Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Med Chem ; 60(23): 9617-9629, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29111717

ABSTRACT

Tumors use tryptophan-catabolizing enzymes such as indoleamine 2,3-dioxygenase (IDO-1) to induce an immunosuppressive environment. IDO-1 is induced in response to inflammatory stimuli and promotes immune tolerance through effector T-cell anergy and enhanced Treg function. As such, IDO-1 is a nexus for the induction of a key immunosuppressive mechanism and represents an important immunotherapeutic target in oncology. Starting from HTS hit 5, IDO-1 inhibitor 6 (EOS200271/PF-06840003) has been developed. The structure-activity relationship around 6 is described and rationalized using the X-ray crystal structure of 6 bound to human IDO-1, which shows that 6, differently from most of the IDO-1 inhibitors described so far, does not bind to the heme iron atom and has a novel binding mode. Clinical candidate 6 shows good potency in an IDO-1 human whole blood assay and also shows a very favorable ADME profile leading to favorable predicted human pharmacokinetic properties, including a predicted half-life of 16-19 h.


Subject(s)
Enzyme Inhibitors/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacology , Succinimides/pharmacology , Animals , Cell Line , Crystallography, X-Ray , Dogs , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/chemistry , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Indoles/chemistry , Indoles/pharmacokinetics , Macaca fascicularis , Male , Mice , Molecular Docking Simulation , Rats , Structure-Activity Relationship , Succinimides/chemistry , Succinimides/pharmacokinetics
2.
Nat Chem Biol ; 13(7): 785-792, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553945

ABSTRACT

S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzyme turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.


Subject(s)
Methionine Adenosyltransferase/antagonists & inhibitors , Quinolines/pharmacology , S-Adenosylmethionine/metabolism , Triazoles/pharmacology , Allosteric Site/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Kinetics , Methionine Adenosyltransferase/isolation & purification , Methionine Adenosyltransferase/metabolism , Quinolines/chemistry , Structure-Activity Relationship , Triazoles/chemistry
3.
Chembiochem ; 17(20): 1925-1930, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27504718

ABSTRACT

Sulfonyl fluoride (SF)-based activity probes have become important tools in chemical biology. Herein, exploiting the relative chemical stability of SF to carry out a number of unprecedented SF-sparing functional group manipulations, we report the chemoselective synthesis of a toolbox of highly functionalized aryl SF monomers that we used to quickly prepare SF chemical biology probes. In addition to SF, the monomers bear an embedded click handle (a terminal alkyne that can perform copper(I)-mediated azide-alkyne cycloaddition). The monomers can be used either as fragments to prepare clickable SF analogues of drugs (biologically active compounds) bearing an aryl ring or, alternatively, attached to drugs as minimalist clickable aryl SF substituents.


Subject(s)
Molecular Probes/chemical synthesis , Sulfinic Acids/chemical synthesis , Click Chemistry , Models, Molecular , Molecular Probes/chemistry , Molecular Structure , Sulfinic Acids/chemistry
4.
Mol Cell ; 59(1): 35-49, 2015 Jul 02.
Article in English | MEDLINE | ID: mdl-26051182

ABSTRACT

Insults to ER homeostasis activate the unfolded protein response (UPR), which elevates protein folding and degradation capacity and attenuates protein synthesis. While a role for ubiquitin in regulating the degradation of misfolded ER-resident proteins is well described, ubiquitin-dependent regulation of translational reprogramming during the UPR remains uncharacterized. Using global quantitative ubiquitin proteomics, we identify evolutionarily conserved, site-specific regulatory ubiquitylation of 40S ribosomal proteins. We demonstrate that these events occur on assembled cytoplasmic ribosomes and are stimulated by both UPR activation and translation inhibition. We further show that ER stress-stimulated regulatory 40S ribosomal ubiquitylation occurs on a timescale similar to eIF2α phosphorylation, is dependent upon PERK signaling, and is required for optimal cell survival during chronic UPR activation. In total, these results reveal regulatory 40S ribosomal ubiquitylation as an important facet of eukaryotic translational control.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Eukaryotic Initiation Factor-2/metabolism , Ribosome Subunits, Small, Eukaryotic/metabolism , Unfolded Protein Response/genetics , eIF-2 Kinase/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Survival , Drosophila/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation , Humans , Molecular Sequence Data , Phosphorylation , Protein Biosynthesis/genetics , Saccharomyces cerevisiae/genetics , Ubiquitination
5.
Protein Sci ; 22(12): 1691-7, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24186333

