Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Microorg Control ; 29(2): 91-97, 2024.
Article in English | MEDLINE | ID: mdl-38880621

ABSTRACT

Campylobacter jejuni causes gastroenteritis in humans and is a major concern in food safety. Commercially prepared chicken meats are frequently contaminated with C. jejuni, which is closely associated with the diffusion of intestinal contents in poultry processing plants. Sodium hypochlorite (NaClO) is commonly used during chicken processing to prevent food poisoning; however, its antimicrobial activity is not effective in the organic-rich solutions. In this study, we investigated the potential of a new photo-disinfection system, UVA-LED, for the disinfection of C. jejuni-contaminated chicken surfaces. The data indicated that UVA irradiation significantly killed C. jejuni and that its killing ability was significantly facilitated in NaClO-treated chickens. Effective inactivation of C. jejuni was achieved using a combination of UVA and NaClO, even in the organic-rich condition. The results of this study show that synergistic disinfection using a combination of UVA and NaClO has potential beneficial effects in chicken processing systems.


Subject(s)
Campylobacter jejuni , Chickens , Disinfection , Meat , Sodium Hypochlorite , Ultraviolet Rays , Campylobacter jejuni/drug effects , Campylobacter jejuni/radiation effects , Animals , Sodium Hypochlorite/pharmacology , Ultraviolet Rays/adverse effects , Disinfection/methods , Meat/microbiology , Disinfectants/pharmacology , Microbial Viability/drug effects , Microbial Viability/radiation effects , Food Microbiology , Food Contamination/prevention & control
2.
J Med Invest ; 71(1.2): 102-112, 2024.
Article in English | MEDLINE | ID: mdl-38735705

ABSTRACT

Vibrio vulnificus (V. vulnificus) is a halophilic gram-negative bacterium that inhabits coastal warm water and induce severe diseases such as primary septicemia. To investigate the mechanisms of rapid bacterial translocation on intestinal infection, we focused on outer membrane vesicles (OMVs), which are extracellular vesicles produced by Gram-negative bacteria and deliver virulence factors. However, there are very few studies on the pathogenicity or contents of V. vulnificus OMVs (Vv-OMVs). In this study, we investigated the effects of Vv-OMVs on host cells. Epithelial cells INT407 were stimulated with purified OMVs and morphological alterations and levels of lactate dehydrogenase (LDH) release were observed. In cells treated with OMVs, cell detachment without LDH release was observed, which exhibited different characteristics from cytotoxic cell detachment observed in V. vulnificus infection. Interestingly, OMVs from a Vibrio Vulnificus Hemolysin (VVH) and Multifunctional-autoprocessing repeats-in -toxin (MARTX) double-deletion mutant strain also caused cell detachment without LDH release. Our results suggested that the proteolytic function of a serine protease contained in Vv-OMVs may contribute to pathogenicity of V. vulnificus by assisting bacterial translocation. This study reveals a new pathogenic mechanism during V. vulnificus infections. J. Med. Invest. 71 : 102-112, February, 2024.


Subject(s)
Extracellular Vesicles , Vibrio vulnificus , Vibrio vulnificus/pathogenicity , Vibrio vulnificus/metabolism , Humans , Extracellular Vesicles/metabolism , Hemolysin Proteins/metabolism , L-Lactate Dehydrogenase/metabolism , Bacterial Outer Membrane/metabolism , Epithelial Cells/microbiology
3.
mSystems ; 8(2): e0068222, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36939368

ABSTRACT

Vibrio vulnificus is a bacterium that inhabits warm seawater or brackish water environments and causes foodborne diseases and wound infections. In severe cases, V. vulnificus invades the skeletal muscle tissue, where bacterial proliferation leads to septicemia and necrotizing fasciitis with high mortality. Despite this characteristic, information on metabolic changes in tissue infected with V. vulnificus is not available. Here, we elucidated the metabolic changes in V. vulnificus-infected mouse skeletal muscle using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Metabolome analysis revealed changes in muscle catabolites and energy metabolites during V. vulnificus infection. In particular, succinic acid accumulated but fumaric acid decreased in the infected muscle. However, the virulence factor deletion mutant revealed that changes in metabolites and bacterial proliferation were abolished in skeletal muscle infected with a multifunctional-autoprocessing repeats-in-toxin (MARTX) mutant. On the other hand, mice that were immunosuppressed via cyclophosphamide (CPA) treatment exhibited a similar level of bacterial counts and metabolites between the wild type and MARTX mutant. Therefore, our data indicate that V. vulnificus induces metabolic changes in mouse skeletal muscle and proliferates by using the MARTX toxin to evade the host immune system. This study indicates a new correlation between V. vulnificus infections and metabolic changes that lead to severe reactions or damage to host skeletal muscle. IMPORTANCE V. vulnificus causes necrotizing skin and soft tissue infections (NSSTIs) in severe cases, with high mortality and sign of rapid deterioration. Despite the severity of the infection, the dysfunction of the host metabolism in skeletal muscle triggered by V. vulnificus is poorly understood. In this study, by using a mouse wound infection model, we revealed characteristic changes in muscle catabolism and energy metabolism in skeletal muscle associated with bacterial proliferation in the infected tissues. Understanding such metabolic changes in V. vulnificus-infected tissue may provide crucial information to identify the mechanism via which V. vulnificus induces severe infections. Moreover, our metabolite data may be useful for the recognition, identification, or detection of V. vulnificus infections in clinical studies.


Subject(s)
Bacterial Toxins , Vibrio Infections , Humans , Bacterial Toxins/metabolism , Vibrio Infections/microbiology , Virulence Factors/metabolism , Muscle, Skeletal/metabolism
4.
Zoological Lett ; 6(1): 15, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33292795

ABSTRACT

Insect outbreaks often occur in the absence of natural enemies and in the presence of excess suitable host materials. Outbreaks of gypsy moths are especially problematic in remote areas located in high-latitude regions in Japan because the majority of adults emerge during the short summer season and initiate synchronous mass flight toward artificial lights. The aggregation of moths in public facilities not only is an annoyance to visitors but also permits the establishment of new populations the following year. The aim of this study was to establish a method to reduce the numbers of large moths that are attracted to lights in the rest areas of expressways in Hokkaido based on the results of research on their behavioral ecology and physiology. First, we conducted extensive insect surveys using light traps that emit light at different wavelengths; the traps were set along the expressways in the summers of 2014-2018. The insects attracted to the light were roughly classified into those showing a preference for broadband light wavelengths (from UV-A to green) and short light wavelengths (from UV-A to blue). The former included aquatic insects and winged ants, and the latter included moths and beetles. Next, we analyzed correlations between moth emergence and daily meteorological data. When gypsy moths were abundant during an outbreak, the daily catch of gypsy moths was positively correlated with the highest ambient temperature on the catch day but not with the visibility range, wind speed, or moon phase. In contrast, the daily catch of oak silkmoths did not correlate with any of these parameters. Our results provide guidance for the management of forest insects inhabiting cool-temperate to subarctic regions based on light wavelengths with reference to weather variables.

5.
PLoS One ; 13(10): e0205865, 2018.
Article in English | MEDLINE | ID: mdl-30321237

ABSTRACT

Campylobacter jejuni is a major cause of bacterial foodborne illness in humans worldwide. Bacterial entry into a host eukaryotic cell involves the initial steps of adherence and invasion, which generally activate several cell-signaling pathways that induce the activation of innate defense systems, which leads to the release of proinflammatory cytokines and induction of apoptosis. Recent studies have reported that the unfolded protein response (UPR), a system to clear unfolded proteins from the endoplasmic reticulum (ER), also participates in the activation of cellular defense mechanisms in response to bacterial infection. However, no study has yet investigated the role of UPR in C. jejuni infection. Hence, the aim of this study was to deduce the role of UPR signaling via induction of ER stress in the process of C. jejuni infection. The results suggest that C. jejuni infection suppresses global protein translation. Also, 12 h of C. jejuni infection induced activation of the eIF2α pathway and expression of the transcription factor CHOP. Interestingly, bacterial invasion was facilitated by knockdown of UPR-associated signaling factors and treatment with the ER stress inducers, thapsigargin and tunicamycin, decreased the invasive ability of C. jejuni. An investigation into the mechanism of UPR-mediated inhibition of C. jejuni invasion showed that UPR signaling did not affect bacterial adhesion to or survival in the host cells. Further, Salmonella Enteritidis or FITC-dextran intake were not regulated by UPR signaling. These results indicated that the effect of UPR on intracellular intake was specifically found in C. jejuni infection. These findings are the first to describe the role of UPR in C. jejuni infection and revealed the participation of a new signaling pathway in C. jejuni invasion. UPR signaling is involved in defense against the early step of C. jejuni invasion and thus presents a potential therapeutic target for the treatment of C. jejuni infection.


Subject(s)
Campylobacter Infections/microbiology , Campylobacter jejuni/metabolism , Endoplasmic Reticulum Stress , Signal Transduction , Unfolded Protein Response , Caco-2 Cells , Campylobacter Infections/pathology , Endoplasmic Reticulum/metabolism , Eukaryotic Initiation Factor-2/metabolism , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Nalidixic Acid/pharmacology , Thapsigargin/pharmacology , Transcription Factor CHOP/metabolism , Tunicamycin/pharmacology
6.
Article in English | MEDLINE | ID: mdl-29441328

ABSTRACT

Campylobacter jejuni invasion is closely related to C. jejuni pathogenicity. The intestinal epithelium contains polarized epithelial cells that form tight junctions (TJs) to provide a physical barrier against bacterial invasion. Previous studies indicated that C. jejuni invasion of non-polarized cells involves several cellular features, including lipid rafts. However, the dynamics of C. jejuni invasion of polarized epithelial cells are not fully understood. Here we investigated the interaction between C. jejuni invasion and TJ formation to characterize the mechanism of C. jejuni invasion in polarized epithelial cells. In contrast to non-polarized epithelial cells, C. jejuni invasion was not affected by depletion of lipid rafts in polarized epithelial cells. However, depletion of lipid rafts significantly decreased C. jejuni invasion in TJ disrupted cells or basolateral infection and repair of cellular TJs suppressed lipid raft-mediated C. jejuni invasion in polarized epithelial cells. In addition, pro-inflammatory cytokine, TNF-α treatment that induce TJ disruption promote C. jejuni invasion and lipid rafts depletion significantly reduced C. jejuni invasion in TNF-α treated cells. These data demonstrated that TJs prevent C. jejuni invasion from the lateral side of epithelial cells, where they play a main part in bacterial invasion and suggest that C. jejuni invasion could be increased in inflammatory condition. Therefore, maintenance of TJs integrity should be considered important in the development of novel therapies for C. jejuni infection.


Subject(s)
Campylobacter Infections/metabolism , Campylobacter jejuni/physiology , Host-Pathogen Interactions , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Tight Junctions/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Calcium/metabolism , Campylobacter Infections/microbiology , Campylobacter jejuni/pathogenicity , Cell Line , Electrophysiological Phenomena , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Humans , Membrane Lipids/metabolism , Membrane Microdomains , Virulence , Virulence Factors
7.
Infect Immun ; 85(10)2017 10.
Article in English | MEDLINE | ID: mdl-28784926

ABSTRACT

Campylobacterjejuni is a foodborne pathogen that induces gastroenteritis. Invasion and adhesion are essential in the process of C. jejuni infection leading to gastroenteritis. The mucosal layer plays a key role in the system of defense against efficient invasion and adhesion by bacteria, which is modulated by several ion channels and transporters mediated by water flux in the intestine. The cystic fibrosis transmembrane conductance regulator (CFTR) plays the main role in water flux in the intestine, and it is closely associated with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells; however, the mechanism and importance of this suppression are unclear. This study sought to elucidate the role of CFTR in C. jejuni infection. Using HEK293 cells that stably express wild-type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion and that it was not involved in bacterial adhesion or intracellular survival but was associated with microtubule-dependent intracellular transport. Moreover, we revealed that CFTR attenuated the function of the microtubule motor protein, which caused inhibition of C. jejuni invasion, but did not affect microtubule stability. Meanwhile, the CFTR mutant G551D-CFTR, which had defects in channel activity, suppressed C. jejuni invasion, whereas the ΔF508-CFTR mutant, which had defects in maturation, did not suppress C. jejuni invasion, suggesting that CFTR suppression of C. jejuni invasion is related to CFTR maturation but not channel activity. When these findings are taken together, it may be seen that mature CFTR inhibits C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni invasion and that suppression of CFTR may be an initial step in promoting cell invasion during C. jejuni infection.


Subject(s)
Campylobacter jejuni/pathogenicity , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Microtubules/physiology , Bacterial Adhesion , Bacterial Load , Biological Transport , Campylobacter Infections/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , HEK293 Cells , Humans , Molecular Motor Proteins/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL