre-exposed African green monkeys (AGMs). Both components of the combination vaccine contributed to humoral immune responses, while the Ad26.RSV.preF component was the main contributor to cellular immune responses in both mice and AGMs. Immunization with the combination elicited superior protection against RSV A2 challenge in cotton rats. These results demonstrate the advantage of a combination vaccine and support further clinical development.

5.
Obesity (Silver Spring) ; 31 Suppl 1: 75-84, 2023 02.
Article in English | MEDLINE | ID: mdl-36229981

ABSTRACT

OBJECTIVE: Time-restricted feeding (TRF), whereby caloric intake is limited to a <12-hour window, is a potential regimen to ameliorate metabolic syndrome and cardiovascular disease (CVD) risk co-occurring with aging and with obesity. Early TRF (eTRF; early morning feeding followed by overnight fasting) times calorie consumption with hepatic circadian gene expression rhythms. Brief TRF trials demonstrate that high-density lipoprotein (HDL) cholesterol increases similar to diet/exercise interventions, which may impart beneficial CVD effects. Using a nonhuman primate (NHP) model, the efficacy of eTRF to raise HDL and increase plasma cholesterol efflux capacity (CEC) (primarily mediated by cholesterol efflux to HDL particles, a process that is inversely associated with CVD risk) was examined. METHODS: Adult (8-16 years old, n = 25) and geriatric (≥17 years old) NHPs were randomized to ad libitum feeding or eTRF for 12 months, and relevant body composition, glycemic control, and plasma HDL cholesterol levels and CEC were measured. RESULTS: Impaired CEC was found in geriatric NHPs. eTRF induced larger-sized HDL particles, increased HDL apolipoprotein A-1 content, lowered triglyceride concentrations, and increased plasma CEC (primarily to HDL particles) in both adult and geriatric NHPs without changes in glycemic control or body composition. CONCLUSIONS: A beneficial effect of eTRF on increasing HDL CEC in NHPs was demonstrated.


Subject(s)
Animal Nutritional Physiological Phenomena , Cardiovascular Diseases , Intermittent Fasting , Primates , Animals , Body Composition , Cardiovascular Diseases/diet therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/veterinary , Cholesterol, HDL , Lipoproteins, HDL/metabolism , Primates/metabolism
6.
Front Vet Sci ; 9: 922961, 2022.
Article in English | MEDLINE | ID: mdl-36504866

ABSTRACT

Yersinia enterocolitica is a Gram-negative bacterium that typical results in enterocolitis in humans and poses significant worldwide risks to public health. An outbreak of yersiniosis in the Vervet/African green monkey colony at the WFSM during the winter of 2015-2016 accounted for widespread systemic infection with high morbidity and mortality. Most of the cases had extensive necrosis with suppuration and large colonies of bacilli in the large bowel and associated lymph nodes; however, the small intestine, stomach, and other organs were also regularly affected. Positive cultures of Yersinia enterocolitica were recovered from affected tissues in 20 of the 23 cases. Carrier animals in the colony were suspected as the source of the infection because many clinically normal animals were culture-positive during and after the outbreak. In this study, we describe the gross and histology findings and immune cell profiles in different organs of affected animals. We found increased numbers of myeloid-derived phagocytes and CD11C-positive antigen-presenting cells and fewer adaptive T and B lymphocytes, suggesting an immunocompromised state in these animals. The pathogen-mediated microenvironment may have contributed to the immunosuppression and rapid spread of the infection in the vervets. Further studies in vervets could provide a better understanding of Yersinia-mediated pathogenesis and immunosuppression, which could be fundamental to understanding chronic and systemic inflammatory diseases in humans.

7.
iScience ; 25(3): 103948, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35265817

ABSTRACT

Maternal parity can impact offspring growth, but the mechanisms driving this effect are unclear. Here, we test the hypothesis that vertically transmitted microbiota may be one potential mechanism. We analyzed 118 fecal and milk samples from mother-offspring vervet monkey dyads across the first 6 months of life. Despite poorer milk production, offspring born to low parity females grew larger than their counterparts. These offspring exhibited reduced alpha diversity in the first days of life, stronger seeding of maternal milk microbiota, Bacteroides fragilis dominance, and a greater abundance of glycan utilization pathways. Moreover, the attainment of greater body mass by 6 months of age was mediated by reduced early life alpha diversity and B. fragilis dominance. This work demonstrates that the establishment of a specialized, milk-oriented gut microbiota promotes infant growth and suggests an evolutionarily conserved developmental role of B. fragilis in primates.