ABSTRACT

Ubiquitin-like proteins (UBLs) are activated, transferred and conjugated by E1-E2-E3 enzyme cascades. E2 enzymes for canonical UBLs such as ubiquitin, SUMO, and NEDD8 typically use common surfaces to bind to E1 and E3 enzymes. Thus, canonical E2s are required to disengage from E1 prior to E3-mediated UBL ligation. However, E1, E2, and E3 enzymes in the autophagy pathway are structurally and functionally distinct from canonical enzymes, and it has not been possible to predict whether autophagy UBL cascades are organized according to the same principles. Here, we address this question for the pathway mediating lipidation of the human autophagy UBL, LC3. We utilized bioinformatic and experimental approaches to identify a distinctive region in the autophagy E2, Atg3, that binds to the autophagy E3, Atg12∼Atg5-Atg16. Short peptides corresponding to this Atg3 sequence inhibit LC3 lipidation in vitro. Notably, the E3-binding site on Atg3 overlaps with the binding site for the E1, Atg7. Accordingly, the E3 competes with Atg7 for binding to Atg3, implying that Atg3 likely cycles back and forth between binding to Atg7 for loading with the UBL LC3 and binding to E3 to promote LC3 lipidation. The results show that common organizational principles underlie canonical and noncanonical UBL transfer cascades, but are established through distinct structural features.


Subject(s)
Autophagy , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Autophagy-Related Proteins , Humans
6.
Autophagy ; 9(5): 778-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23388412

ABSTRACT

Central to most forms of autophagy are two ubiquitin-like proteins (UBLs), Atg8 and Atg12, which play important roles in autophagosome biogenesis, substrate recruitment to autophagosomes, and other aspects of autophagy. Typically, UBLs are activated by an E1 enzyme that (1) catalyzes adenylation of the UBL C terminus, (2) transiently covalently captures the UBL through a reactive thioester bond between the E1 active site cysteine and the UBL C terminus, and (3) promotes transfer of the UBL C terminus to the catalytic cysteine of an E2 conjugating enzyme. The E2, and often an E3 ligase enzyme, catalyzes attachment of the UBL C terminus to a primary amine group on a substrate. Here, we summarize our recent work reporting the structural and mechanistic basis for E1-E2 protein interactions in autophagy.


Subject(s)
Autophagy , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Models, Biological , Protein Binding , Ubiquitins/metabolism
7.
Dev Cell ; 23(6): 1247-54, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23201121

ABSTRACT

The diversity of ubiquitin (Ub)-dependent signaling is attributed to the ability of this small protein to form different types of covalently linked polyUb chains and to the existence of Ub binding proteins that interpret this molecular syntax. We used affinity capture/mass spectrometry to identify ALIX, a component of the ESCRT pathway, as a Ub binding protein. We report that the V domain of ALIX binds directly and selectively to K63-linked polyUb chains, exhibiting a strong preference for chains composed of more than three Ub. Sequence analysis identified two potential Ub binding sites on a single α-helical surface within the coiled-coil region of the V domain. Mutation of these putative Ub binding sites inhibited polyUb binding to the isolated V domain in vitro and impaired budding of lentiviruses. These data reveal an important role for K63 polyUb binding by ALIX in retroviral release.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , HIV-1/physiology , Infectious Anemia Virus, Equine/physiology , Retroviridae/physiology , Ubiquitin/metabolism , Virus Release , Binding Sites/genetics , Calcium-Binding Proteins/chemistry , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Line , Endosomal Sorting Complexes Required for Transport/chemistry , HEK293 Cells , Humans , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Signal Transduction , Ubiquitin/chemistry
8.
Nat Struct Mol Biol ; 19(12): 1242-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23142976

ABSTRACT

Core functions of autophagy are mediated by ubiquitin-like protein (UBL) cascades, in which a homodimeric E1 enzyme, Atg7, directs the UBLs Atg8 and Atg12 to their respective E2 enzymes, Atg3 and Atg10. Crystallographic and mutational analyses of yeast (Atg7-Atg3)(2) and (Atg7-Atg10)(2) complexes reveal noncanonical, multisite E1-E2 recognition in autophagy. Atg7's unique N-terminal domain recruits distinctive elements from the Atg3 and Atg10 'backsides'. This, along with E1 and E2 conformational variability, allows presentation of 'frontside' Atg3 and Atg10 active sites to the catalytic cysteine in the C-terminal domain from the opposite Atg7 protomer in the homodimer. Despite different modes of binding, the data suggest that common principles underlie conjugation in both noncanonical and canonical UBL cascades, whereby flexibly tethered E1 domains recruit E2s through surfaces remote from their active sites to juxtapose the E1 and E2 catalytic cysteines.


Subject(s)
Autophagy , Ubiquitin-Activating Enzymes/metabolism , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Protein Conformation , Ubiquitin-Activating Enzymes/chemistry
9.
Essays Biochem ; 52: 51-63, 2012.
Article in English | MEDLINE | ID: mdl-22708563

ABSTRACT

UBLs (ubiquitin-like proteins) are a major class of eukaryotic post-translational modifiers. UBLs are attached to numerous cellular proteins and to other macromolecules, thereby regulating a wide array of cellular processes. In this chapter we highlight a subset of UBLs and describe their regulatory roles in the cell.


Subject(s)
Ubiquitins/metabolism , Animals , Humans , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Ubiquitin/metabolism , Ubiquitination/genetics , Ubiquitination/physiology , Ubiquitins/chemistry , Ubiquitins/genetics
10.
J Cell Biol ; 196(5): 573-87, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-22371559

ABSTRACT

Pathognomonic accumulation of ubiquitin (Ub) conjugates in human neurodegenerative diseases, such as Huntington's disease, suggests that highly aggregated proteins interfere with 26S proteasome activity. In this paper, we examine possible mechanisms by which an N-terminal fragment of mutant huntingtin (htt; N-htt) inhibits 26S function. We show that ubiquitinated N-htt-whether aggregated or not-did not choke or clog the proteasome. Both Ub-dependent and Ub-independent proteasome reporters accumulated when the concentration of mutant N-htt exceeded a solubility threshold, indicating that stabilization of 26S substrates is not linked to impaired Ub conjugation. Above this solubility threshold, mutant N-htt was rapidly recruited to cytoplasmic inclusions that were initially devoid of Ub. Although synthetically polyubiquitinated N-htt competed with other Ub conjugates for access to the proteasome, the vast majority of mutant N-htt in cells was not Ub conjugated. Our data confirm that proteasomes are not directly impaired by aggregated N-terminal fragments of htt; instead, our data suggest that Ub accumulation is linked to impaired function of the cellular proteostasis network.


Subject(s)
Huntington Disease/physiopathology , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors , Ubiquitin/metabolism , Animals , Cell Line , Enzyme Stability , Genes, Reporter , HEK293 Cells , Humans , Huntingtin Protein , Mutation , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Peptides/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Ubiquitin/genetics , Ubiquitination
12.
Proc Natl Acad Sci U S A ; 108(51): 20520-5, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22139374

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC) is a key nuclear factor-κB (NF-κB) pathway component that produces linear polyubiquitin chains. The HOIL-1L subunit of LUBAC has been shown to bind linear chains; however, detailed structural and functional analyses on the binding between LUBAC and linear chains have not been performed. In this study, we found that the Npl4 zinc finger (NZF) domain of HOIL-1L specifically binds linear polyubiquitin chains and determined the crystal structure of the HOIL-1L NZF domain in complex with linear diubiquitin at 1.7-Å resolution. The HOIL-1L NZF domain consists of a zinc-coordinating "NZF core" region and an additional α-helical "NZF tail" region. The HOIL-1L NZF core binds both the canonical Ile44-centered hydrophobic surface on the distal ubiquitin and a Phe4-centered hydrophobic patch on the proximal ubiquitin, representing a mechanism for the specific recognition of linear chains. The NZF tail binds the proximal ubiquitin to enhance the binding affinity. These recognition mechanisms were supported by the accompanying in vitro and in vivo structure-based mutagenesis experiments.


Subject(s)
Carrier Proteins/chemistry , Nuclear Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray/methods , Humans , Mice , Molecular Conformation , Molecular Sequence Data , NF-kappa B/metabolism , Protein Conformation , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Surface Plasmon Resonance/methods , Transcription Factors
13.
Mol Cell ; 44(3): 451-61, 2011 Nov 04.
Article in English | MEDLINE | ID: mdl-22055190

ABSTRACT

Atg7 is a noncanonical, homodimeric E1 enzyme that interacts with the noncanonical E2 enzyme, Atg3, to mediate conjugation of the ubiquitin-like protein (UBL) Atg8 during autophagy. Here we report that the unique N-terminal domain of Atg7 (Atg7(NTD)) recruits a unique "flexible region" from Atg3 (Atg3(FR)). The structure of an Atg7(NTD)-Atg3(FR) complex reveals hydrophobic residues from Atg3 engaging a conserved groove in Atg7, important for Atg8 conjugation. We also report the structure of the homodimeric Atg7 C-terminal domain, which is homologous to canonical E1s and bacterial antecedents. The structures, SAXS, and crosslinking data allow modeling of a full-length, dimeric (Atg7~Atg8-Atg3)(2) complex. The model and biochemical data provide a rationale for Atg7 dimerization: Atg8 is transferred in trans from the catalytic cysteine of one Atg7 protomer to Atg3 bound to the N-terminal domain of the opposite Atg7 protomer within the homodimer. The studies reveal a distinctive E1~UBL-E2 architecture for enzymes mediating autophagy.


Subject(s)
Autophagy , Carrier Proteins/chemistry , Fibroblasts/enzymology , Microtubule-Associated Proteins/chemistry , Ubiquitin-Conjugating Enzymes/chemistry , Amino Acid Sequence , Animals , Autophagy-Related Protein 7 , Autophagy-Related Protein 8 Family , Autophagy-Related Proteins , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Crystallography, X-Ray , Fibroblasts/pathology , Hydrophobic and Hydrophilic Interactions , Intracellular Signaling Peptides and Proteins , Mice , Mice, Knockout , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Multienzyme Complexes , Mutation , Protein Conformation , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship , Transfection , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
14.
Nat Methods ; 8(8): 691-6, 2011 Jul 10.
Article in English | MEDLINE | ID: mdl-21743460

ABSTRACT

The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Mass Spectrometry/standards , Subcellular Fractions/metabolism , Ubiquitin/metabolism , Animals , Humans , United States
16.
J Cell Biol ; 191(3): 537-52, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21041446

ABSTRACT

Genetic ablation of autophagy in mice leads to liver and brain degeneration accompanied by the appearance of ubiquitin (Ub) inclusions, which has been considered to support the hypothesis that ubiquitination serves as a cis-acting signal for selective autophagy. We show that tissue-specific disruption of the essential autophagy genes Atg5 and Atg7 leads to the accumulation of all detectable Ub-Ub topologies, arguing against the hypothesis that any particular Ub linkage serves as a specific autophagy signal. The increase in Ub conjugates in Atg7(-/-) liver and brain is completely suppressed by simultaneous knockout of either p62 or Nrf2. We exploit a novel assay for selective autophagy in cell culture, which shows that inactivation of Atg5 leads to the selective accumulation of aggregation-prone proteins, and this does not correlate with an increase in substrate ubiquitination. We propose that protein oligomerization drives autophagic substrate selection and that the accumulation of poly-Ub chains in autophagy-deficient circumstances is an indirect consequence of activation of Nrf2-dependent stress response pathways.


Subject(s)
NF-E2-Related Factor 2/metabolism , Stress, Physiological/physiology , Ubiquitin/metabolism , Animals , Autophagy , Autophagy-Related Protein 5 , Autophagy-Related Protein 7 , Cells, Cultured , Mice , Mice, Mutant Strains , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Binding , Substrate Specificity
17.
Protein Eng Des Sel ; 21(3): 197-206, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18299293

ABSTRACT

The amino acid sequence of a protein determines both its final folded structure and the folding mechanism by which this structure is attained. The differences in folding behaviour between homologous proteins provide direct insights into the factors that influence both thermodynamic and kinetic properties. Here, we present a comprehensive thermodynamic and kinetic analysis of three homologous homodimeric four-helix bundle proteins. Previous studies with one member of this family, Rop, revealed that both its folding and unfolding behaviour were interesting and unusual: Rop folds (k(0)(f) = 29 s(-1)) and unfolds (k(0)(u) = 6 x 10(-7) s(-1)) extremely slowly for a protein of its size that contains neither prolines nor disulphides in its folded structure. The homologues we discuss have significantly different stabilities and rates of folding and unfolding. However, the rate of protein folding directly correlates with stability for these homologous proteins: proteins with higher stability fold faster. Moreover, in spite of possessing differing thermodynamic and kinetic properties, the proteins all share a similar folding and unfolding mechanism. We discuss the properties of these naturally occurring Rop homologues in relation to previously characterized designed variants of Rop.


Subject(s)
Protein Folding , Protein Structure, Secondary , Amino Acid Sequence , Bacterial Proteins/chemistry , Binding Sites , Guanidine/pharmacology , Kinetics , Molecular Sequence Data , RNA-Binding Proteins/chemistry , Thermodynamics
18.
J Biol Chem ; 283(2): 1113-9, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-17956869

ABSTRACT

SNARE proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7A resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.


Subject(s)
Cell Membrane/physiology , R-SNARE Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/physiology , Animals , Binding Sites , Crystallography, X-Ray , Endosomes/physiology , Exocytosis , Models, Molecular , Mutagenesis , Neurons/physiology , Protein Conformation , R-SNARE Proteins/genetics , R-SNARE Proteins/physiology , Recombinant Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Water
19.
Structure ; 13(7): 1035-45, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16004875

ABSTRACT

The FFAT motif is a targeting signal responsible for localizing a number of proteins to the cytosolic surface of the endoplasmic reticulum (ER) and to the nuclear membrane. FFAT motifs bind to members of the highly conserved VAP protein family, which are tethered to the cytoplasmic face of the ER by a C-terminal transmembrane domain. We have solved crystal structures of the rat VAP-A MSP homology domain alone and in complex with an FFAT motif. The co-crystal structure was used to design a VAP mutant that disrupts rat and yeast VAP-FFAT interactions in vitro. The FFAT binding-defective mutant also blocked function of the VAP homolog Scs2p in yeast. Finally, overexpression of the FFAT binding-defective VAP in COS7 cells dramatically altered ER morphology. Our data establish the structural basis of FFAT-mediated ER targeting and suggest that FFAT-targeted proteins play an important role in determining ER morphology.


Subject(s)
Carrier Proteins/chemistry , Endoplasmic Reticulum/metabolism , Membrane Proteins/chemistry , Amino Acid Motifs , Animals , Binding Sites , COS Cells , Cell Nucleus/metabolism , Chlorocebus aethiops , Crystallography, X-Ray , DNA/chemistry , Dimerization , Fungal Proteins/chemistry , Image Processing, Computer-Assisted , Microscopy, Fluorescence , Models, Chemical , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Rats , Static Electricity , Vesicular Transport Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...