Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell Rep ; 42(12): 113535, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38060450

ABSTRACT

The phosphoinositide 3-kinase p110α is an essential mediator of insulin signaling and glucose homeostasis. We interrogated the human serine, threonine, and tyrosine kinome to search for novel regulators of p110α and found that the Hippo kinases phosphorylate p110α at T1061, which inhibits its activity. This inhibitory state corresponds to a conformational change of a membrane-binding domain on p110α, which impairs its ability to engage membranes. In human primary hepatocytes, cancer cell lines, and rodent tissues, activation of the Hippo kinases MST1/2 using forskolin or epinephrine is associated with phosphorylation of T1061 and inhibition of p110α, impairment of downstream insulin signaling, and suppression of glycolysis and glycogen synthesis. These changes are abrogated when MST1/2 are genetically deleted or inhibited with small molecules or if the T1061 is mutated to alanine. Our study defines an inhibitory pathway of PI3K signaling and a link between epinephrine and insulin signaling.


Subject(s)
Protein Serine-Threonine Kinases , Humans , Animals , Mice , Cell Line , Mice, Inbred C57BL , Male , Female , Epinephrine/pharmacology , Enzyme Activation/drug effects , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Phosphatidylinositols/chemistry , Phosphatidylinositols/metabolism , Gene Deletion , Colforsin/pharmacology , Insulin/metabolism , Phosphorylation/drug effects , Hippo Signaling Pathway/drug effects , Hippo Signaling Pathway/genetics
2.
Nature ; 613(7945): 759-766, 2023 01.
Article in English | MEDLINE | ID: mdl-36631611

ABSTRACT

Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.


Subject(s)
Phosphoproteins , Protein Serine-Threonine Kinases , Proteome , Serine , Threonine , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Serine/metabolism , Substrate Specificity , Threonine/metabolism , Proteome/chemistry , Proteome/metabolism , Datasets as Topic , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Cell Line , Phosphoserine/metabolism , Phosphothreonine/metabolism
3.
Cancer Discov ; 13(1): 146-169, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36264143

ABSTRACT

Menin interacts with oncogenic MLL1-fusion proteins, and small molecules that disrupt these associations are in clinical trials for leukemia treatment. By integrating chromatin-focused and genome-wide CRISPR screens with genetic, pharmacologic, and biochemical approaches, we discovered a conserved molecular switch between the MLL1-Menin and MLL3/4-UTX chromatin-modifying complexes that dictates response to Menin-MLL inhibitors. MLL1-Menin safeguards leukemia survival by impeding the binding of the MLL3/4-UTX complex at a subset of target gene promoters. Disrupting the Menin-MLL1 interaction triggers UTX-dependent transcriptional activation of a tumor-suppressive program that dictates therapeutic responses in murine and human leukemia. Therapeutic reactivation of this program using CDK4/6 inhibitors mitigates treatment resistance in leukemia cells that are insensitive to Menin inhibitors. These findings shed light on novel functions of evolutionarily conserved epigenetic mediators like MLL1-Menin and MLL3/4-UTX and are relevant to understand and target molecular pathways determining therapeutic responses in ongoing clinical trials. SIGNIFICANCE: Menin-MLL inhibitors silence a canonical HOX- and MEIS1-dependent oncogenic gene expression program in leukemia. We discovered a parallel, noncanonical transcriptional program involving tumor suppressor genes that are repressed in Menin-MLL inhibitor-resistant leukemia cells but that can be reactivated upon combinatorial treatment with CDK4/6 inhibitors to augment therapy responses. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Leukemia , Myeloid-Lymphoid Leukemia Protein , Humans , Mice , Animals , Myeloid-Lymphoid Leukemia Protein/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Line, Tumor , Transcription Factors/genetics , Leukemia/drug therapy , Chromatin , Mammals/genetics , Mammals/metabolism
4.
Sci Signal ; 15(757): eabm0808, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36282911

ABSTRACT

Multiple coronaviruses have emerged independently in the past 20 years that cause lethal human diseases. Although vaccine development targeting these viruses has been accelerated substantially, there remain patients requiring treatment who cannot be vaccinated or who experience breakthrough infections. Understanding the common host factors necessary for the life cycles of coronaviruses may reveal conserved therapeutic targets. Here, we used the known substrate specificities of mammalian protein kinases to deconvolute the sequence of phosphorylation events mediated by three host protein kinase families (SRPK, GSK-3, and CK1) that coordinately phosphorylate a cluster of serine and threonine residues in the viral N protein, which is required for viral replication. We also showed that loss or inhibition of SRPK1/2, which we propose initiates the N protein phosphorylation cascade, compromised the viral replication cycle. Because these phosphorylation sites are highly conserved across coronaviruses, inhibitors of these protein kinases not only may have therapeutic potential against COVID-19 but also may be broadly useful against coronavirus-mediated diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Phosphorylation , Glycogen Synthase Kinase 3/metabolism , Virus Replication , Nucleocapsid Proteins/metabolism , Nucleocapsid/metabolism , Serine/metabolism , Threonine/metabolism , Mammals/metabolism , Protein Serine-Threonine Kinases
5.
bioRxiv ; 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35734085

ABSTRACT

Previously, we showed that coagulation factors directly cleave SARS-CoV-2 spike and promote viral entry (Kastenhuber et al., 2022). Here, we show that substitutions in the S1/S2 cleavage site observed in SARS-CoV-2 variants of concern (VOCs) exhibit divergent interactions with host proteases, including factor Xa and furin. Nafamostat remains effective to block coagulation factor-mediated cleavage of variant spike sequences. Furthermore, host protease usage has likely been a selection pressure throughout coronavirus evolution, and we observe convergence of distantly related coronaviruses to attain common host protease interactions, including coagulation factors. Interpretation of genomic surveillance of emerging SARS-CoV-2 variants and future zoonotic spillover is supported by functional characterization of recurrent emerging features.

6.
Sci Adv ; 8(14): eabm7985, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35385296

ABSTRACT

The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.

7.
Elife ; 112022 03 23.
Article in English | MEDLINE | ID: mdl-35294338

ABSTRACT

Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing infection at the stage of viral entry. Coagulation factors increased SARS-CoV-2 infection in human lung organoids. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases and coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Blood Coagulation Factors , Humans , Spike Glycoprotein, Coronavirus , Virus Internalization
8.
Nat Biotechnol ; 40(6): 862-873, 2022 06.
Article in English | MEDLINE | ID: mdl-35165384

ABSTRACT

Base editing can be applied to characterize single nucleotide variants of unknown function, yet defining effective combinations of single guide RNAs (sgRNAs) and base editors remains challenging. Here, we describe modular base-editing-activity 'sensors' that link sgRNAs and cognate target sites in cis and use them to systematically measure the editing efficiency and precision of thousands of sgRNAs paired with functionally distinct base editors. By quantifying sensor editing across >200,000 editor-sgRNA combinations, we provide a comprehensive resource of sgRNAs for introducing and interrogating cancer-associated single nucleotide variants in multiple model systems. We demonstrate that sensor-validated tools streamline production of in vivo cancer models and that integrating sensor modules in pooled sgRNA libraries can aid interpretation of high-throughput base editing screens. Using this approach, we identify several previously uncharacterized mutant TP53 alleles as drivers of cancer cell proliferation and in vivo tumor development. We anticipate that the framework described here will facilitate the functional interrogation of cancer variants in cell and animal models.


Subject(s)
Gene Editing , Neoplasms , Animals , CRISPR-Cas Systems/genetics , Neoplasms/genetics , Nucleotides , RNA, Guide, Kinetoplastida/genetics
9.
bioRxiv ; 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33821268

ABSTRACT

Coagulopathy is a significant aspect of morbidity in COVID-19 patients. The clotting cascade is propagated by a series of proteases, including factor Xa and thrombin. While certain host proteases, including TMPRSS2 and furin, are known to be important for cleavage activation of SARS-CoV-2 spike to promote viral entry in the respiratory tract, other proteases may also contribute. Using biochemical and cell-based assays, we demonstrate that factor Xa and thrombin can also directly cleave SARS-CoV-2 spike, enhancing viral entry. A drug-repurposing screen identified a subset of protease inhibitors that promiscuously inhibited spike cleavage by both transmembrane serine proteases as well as coagulation factors. The mechanism of the protease inhibitors nafamostat and camostat may extend beyond inhibition of TMPRSS2 to coagulation-induced spike cleavage. Anticoagulation is critical in the management of COVID-19, and early intervention could provide collateral benefit by suppressing SARS-CoV-2 viral entry. We propose a model of positive feedback whereby infection-induced hypercoagulation exacerbates SARS-CoV-2 infectivity.