8.
Geroscience ; 44(2): 699-717, 2022 04.
Article in English | MEDLINE | ID: mdl-34591235

ABSTRACT

DNA methylation-based biomarkers of aging have been developed for many mammals but not yet for the vervet monkey (Chlorocebus sabaeus), which is a valuable non-human primate model for biomedical studies. We generated novel DNA methylation data from vervet cerebral cortex, blood, and liver using highly conserved mammalian CpGs represented on a custom array (HorvathMammalMethylChip40). We present six DNA methylation-based estimators of age: vervet multi-tissue epigenetic clock and tissue-specific clocks for brain cortex, blood, and liver. In addition, we developed two dual species clocks (human-vervet clocks) for measuring chronological age and relative age, respectively. Relative age was defined as ratio of chronological age to maximum lifespan to address the species differences in maximum lifespan. The high accuracy of the human-vervet clocks demonstrates that epigenetic aging processes are evolutionary conserved in primates. When applying these vervet clocks to tissue samples from another primate species, rhesus macaque, we observed high age correlations but strong offsets. We characterized CpGs that correlate significantly with age in the vervet. CpG probes that gain methylation with age across tissues were located near the targets of Polycomb proteins SUZ12 and EED and genes possessing the trimethylated H3K27 mark in their promoters. The epigenetic clocks are expected to be useful for anti-aging studies in vervets.


Subject(s)
Epigenesis, Genetic , Epigenomics , Animals , Chlorocebus aethiops , DNA Methylation , Longevity , Macaca mulatta/genetics , Mammals
10.
J Med Primatol ; 50(3): 176-181, 2021 06.
Article in English | MEDLINE | ID: mdl-33876458

ABSTRACT

BACKGROUND: Whole-exome sequencing (WES) can expedite research on genetic variation in non-human primate (NHP) models of human diseases. However, NHP-specific reagents for exome capture are not available. This study reports the use of human-specific capture reagents in WES for olive baboons, marmosets, and vervet monkeys. METHODS: Exome capture was carried out using the SureSelect Human All Exon V6 panel from Agilent Technologies, followed by high-throughput sequencing. Capture of protein-coding genes and detection of single nucleotide variants were evaluated. RESULTS: Exome capture and sequencing results showed that more than 97% of old world and 93% of new world monkey protein coding genes were detected. Single nucleotide variants were detected across the genomes and missense variants were found in genes associated with human diseases. CONCLUSIONS: A cost-effective approach based on commercial, human-specific reagents can be used to perform WES for the discovery of genetic variants in these NHP species.


Subject(s)
Exome , High-Throughput Nucleotide Sequencing , Animals , Chlorocebus aethiops , Exome/genetics , Humans , Indicators and Reagents , Primates , Exome Sequencing
11.
Geroscience ; 43(3): 1303-1315, 2021 06.
Article in English | MEDLINE | ID: mdl-33611720

ABSTRACT

Dual declines in gait speed and cognitive performance are associated with increased risk of developing dementia. Characterizing the patterns of such impairments therefore is paramount to distinguishing healthy from pathological aging. Nonhuman primates such as vervet/African green monkeys (Chlorocebus aethiops sabaeus) are important models of human neurocognitive aging, yet the trajectory of dual decline has not been characterized. We therefore (1) assessed whether cognitive and physical performance (i.e., gait speed) are lower in older aged animals; (2) explored the relationship between performance in a novel task of executive function (Wake Forest Maze Task-WFMT) and a well-established assessment of working memory (delayed response task-DR task); and (3) examined the association between baseline gait speed with executive function and working memory at 1-year follow-up. We found (1) physical and cognitive declines with age; (2) strong agreement between performance in the novel WFMT and DR task; and (3) that slow gait is associated with poor cognitive performance in both domains. Our results suggest that older aged vervets exhibit a coordinated suite of traits consistent with human aging and that slow gait may be a biomarker of cognitive decline. This integrative approach provides evidence that gait speed and cognitive function differ across the lifespan in female vervet monkeys, which advances them as a model that could be used to dissect relationships between trajectories of dual decline over time.


