Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Sci ; 15(10): 2538-2550, 2022 10.
Article in English | MEDLINE | ID: mdl-35895082

ABSTRACT

REGN-EB3 (Inmazeb) is a cocktail of three human monoclonal antibodies approved for treatment of Ebola infection. This paper describes development of a mathematical model linking REGN-EB3's inhibition of Ebola virus to survival in a non-human primate (NHP) model, and translational scaling to predict survival in humans. Pharmacokinetic/pharmacodynamic data from single- and multiple-dose REGN-EB3 studies in infected rhesus macaques were incorporated. Using discrete indirect response models, the antiviral mechanism of action was used as a forcing function to drive the reversal of key Ebola disease hallmarks over time, for example, liver and kidney damage (elevated alanine [ALT] and aspartate aminotransferases [AST], blood urea nitrogen [BUN], and creatinine), and hemorrhage (decreased platelet count). A composite disease characteristic function was introduced to describe disease severity and integrated with the ordinary differential equations estimating the time course of clinical biomarkers. Model simulation results appropriately represented the concentration-dependence of the magnitude and time course of Ebola infection (viral and pathophysiological), including time course of viral load, ALT and AST elevations, platelet count, creatinine, and BUN. The model estimated the observed survival rate in rhesus macaques and the dose of REGN-EB3 required for saturation of the pharmacodynamic effects of viral inhibition, reversal of Ebola pathophysiology, and survival. The model also predicted survival in clinical trials with appropriate scaling to humans. This mathematical investigation demonstrates that drug-disease modeling can be an important translational tool to integrate preclinical data from an NHP model recapitulating disease progression to guide future translation of preclinical data to clinical study design.


Subject(s)
Hemorrhagic Fever, Ebola , Animals , Humans , Hemorrhagic Fever, Ebola/drug therapy , Hemorrhagic Fever, Ebola/epidemiology , Macaca mulatta , Creatinine , Disease Outbreaks , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Aspartate Aminotransferases , Antibodies, Monoclonal/therapeutic use , Alanine/therapeutic use
2.
J Infect Dis ; 225(10): 1765-1772, 2022 05 16.
Article in English | MEDLINE | ID: mdl-33507266

ABSTRACT

BACKGROUND: REGN3048 and REGN3051 are human monoclonal antibodies (mAb) targeting the spike glycoprotein on the Middle East respiratory syndrome coronavirus (MERS-CoV), which binds to the receptor dipeptidyl peptidase-4 (DPP4) and is necessary for infection of susceptible cells. METHODS: Preclinical study: REGN3048, REGN3051 and isotype immunoglobulin G (IgG) were administered to humanized DPP4 (huDPP4) mice 1 day prior to and 1 day after infection with MERS-CoV (Jordan strain). Virus titers and lung pathology were assessed. Phase 1 study: healthy adults received the combined mAb (n = 36) or placebo (n = 12) and followed for 121 days. Six dose levels were studied. Strict safety criteria were met prior to dose escalation. RESULTS: Preclinical study: REGN3048 plus REGN3051, prophylactically or therapeutically, was substantially more effective for reducing viral titer, lung inflammation, and pathology in huDPP4 mice compared with control antibodies and to each antibody monotherapy. Phase 1 study: REGN3048 plus REGN3051 was well tolerated with no dose-limiting adverse events, deaths, serious adverse events, or infusion reactions. Each mAb displayed pharmacokinetics expected of human IgG1 antibodies; it was not immunogenic. CONCLUSIONS: REGN3048 and REGN3051 in combination were well tolerated. The clinical and preclinical data support further development for the treatment or prophylaxis of MERS-CoV infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Dipeptidyl Peptidase 4/metabolism , Humans , Immunoglobulin G , Mice , Spike Glycoprotein, Coronavirus
3.
Mol Cancer Ther ; 16(5): 861-870, 2017 05.
Article in English | MEDLINE | ID: mdl-28265006