10.
bioRxiv ; 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-32817937

ABSTRACT

While vaccines are vital for preventing COVID-19 infections, it is critical to develop new therapies to treat patients who become infected. Pharmacological targeting of a host factor required for viral replication can suppress viral spread with a low probability of viral mutation leading to resistance. In particular, host kinases are highly druggable targets and a number of conserved coronavirus proteins, notably the nucleoprotein (N), require phosphorylation for full functionality. In order to understand how targeting kinases could be used to compromise viral replication, we used a combination of phosphoproteomics and bioinformatics as well as genetic and pharmacological kinase inhibition to define the enzymes important for SARS-CoV-2 N protein phosphorylation and viral replication. From these data, we propose a model whereby SRPK1/2 initiates phosphorylation of the N protein, which primes for further phosphorylation by GSK-3a/b and CK1 to achieve extensive phosphorylation of the N protein SR-rich domain. Importantly, we were able to leverage our data to identify an FDA-approved kinase inhibitor, Alectinib, that suppresses N phosphorylation by SRPK1/2 and limits SARS-CoV-2 replication. Together, these data suggest that repurposing or developing novel host-kinase directed therapies may be an efficacious strategy to prevent or treat COVID-19 and other coronavirus-mediated diseases.

11.
Cancer Discov ; 10(9): 1352-1373, 2020 09.
Article in English | MEDLINE | ID: mdl-32571778

ABSTRACT

A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain/pathology , Phosphoglycerate Dehydrogenase/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Brain/metabolism , Brain Neoplasms/secondary , Cell Line, Tumor , Datasets as Topic , Drug Resistance, Neoplasm , Female , Gene Knockdown Techniques , Glycine/analysis , Glycine/metabolism , Humans , Metabolomics , Mice , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Proteomics , RNA-Seq , Serine/analysis , Serine/metabolism , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
12.
Cancer Discov ; 9(7): 962-979, 2019 07.
Article in English | MEDLINE | ID: mdl-31068365

ABSTRACT

Mutations in the TP53 tumor suppressor gene are common in many cancer types, including the acute myeloid leukemia (AML) subtype known as complex karyotype AML (CK-AML). Here, we identify a gain-of-function (GOF) Trp53 mutation that accelerates CK-AML initiation beyond p53 loss and, surprisingly, is required for disease maintenance. The Trp53R172H mutation (TP53R175H in humans) exhibits a neomorphic function by promoting aberrant self-renewal in leukemic cells, a phenotype that is present in hematopoietic stem and progenitor cells (HSPC) even prior to their transformation. We identify FOXH1 as a critical mediator of mutant p53 function that binds to and regulates stem cell-associated genes and transcriptional programs. Our results identify a context where mutant p53 acts as a bona fide oncogene that contributes to the pathogenesis of CK-AML and suggests a common biological theme for TP53 GOF in cancer. SIGNIFICANCE: Our study demonstrates how a GOF p53 mutant can hijack an embryonic transcription factor to promote aberrant self-renewal. In this context, mutant Trp53 functions as an oncogene to both initiate and sustain myeloid leukemia and suggests a potential convergent activity of mutant Trp53 across cancer types.This article is highlighted in the In This Issue feature, p. 813.


Subject(s)
Forkhead Transcription Factors/metabolism , Gain of Function Mutation , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Neoplastic Stem Cells/pathology , Tumor Suppressor Protein p53/genetics , Animals , Cell Line, Tumor , Cell Plasticity/genetics , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Neoplastic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/pathology , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
13.
J Hepatocell Carcinoma ; 6: 41-48, 2019.
Article in English | MEDLINE | ID: mdl-30951568

ABSTRACT

Fibrolamellar carcinoma is a rare liver cancer, which primarily afflicts adolescents and young adults worldwide and is frequently lethal. Given the rarity of this disease, patient recruitment for clinical trials remains a challenge. In November 2017, the Second Fibrolamellar Cancer Foundation Scientific Summit (Stamford, CT, USA) provided an opportunity for investigators to discuss recent advances in the characterization of the disease and its surrounding liver and immune context. The Fibrolamellar Cancer Foundation has thus set out a road map to identify and test therapeutic targets in the most efficient possible manner.

14.
Cell Mol Gastroenterol Hepatol ; 7(4): 803-817, 2019.
Article in English | MEDLINE | ID: mdl-30763770

ABSTRACT

BACKGROUND & AIMS: Fibrolamellar carcinoma (FLC) is a rare liver cancer that primarily affects adolescents and young adults. It is characterized by a heterozygous approximately 400-kb deletion on chromosome 19 that results in a unique fusion between DnaJ heat shock protein family member B1 (DNAJB1) and the alpha catalytic subunit of protein kinase A (PRKACA). The role of microRNAs (miRNAs) in FLC remains unclear. We identified dysregulated miRNAs in FLC and investigated whether dysregulation of 1 key miRNA contributes to FLC pathogenesis. METHODS: We analyzed small RNA sequencing (smRNA-seq) data from The Cancer Genome Atlas to identify dysregulated miRNAs in primary FLC tumors and validated the findings in 3 independent FLC cohorts. smRNA-seq also was performed on a FLC patient-derived xenograft model as well as purified cell populations of the liver to determine whether key miRNA changes were tumor cell-intrinsic. We then used clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (Cas9) technology and transposon-mediated gene transfer in mice to determine if the presence of DNAJB1-PRKACA is sufficient to suppress miR-375 expression. Finally, we established a new FLC cell line and performed colony formation and scratch wound assays to determine the functional consequences of miR-375 overexpression. RESULTS: We identified miR-375 as the most dysregulated miRNA in primary FLC tumors (27-fold down-regulation; P = .009). miR-375 expression also was decreased significantly in a FLC patient-derived xenograft model compared to 4 different cell populations of the liver. Introduction of DNAJB1-PRKACA by clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 engineering and transposon-mediated somatic gene transfer in mice was sufficient to induce significant loss of miR-375 expression (P < .05). Overexpression of miR-375 in FLC cells inhibited Hippo signaling pathway proteins, including yes-associated protein 1 and connective tissue growth factor, and suppressed cell proliferation and migration (P < .05). CONCLUSIONS: We identified miR-375 as the most down-regulated miRNA in FLC tumors and showed that overexpression of miR-375 mitigated tumor cell growth and invasive potential. These findings open a potentially new molecular therapeutic approach. Further studies are necessary to determine how DNAJB1-PRKACA suppresses miR-375 expression and whether miR-375 has additional important targets in this tumor. Transcript profiling: GEO accession numbers: GSE114974 and GSE125602.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , MicroRNAs/metabolism , Animals , Cell Proliferation , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Female , Gene Expression Regulation, Neoplastic , HSP40 Heat-Shock Proteins/metabolism , Humans , Liver/pathology , Mice, Inbred C57BL , MicroRNAs/genetics , Neoplasm Invasiveness , Signal Transduction , Xenograft Model Antitumor Assays
15.
Cell ; 176(3): 564-580.e19, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30580964

ABSTRACT

There are still gaps in our understanding of the complex processes by which p53 suppresses tumorigenesis. Here we describe a novel role for p53 in suppressing the mevalonate pathway, which is responsible for biosynthesis of cholesterol and nonsterol isoprenoids. p53 blocks activation of SREBP-2, the master transcriptional regulator of this pathway, by transcriptionally inducing the ABCA1 cholesterol transporter gene. A mouse model of liver cancer reveals that downregulation of mevalonate pathway gene expression by p53 occurs in premalignant hepatocytes, when p53 is needed to actively suppress tumorigenesis. Furthermore, pharmacological or RNAi inhibition of the mevalonate pathway restricts the development of murine hepatocellular carcinomas driven by p53 loss. Like p53 loss, ablation of ABCA1 promotes murine liver tumorigenesis and is associated with increased SREBP-2 maturation. Our findings demonstrate that repression of the mevalonate pathway is a crucial component of p53-mediated liver tumor suppression and outline the mechanism by which this occurs.


Subject(s)
Mevalonic Acid/metabolism , Tumor Suppressor Protein p53/metabolism , ATP Binding Cassette Transporter 1/metabolism , Animals , Cell Line , Cholesterol/metabolism , Female , Genes, Tumor Suppressor , HCT116 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Neoplasms/genetics , Promoter Regions, Genetic , Sterol Regulatory Element Binding Protein 2/metabolism , Terpenes/metabolism
16.
Nat Biotechnol ; 36(9): 888-893, 2018 10.
Article in English | MEDLINE | ID: mdl-29969439

ABSTRACT

CRISPR base editing enables the creation of targeted single-base conversions without generating double-stranded breaks. However, the efficiency of current base editors is very low in many cell types. We reengineered the sequences of BE3, BE4Gam, and xBE3 by codon optimization and incorporation of additional nuclear-localization sequences. Our collection of optimized constitutive and inducible base-editing vector systems dramatically improves the efficiency by which single-nucleotide variants can be created. The reengineered base editors enable target modification in a wide range of mouse and human cell lines, and intestinal organoids. We also show that the optimized base editors mediate efficient in vivo somatic editing in the liver in adult mice.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , Cell Line , Genetic Variation , Humans , Mice
17.
Proc Natl Acad Sci U S A ; 114(50): 13076-13084, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29162699

ABSTRACT

A segmental deletion resulting in DNAJB1-PRKACA gene fusion is now recognized as the signature genetic event of fibrolamellar hepatocellular carcinoma (FL-HCC), a rare but lethal liver cancer that primarily affects adolescents and young adults. Here we implement CRISPR-Cas9 genome editing and transposon-mediated somatic gene transfer to demonstrate that expression of either the endogenous fusion protein or a chimeric cDNA leads to the formation of indolent liver tumors in mice that closely resemble human FL-HCC. Notably, overexpression of the wild-type PRKACA was unable to fully recapitulate the oncogenic activity of DNAJB1-PRKACA, implying that FL-HCC does not simply result from enhanced PRKACA expression. Tumorigenesis was significantly enhanced by genetic activation of ß-catenin, an observation supported by evidence of recurrent Wnt pathway mutations in human FL-HCC, as well as treatment with the hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which causes tissue injury, inflammation, and fibrosis. Our study validates the DNAJB1-PRKACA fusion kinase as an oncogenic driver and candidate drug target for FL-HCC, and establishes a practical model for preclinical studies to identify strategies to treat this disease.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , HSP40 Heat-Shock Proteins/genetics , Liver Neoplasms, Experimental/genetics , Liver Neoplasms/genetics , Liver Regeneration/genetics , Liver/physiology , Oncogene Proteins, Fusion/genetics , beta Catenin/genetics , Adult , Animals , Base Sequence , Carcinogenesis/chemically induced , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Chromosomes, Human, Pair 19/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cohort Studies , Female , Gene Expression Regulation, Neoplastic , Humans , Liver/drug effects , Liver/pathology , Liver Neoplasms/pathology , Liver Neoplasms, Experimental/chemically induced , Mice , Mice, Inbred C57BL , Pyridines/toxicity , Sequence Deletion/genetics , Young Adult
18.
Cell ; 170(6): 1062-1078, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886379

ABSTRACT

TP53 is the most frequently mutated gene in human cancer. Functionally, p53 is activated by a host of stress stimuli and, in turn, governs an exquisitely complex anti-proliferative transcriptional program that touches upon a bewildering array of biological responses. Despite the many unveiled facets of the p53 network, a clear appreciation of how and in what contexts p53 exerts its diverse effects remains unclear. How can we interpret p53's disparate activities and the consequences of its dysfunction to understand how cell type, mutation profile, and epigenetic cell state dictate outcomes, and how might we restore its tumor-suppressive activities in cancer?


Subject(s)
Neoplasms/genetics , Tumor Suppressor Protein p53/metabolism , Animals , Epigenesis, Genetic , Genes, p53 , Humans , Mutation , Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics
20.
Elife ; 52016 10 19.
Article in English | MEDLINE | ID: mdl-27759562

ABSTRACT

TP53 truncating mutations are common in human tumors and are thought to give rise to p53-null alleles. Here, we show that TP53 exon-6 truncating mutations occur at higher than expected frequencies and produce proteins that lack canonical p53 tumor suppressor activities but promote cancer cell proliferation, survival, and metastasis. Functionally and molecularly, these p53 mutants resemble the naturally occurring alternative p53 splice variant, p53-psi. Accordingly, these mutants can localize to the mitochondria where they promote tumor phenotypes by binding and activating the mitochondria inner pore permeability regulator, Cyclophilin D (CypD). Together, our studies reveal that TP53 exon-6 truncating mutations, contrary to current beliefs, act beyond p53 loss to promote tumorigenesis, and could inform the development of strategies to target cancers driven by these prevalent mutations.


Subject(s)
Mutation , Neoplasms/pathology , Sequence Deletion , Tumor Suppressor Protein p53/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cyclophilins/metabolism , Disease Models, Animal , Heterografts , Humans , Mice, Nude , Mitochondrial Membranes/physiology , Neoplasm Metastasis , Permeability , Protein Isoforms
SELECTION OF CITATIONS
SEARCH DETAIL
...