Subject(s)
Executive Function , Gait , Aging , Animals , Chlorocebus aethiops , Cognition , Female , Walking Speed
12.
Elife ; 92020 11 24.
Article in English | MEDLINE | ID: mdl-33231171

ABSTRACT

In the mouse, the osteoblast-derived hormone Lipocalin-2 (LCN2) suppresses food intake and acts as a satiety signal. We show here that meal challenges increase serum LCN2 levels in persons with normal or overweight, but not in individuals with obesity. Postprandial LCN2 serum levels correlate inversely with hunger sensation in challenged subjects. We further show through brain PET scans of monkeys injected with radiolabeled recombinant human LCN2 (rh-LCN2) and autoradiography in baboon, macaque, and human brain sections, that LCN2 crosses the blood-brain barrier and localizes to the hypothalamus in primates. In addition, daily treatment of lean monkeys with rh-LCN2 decreases food intake by 21%, without overt side effects. These studies demonstrate the biology of LCN2 as a satiety factor and indicator and anorexigenic signal in primates. Failure to stimulate postprandial LCN2 in individuals with obesity may contribute to metabolic dysregulation, suggesting that LCN2 may be a novel target for obesity treatment.


Obesity has reached epidemic proportions worldwide and affects more than 40% of adults in the United States. People with obesity have a greater likelihood of developing type 2 diabetes, cardiovascular disease or chronic kidney disease. Changes in diet and exercise can be difficult to follow and result in minimal weight loss that is rarely sustained overtime. In fact, in people with obesity, weight loss can lower the metabolism leading to increased weight gain. New drugs may help some individuals achieve 5 to 10% weight loss but have side effects that prevent long-term use. Previous studies in mice show that a hormone called Lipocalin-2 (LCN2) suppresses appetite. It also reduces body weight and improves sugar metabolism in the animals. But whether this hormone has the same effects in humans or other primates is unclear. If it does, LCN2 might be a potential obesity treatment. Now, Petropoulou et al. show that LCN2 suppressed appetite in humans and monkeys. In human studies, LCN2 levels increased after a meal in individuals with normal weight or overweight, but not in individuals with obesity. Higher levels of LCN2 in a person's blood were also associated with a feeling of reduced hunger. Using brain scans, Petropoulou et al. showed that LCN2 crossed the blood-brain barrier in monkeys and bound to the hypothalamus, the brain center regulating appetite and energy balance. LCN2 also bound to human and monkey hypothalamus tissue in laboratory experiments. When injected into monkeys, the hormone suppressed food intake and lowered body weight without toxic effects in short-term studies. The experiments lay the initial groundwork for testing whether LCN2 might be a useful treatment for obesity. More studies in animals will help scientists understand how LCN2 works, which patients might benefit, how it would be given to patients and for how long. Clinical trials would also be needed to verify whether it is an effective and safe treatment for obesity.


Subject(s)
Lipocalin-2/metabolism , Macaca/metabolism , Obesity/metabolism , Papio/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Eating , Humans , Lipocalin-2/genetics , Obesity/diagnostic imaging , Obesity/genetics , Obesity/physiopathology , Positron-Emission Tomography , Protein Transport
13.
Elife ; 92020 08 26.
Article in English | MEDLINE | ID: mdl-32844747

ABSTRACT

Although the primate visual system has been extensively studied, detailed spatial organization of white matter fiber tracts carrying visual information between areas has not been fully established. This is mainly due to the large gap between tracer studies and diffusion-weighted MRI studies, which focus on specific axonal connections and macroscale organization of fiber tracts, respectively. Here we used 3D polarization light imaging (3D-PLI), which enables direct visualization of fiber tracts at micrometer resolution, to identify and visualize fiber tracts of the visual system, such as stratum sagittale, inferior longitudinal fascicle, vertical occipital fascicle, tapetum and dorsal occipital bundle in vervet monkey brains. Moreover, 3D-PLI data provide detailed information on cortical projections of these tracts, distinction between neighboring tracts, and novel short-range pathways. This work provides essential information for interpretation of functional and diffusion-weighted MRI data, as well as revision of wiring diagrams based upon observations in the vervet visual system.


Subject(s)
Nerve Fibers/physiology , Visual Cortex/anatomy & histology , Visual Pathways/anatomy & histology , White Matter/anatomy & histology , Animals , Chlorocebus aethiops/physiology , Diffusion Magnetic Resonance Imaging , Imaging, Three-Dimensional , Male , Visual Cortex/diagnostic imaging , Visual Cortex/physiology , Visual Pathways/diagnostic imaging , Visual Pathways/physiology , White Matter/diagnostic imaging , White Matter/physiology
14.
Geroscience ; 42(6): 1649-1661, 2020 12.
Article in English | MEDLINE | ID: mdl-32588342

ABSTRACT

The trend to delay pregnancy in the USA has resulted in the number of advanced maternal age (AMA) pregnancies to also increase. In humans, AMA is associated with a variety of pregnancy-related pathologies such as preeclampsia (PE). While AMA is known to be a factor which contributes to the development of pregnancy-induced diseases, the molecular and cellular mechanisms giving rise to this phenomenon are still very limited. This is due in part to lack of a preclinical model which has physiologic relevance to human pregnancy while also allowing control of environmental and genetic variability inherent in human studies. To determine potential physiologic relevance of the vervet/African green monkey (Chlorocebus aethiops sabaeus) as a preclinical model to study the effects of AMA on adaptations to pregnancy, thirteen age-diverse pregnant vervet monkeys (3-16 years old) were utilized to measure third trimester blood pressure (BP), complete blood count, iron measurements, and hormone levels. Significant associations were observed between third trimester diastolic BP and maternal age. Furthermore, the presence of leukocytosis with enhanced circulating neutrophils was observed in AMA mothers compared to younger mothers. Moreover, we observed a negative relationship between maternal age and estradiol, progesterone, and cortisol levels. Finally, offspring born to AMA mothers displayed a postnatal growth retardation phenotype. These studies demonstrate physiologic impairment in the adaptation to pregnancy in AMA vervet/African green monkeys. Our data indicate that the vervet/African green monkey may serve as a useful preclinical model and tool for deciphering pathological mediators of maternal disease in AMA pregnancy.


Subject(s)
Adaptation, Physiological , Animals , Blood Pressure , Chlorocebus aethiops , Female , Maternal Age , Phenotype , Pregnancy
15.
PLoS One ; 15(6): e0235106, 2020.
Article in English | MEDLINE | ID: mdl-32574196

ABSTRACT

The COVID-19 pandemic, caused by the coronavirus SARS-CoV-2, has devastated health infrastructure around the world. Both ACE2 (an entry receptor) and TMPRSS2 (used by the virus for spike protein priming) are key proteins to SARS-CoV-2 cell entry, enabling progression to COVID-19 in humans. Comparative genomic research into critical ACE2 binding sites, associated with the spike receptor binding domain, has suggested that African and Asian primates may also be susceptible to disease from SARS-CoV-2 infection. Savanna monkeys (Chlorocebus spp.) are a widespread non-human primate with well-established potential as a bi-directional zoonotic/anthroponotic agent due to high levels of human interaction throughout their range in sub-Saharan Africa and the Caribbean. To characterize potential functional variation in savanna monkey ACE2 and TMPRSS2, we inspected recently published genomic data from 245 savanna monkeys, including 163 wild monkeys from Africa and the Caribbean and 82 captive monkeys from the Vervet Research Colony (VRC). We found several missense variants. One missense variant in ACE2 (X:14,077,550; Asp30Gly), common in Ch. sabaeus, causes a change in amino acid residue that has been inferred to reduce binding efficiency of SARS-CoV-2, suggesting potentially reduced susceptibility. The remaining populations appear as susceptible as humans, based on these criteria for receptor usage. All missense variants observed in wild Ch. sabaeus populations are also present in the VRC, along with two splice acceptor variants (at X:14,065,076) not observed in the wild sample that are potentially disruptive to ACE2 function. The presence of these variants in the VRC suggests a promising model for SARS-CoV-2 infection and vaccine and therapy development. In keeping with a One Health approach, characterizing actual susceptibility and potential for bi-directional zoonotic/anthroponotic transfer in savanna monkey populations may be an important consideration for controlling COVID-19 epidemics in communities with frequent human/non-human primate interactions that, in many cases, may have limited health infrastructure.


Subject(s)
Chlorocebus aethiops , Coronavirus Infections/veterinary , Pandemics/veterinary , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/veterinary , Primate Diseases/genetics , Serine Endopeptidases/genetics , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/genetics , Coronavirus Infections/transmission , Disease Susceptibility , Pneumonia, Viral/genetics , Pneumonia, Viral/transmission , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Whole Genome Sequencing , Zoonoses/transmission
16.
Immun Inflamm Dis ; 8(2): 211-215, 2020 06.
Article in English | MEDLINE | ID: mdl-32220059

ABSTRACT

INTRODUCTION: Previous studies in humans support the dual-allergen exposure hypothesis, and several studies in mouse models have demonstrated that cutaneous exposure to disrupted or intact skin can lead to sensitization to peanut. However, the field lacks definitive evidence that cutaneous exposure leads to peanut allergy in humans or other primates. METHODS: Peanut extract was applied to the shaved back of the neck of four male and four female African green monkeys three times per week for 4 weeks. An oral food challenge (OFC) was performed the following week by gavage of 200 mg of peanut protein, and vital signs were monitored for 30 minutes post-OFC. Blood was collected at baseline, day 11, day 32, and 30 minutes post-OFC. Total IgE, and peanut-specific immunoglobulin E (IgE) and immunoglobulin G (IgG) were quantified in serum collected throughout the 4 weeks. Histamine was measured in serum collected 30 minutes post-OFC. RESULTS: Peanut-specific IgE was undetectable at any time points in any of the monkeys, and there was no consistent increase in total IgE. During the oral challenge, none of the monkeys experienced allergic symptoms and histamine levels did not change. However, seven of the eight monkeys produced increasing peanut-specific IgG by day 32, indicating that repeated skin exposure to peanut is immunogenic. CONCLUSIONS: Skin exposure to peanut did not lead to sensitization in this study, and monkeys did not experience anaphylaxis upon peanut challenge. However, monkeys produced increased peanut-specific IgG throughout peanut exposure, indicating that repeated skin exposure to peanut is immunogenic.


Subject(s)
Allergens/immunology , Immunoglobulin E/blood , Immunoglobulin G/blood , Peanut Hypersensitivity/immunology , Anaphylaxis/immunology , Animals , Arachis/immunology , Chlorocebus aethiops , Disease Models, Animal , Female , Histamine/blood , Male , Peanut Hypersensitivity/blood , Skin/immunology , Time Factors
17.
JCI Insight ; 5(5)2020 03 12.
Article in English | MEDLINE | ID: mdl-32078584

ABSTRACT

The specificity of antibodies (Abs) generated against influenza A virus (IAV) infection can significantly alter protection and viral clearance. At present, the impact of age upon this process is relatively unexplored. Here, we evaluated the Ab response in newborn and adult African green monkeys following infection with IAV using a strain that enables us to determine the immunodominance (ID) hierarchy of the Ab response to hemagglutinin (HA), the principal target of protective Abs. This revealed altered ID patterns in the early IgM anti-HA response in newborns versus adults that converged over time. While the IgG ID profiles for HA in newborn and adult monkeys were similar, this was not the case for IgA. Importantly, HA stem-specific Abs were generated robustly and similarly in newborns and adults in terms of quality and quantity. Together, these results demonstrate that newborns and adults can differ in the Ab ID pattern established following infection and that the ID pattern can vary across isotypes. In addition, newborns have the ability to generate potent HA stem-specific Ab responses. Our findings further the understanding of the newborn response to IAV antigens and inform the development of improved vaccines for this at-risk population.


Subject(s)
Animals, Newborn , Hemagglutinins/immunology , Influenza A virus/pathogenicity , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Viral/biosynthesis , Antibody Specificity , Chlorocebus aethiops , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Influenza A virus/immunology , Orthomyxoviridae Infections/virology
18.
Am J Phys Anthropol ; 171(1): 89-99, 2020 01.
Article in English | MEDLINE | ID: mdl-31675103

ABSTRACT

OBJECTIVES: To compare longitudinal weight gain in captive and wild juvenile vervet monkeys and conduct an empirical assessment of different mechanistic growth models. METHODS: Weights were collected from two groups of captive monkeys and two consecutive cohorts of wild monkeys until the end of the juvenile period (~800 days). The captive groups were each fed different diets, while the wild groups experienced different ecological conditions. Three different growth curve models were compared. RESULTS: By 800 days, the wild juveniles were lighter, with a slower maximum growth rate, and reached asymptote earlier than their captive counterparts. There were overall differences in weight and growth rate across the two wild cohorts. This corresponded to differences in resource availability. There was considerable overlap in growth rate and predicted adult weight of male and females in the first, but not the second, wild cohort. Maternal parity was not influential. While the von Bertalanffy curve provided the best fit to the data sets modeled together, the Logistic curve best described growth in the wild cohorts when considered separately. CONCLUSIONS: The growth curves of the two captive cohorts are likely to lie near the maximum attainable by juvenile vervets. It may be helpful to include deviations from these rates when assessing the performance of wild vervet monkeys. The comparison of wild and captive juveniles confirmed the value of comparing different growth curve models, and an appreciation that the best models may well differ for different populations. Choice of mechanistic growth model can, therefore, be empirically justified, rather than theoretically predetermined.


Subject(s)
Animals, Wild/growth & development , Animals, Zoo/growth & development , Chlorocebus aethiops/growth & development , Diet/veterinary , Animals , Female , Male , Models, Biological
19.
J Pharm Pharm Sci ; 22(1): 352-364, 2019.
Article in English | MEDLINE | ID: mdl-31356761

ABSTRACT

PURPOSE: 5-HT2AR exists in high and low affinity states. Agonist PET tracers measure binding to the active high affinity site and thus provide a functionally relevant measure of the receptor. Limited in vivo data have been reported so far for a comparison of agonist versus antagonist tracers for 5-HT2AR used as a proof of principle for measurement of high and low affinity states of this receptor. We compared the in vivo binding of [11C]CIMBI-5, a 5-HT2AR agonist, and of the antagonist [11C]M100907, in monkeys and baboons. METHODS: [11C]CIMBI-5 and [11C]M100907 baseline PET scans were performed in anesthetized male baboons (n=2) and male vervet monkeys (n=2) with an ECAT EXACT HR+ and GE 64-slice PET/CT Discovery VCT scanners. Blocking studies were performed in vervet monkeys by pretreatment with MDL100907 (0.5 mg/kg, i.v.) 60 minutes prior to the scan. Regional distribution volumes and binding potentials were calculated for each ROI using the likelihood estimation in graphical analysis and Logan plot, with either plasma input function or reference region as input, and simplified reference tissue model approaches. RESULTS: PET imaging of [11C]CIMBI-5 in baboons and monkeys showed the highest binding in 5-HT2AR-rich cortical regions, while the lowest binding was observed in cerebellum, consistent with the expected distribution of 5-HT2AR. Very low free fractions and rapid metabolism were observed for [11C]CIMBI-5 in baboon plasma. Binding potential values for [11C]CIMBI-5 were 25-33% lower than those for [11C]MDL100907 in the considered brain regions. CONCLUSION: The lower binding potential of [11C]CIMBI-5 in comparison to [11C]MDL100907 is likely due to the preferential binding of the former to the high affinity site in vivo in contrast to the antagonist,  [11C]MDL100907, which binds to both high and low affinity sites.


Subject(s)
Brain/diagnostic imaging , Dimethoxyphenylethylamine/analogs & derivatives , Positron-Emission Tomography , Radiopharmaceuticals/chemistry , Serotonin 5-HT2 Receptor Agonists/chemistry , Animals , Brain/metabolism , Carbon Radioisotopes , Dimethoxyphenylethylamine/chemistry , Dimethoxyphenylethylamine/pharmacology , Haplorhini , Papio , Radiopharmaceuticals/pharmacology , Receptor, Serotonin, 5-HT2B/metabolism , Serotonin 5-HT2 Receptor Agonists/pharmacology , Tissue Distribution
20.
Am J Primatol ; 81(10-11): e22982, 2019 10.
Article in English | MEDLINE | ID: mdl-31106877

ABSTRACT

The human milk microbiome is vertically transmitted to offspring during the postnatal period and has emerged as a critical driver of infant immune and metabolic development. Despite this importance in humans, the milk microbiome of nonhuman primates remains largely unexplored. This dearth of comparative work precludes our ability to understand how species-specific differences in the milk microbiome may differentially drive maternal effects and limits how translational models can be used to understand the role of vertically transmitted milk microbes in human development. Here, we present the first culture-independent data on the milk microbiome of a nonhuman primate. We collected milk and matched fecal microbiome samples at early and late lactation from a cohort of captive lactating vervet monkeys (N = 15). We found that, similar to humans, the vervet monkey milk microbiome comprises a shared community of taxa that are universally present across individuals. However, unlike in humans, this shared community is dominated by the genera Lactobacillus, Bacteroides, and Prevotella. We also found that, in contrast to previous culture-dependent studies in humans, the vervet milk microbiome exhibits greater alpha-diversity than the gut microbiome across lactation. Finally, we did not find support for the translocation of microbes from the gut to the mammary gland within females (i.e., "entero-mammary pathway"). Taken together, our results show that the vervet monkey milk microbiome is taxonomically diverse, distinct from the gut microbiome, and largely stable. These findings demonstrate that the milk microbiome is a unique substrate that may selectively favor the establishment and persistence of particular microbes across lactation and highlights the need for future experimental studies on the origin of microbes in milk.


Subject(s)
Chlorocebus aethiops/microbiology , Microbiota , Milk/microbiology , Animals , Bacteria/classification , Biodiversity , Feces/microbiology , Female , Lactation , Mammary Glands, Animal/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...