ABSTRACT

The Programmed Death-1 (PD-1) receptor delivers inhibitory checkpoint signals to activated T cells upon binding to its ligands PD-L1 and PD-L2 expressed on antigen-presenting cells and cancer cells, resulting in suppression of T-cell effector function and tumor immune evasion. Clinical antibodies blocking the interaction between PD-1 and PD-L1 restore the cytotoxic function of tumor antigen-specific T cells, yielding durable objective responses in multiple cancers. This report describes the preclinical characterization of REGN2810, a fully human hinge-stabilized IgG4(S228P) high-affinity anti-PD-1 antibody that potently blocks PD-1 interactions with PD-L1 and PD-L2. REGN2810 was characterized in a series of binding, blocking, and functional cell-based assays, and preclinical in vivo studies in mice and monkeys. In cell-based assays, REGN2810 reverses PD-1-dependent attenuation of T-cell receptor signaling in engineered T cells and enhances responses of human primary T cells. To test the in vivo activity of REGN2810, which does not cross-react with murine PD-1, knock-in mice were generated to express a hybrid protein containing the extracellular domain of human PD-1, and transmembrane and intracellular domains of mouse PD-1. In these mice, REGN2810 binds the humanized PD-1 receptor and inhibits growth of MC38 murine tumors. As REGN2810 binds to cynomolgus monkey PD-1 with high affinity, pharmacokinetic and toxicologic assessment of REGN2810 was performed in cynomolgus monkeys. High doses of REGN2810 were well tolerated, without adverse immune-related effects. These preclinical studies validate REGN2810 as a potent and promising candidate for cancer immunotherapy. Mol Cancer Ther; 16(5); 861-70. ©2017 AACR.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Cell Proliferation/drug effects , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/genetics , Animals , Antibodies, Monoclonal, Humanized/immunology , Cell Line, Tumor , Gene Knock-In Techniques , Humans , Immunotherapy , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
4.
Sci Rep ; 5: 17943, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26659273

ABSTRACT

Bispecific antibodies, while showing great therapeutic potential, pose formidable challenges with respect to their assembly, stability, immunogenicity, and pharmacodynamics. Here we describe a novel class of bispecific antibodies with native human immunoglobulin format. The design exploits differences in the affinities of the immunoglobulin isotypes for Protein A, allowing efficient large-scale purification. Using this format, we generated a bispecific antibody, REGN1979, targeting the B cell marker, CD20, and the CD3 component of the T cell receptor, which triggers redirected killing of B cells. In mice, this antibody prevented growth of B cell tumors and also caused regression of large established tumors. In cynomolgus monkeys, low doses of REGN1979 caused prolonged depletion of B cells in peripheral blood with a serum half-life of approximately 14 days. Further, the antibody induced a deeper depletion of B cells in lymphoid organs than rituximab. This format has broad applicability for development of clinical bispecific antibodies.


Subject(s)
Antibodies, Bispecific/immunology , Antibody-Dependent Cell Cytotoxicity , B-Lymphocytes/immunology , Cytotoxicity, Immunologic , Neoplasms/immunology , Neoplasms/pathology , T-Lymphocytes/immunology , Amino Acid Sequence , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/isolation & purification , Antibodies, Bispecific/pharmacology , Antigens, CD20/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , CD3 Complex/immunology , Cell Line, Tumor , Chromatography, Affinity , Cytokines/metabolism , Disease Models, Animal , Female , Immunophenotyping , Macaca fascicularis , Mice , Mice, Knockout , Mice, SCID , Models, Molecular , Molecular Sequence Data , Neoplasms/therapy , Phenotype , Protein Conformation , Sequence Alignment , T-Lymphocytes/metabolism , Tumor Burden/drug effects , Tumor Burden/immunology
5.
J Cardiovasc Pharmacol Ther ; 14(3): 207-14, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19721133

ABSTRACT

The antiarrhythmic dipeptide, GAP-134, ([2S,4R]-1[2-aminoacetyl]-4-benzamido-pyrrolidine-2-carboxylic acid) was evaluated in canine ischemia/reperfusion model. In dogs subjected to 60-minute ischemia and 4-hour reperfusion, GAP-134 was administered 10 minutes before reperfusion as a bolus + intravenous (IV) infusion. The doses administered were 0.25 microg/kg bolus + 0.19 microg/kg per hour infusion; 2.5 microg/kg + 1.9 microg/kg per hour; 25 mg/kg + 19 mg/kg per hour; 75 mg/kg + 57 mg/kg per hour. Ventricular ectopy was quantified during reperfusion, including premature ventricular contractions (PVC) and ventricular tachycardia (VT). Total incidence of VT was reduced significantly with the 2 highest doses of GAP-134 (1.7 + 0.8; 2.2 + 1.4 events; P < .05) compared to controls (23.0 + 6.1). Total PVCs were reduced significantly from 11.1 + 1.6% in control animals to 2.0% + 0.7% and 1.8% + 0.8% after the 2 highest doses of GAP-134. Infarct size, expressed as percentage of left ventricle, was reduced significantly from 19.0% + 3.5% in controls to 7.9% + 1.5% and 7.1% + 0.8% (P < .05) at the 2 highest doses of GAP-134. GAP-134 is an effective antiarrhythmic agent with potential to reduce ischemia/reperfusion injury.


Subject(s)
Anti-Arrhythmia Agents/pharmacology , Benzamides/pharmacology , Myocardial Infarction/prevention & control , Myocardial Reperfusion Injury/drug therapy , Myocardium/pathology , Proline/analogs & derivatives , Tachycardia, Ventricular/prevention & control , Ventricular Premature Complexes/prevention & control , Animals , Anti-Arrhythmia Agents/administration & dosage , Benzamides/administration & dosage , Coronary Circulation/drug effects , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Infusions, Intravenous , Myocardial Infarction/etiology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/complications , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Proline/administration & dosage , Proline/pharmacology , Tachycardia, Ventricular/etiology , Tachycardia, Ventricular/pathology , Tachycardia, Ventricular/physiopathology , Time Factors , Ventricular Premature Complexes/etiology , Ventricular Premature Complexes/pathology , Ventricular Premature Complexes/physiopathology
6.
J Pharmacol Exp Ther ; 329(3): 1127-33, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19252062

ABSTRACT

Gap junction uncoupling can alter conduction pathways and promote cardiac re-entry mechanisms that potentiate many supraventricular arrhythmias, such as atrial fibrillation (AF) and atrial flutter (AFL). Our objective was to determine whether GAP-134 [(2S,4R)-1-(2-aminoacetyl)-4-benzamido-pyrrolidine-2-carboxylic acid], a small dipeptide gap junction modifier, can improve conduction and ultimately prevent AF/AFL. In rat atrial strips subjected to metabolic stress, GAP-134 prevented significantly conduction velocity slowing at 10 nM compared with vehicle (p < 0.01). In the canine sterile pericarditis model, conduction time (CT; n = 5), atrial effective refractory period (AERP; n = 3), and AF/AFL duration/inducibility (n = 16) were measured 2 to 3 days postoperatively in conscious dogs. CT was significantly faster after GAP-134 infusion (average plasma concentration, 250 nM) at cycle lengths of 300 ms (66.2 +/- 1.0 versus 62.0 +/- 1.0 ms; p < 0.001) and 200 ms (64.4 +/- 0.9 versus 61.0 +/- 1.3 ms; p < 0.001). No significant changes in AERP were noted after GAP-134 infusion. The mean number of AF/AFL inductions per animal was significantly decreased after GAP-134 infusion (2.7 +/- 0.6 versus 1.6 +/- 0.8; p < 0.01), with total AF/AFL burden being decreased from 12,280 to 6063 s. Western blot experiments showed no change in connexin 43 expression. At concentrations exceeding those described in the AF/AFL experiments, GAP-134 had no effect on heart rate, blood pressure, or any electrocardiogram parameters. In conclusion, GAP-134 shows consistent efficacy on measures of conduction and AF/AFL inducibility in the canine sterile pericarditis model. These findings, along with its oral bioavailability, underscore its potential antiarrhythmic efficacy.


Subject(s)
Atrial Fibrillation/drug therapy , Atrial Flutter/drug therapy , Benzamides/therapeutic use , Dipeptides/therapeutic use , Gap Junctions/drug effects , Heart Conduction System/drug effects , Pericarditis/drug therapy , Proline/analogs & derivatives , Animals , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/physiopathology , Atrial Flutter/physiopathology , Benzamides/pharmacology , Connexin 43/metabolism , Dipeptides/adverse effects , Dipeptides/pharmacology , Disease Models, Animal , Dogs , Electric Conductivity , Female , Gap Junctions/physiology , Heart Atria/drug effects , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Conduction System/physiology , Male , Molecular Structure , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Pericarditis/physiopathology , Postoperative Complications/drug therapy , Postoperative Complications/physiopathology , Proline/pharmacology , Proline/therapeutic use , Rats , Rats, Sprague-Dawley , Refractory Period, Electrophysiological/drug effects
7.
J Pharmacol Exp Ther ; 317(1): 236-43, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16344331

ABSTRACT

The antiarrhythmic and cardioprotective effect of increasing gap junction intercellular communication during ischemia/reperfusion injury has not been studied. The antiarrhythmic peptide rotigaptide (previously ZP123), which maintains gap junction intercellular communication, was tested in dogs subjected to a 60-min coronary artery occlusion and 4 h of reperfusion. Rotigaptide was administered i.v. 10 min before reperfusion as a bolus + i.v. infusion at doses of 1 ng/kg bolus + 10 ng/kg/h infusion (n = 6), 10 ng/kg bolus + 100 ng/kg/h infusion (n = 5), 100 ng/kg bolus + 1000 ng/kg/h infusion (n = 8), 1000 ng/kg bolus + 10 mug/kg/h infusion (n = 6), and vehicle control (n = 5). Premature ventricular complexes (PVCs) were quantified during reperfusion. A series of four or more consecutive PVCs was defined as ventricular tachycardia (VT). The total incidence of VT was reduced significantly with the two highest doses of rotigaptide (20.3 +/- 10.9 and 4.3 +/- 4.1 events; p < 0.05) compared with controls (48.7 +/- 6.0). Total PVCs were reduced significantly from 25.1 +/- 4.2% in control animals to 11.0 +/- 4.4 and 1.7 +/- 1.3% after the two highest doses of rotigaptide. Infarct size, expressed as a percentage of the left ventricle, was reduced significantly from 13.2 +/- 1.9 in controls to 7.1 +/- 1.0 (p < 0.05) at the highest dose of rotigaptide. Ultrastructural evaluation revealed no differences in myocardial injury in the infarct area, area at risk, border zone, or normal zone in vehicle and rotigaptide-treated animals. However, rotigaptide did increase the presence of gap junctions in the area at risk (p = 0.022, Fisher's exact test). Rotigaptide had no effect on heart rate, blood pressure, heart rate-corrected QT interval, or left ventricular end-diastolic pressure. In conclusion, these results demonstrate that rotigaptide is a potent antiarrhythmic compound with cardioprotective effects and desirable safety.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/complications , Oligopeptides/therapeutic use , Ventricular Premature Complexes/prevention & control , Animals , Anti-Arrhythmia Agents/adverse effects , Anti-Arrhythmia Agents/pharmacokinetics , Dogs , Gap Junctions/ultrastructure , Hemodynamics/drug effects , Microscopy, Electron, Transmission , Myocardial Infarction/etiology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/ultrastructure , Oligopeptides/adverse effects , Oligopeptides/pharmacokinetics , Treatment Outcome , Ventricular Premature Complexes/etiology , Ventricular Premature Complexes/pathology , Ventricular Premature Complexes/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL