Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Med (Lausanne) ; 11: 1348148, 2024.
Article in English | MEDLINE | ID: mdl-38854671

ABSTRACT

Introduction: In the evolving healthcare landscape, precision medicine's rise necessitates adaptable doctoral training. The European Union has recognized this and promotes the development of international, training-focused programmes called Innovative Training Networks (ITNs). In this article, we introduce TranSYS, an ITN focused on educating the next generation of precision medicine researchers. In an ambition to go beyond describing the consortium goals, our article explores two key aspects of ITNs: the training and collaboration. Methods: Using self-report questionnaires, we evaluate the scientific, professional, and personal growth of ESRs over the duration of the ITN and investigate whether this can be linked to network activities. Results: Our quantitative analysis approach reveals substantial improvements in scientific, professional, and social skills among young researchers facilitated by the engagement in this interdisciplinary network. We provide case studies underlining the advantages of collaborative environments, featuring innovative scientific exchange within TranSYS. Discussion: While challenging, ITNs foster positive growth in young researchers, yet exhibit weaknesses such as balancing stakeholder interests and partner commitment. We believe this study may benefit a variety of stakeholders, from prospective ITN creators to industry partners, to design better sustainable training networks going forward.

2.
iScience ; 26(10): 107799, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37720097

ABSTRACT

With COVID-19 becoming endemic, there is a continuing need to find biomarkers characterizing the disease and aiding in patient stratification. We studied the relation between COVID-19 and cholesterol biosynthesis by comparing 10 intermediates of cholesterol biosynthesis during the hospitalization of 164 patients (admission, disease deterioration, discharge) admitted to the University Medical Center of Ljubljana. The concentrations of zymosterol, 24-dehydrolathosterol, desmosterol, and zymostenol were significantly altered in COVID-19 patients. We further developed a predictive model for disease severity based on clinical parameters alone and their combination with a subset of sterols. Our machine learning models applying 8 clinical parameters predicted disease severity with excellent accuracy (AUC = 0.96), showing substantial improvement over current clinical risk scores. After including sterols, model performance remained better than COVID-GRAM. This is the first study to examine cholesterol biosynthesis during COVID-19 and shows that a subset of cholesterol-related sterols is associated with the severity of COVID-19.

3.
Int J Med Inform ; 167: 104878, 2022 11.
Article in English | MEDLINE | ID: mdl-36194993

ABSTRACT

INTRODUCTION: Necrotizing Soft Tissue Infections (NSTI) are severe infections with high mortality affecting a heterogeneous patient population. There is a need for a clinical decision support system which predicts outcomes and provides treatment recommendations early in the disease course. METHODS: To identify relevant clinical needs, interviews with eight medical professionals (surgeons, intensivists, general practitioner, emergency department physician) were conducted. This resulted in 24 unique questions. Mortality was selected as first endpoint to develop a machine learning (Random Forest) based prediction model. For this purpose, data from the prospective, international INFECT cohort (N = 409) was used. RESULTS: Applying a feature selection procedure based on an unsupervised algorithm (Boruta) to the  > 1000 variables available in INFECT, including baseline, and both NSTI specific and NSTI non-specific clinical data yielded sixteen predictive parameters available on or prior to the first day on the intensive care unit (ICU). Using these sixteen variables 30-day mortality could be accurately predicted (AUC = 0.91, 95% CI 0.88-0.96). Except for age, all variables were related to sepsis (e.g. lactate, urine production, systole). No NSTI-specific variables were identified. Predictions significantly outperformed the SOFA score(p < 0.001, AUC = 0.77, 95% CI 0.69-0.84) and exceeded but did not significantly differ from the SAPS II score (p = 0.07, AUC = 0.88, 95% CI 0.83-0.92). The developed model proved to be stable with AUC  > 0.8 in case of high rates of missing data (50% missing) or when only using very early (<1 h) available variables. CONCLUSIONS: This study shows that mortality can be accurately predicted using a machine learning model. It lays the foundation for a more extensive, multi-endpoint clinical decision support system in which ultimately other outcomes and clinical questions (risk for septic shock, AKI, causative microbe) will be included.


Subject(s)
Soft Tissue Infections , Cohort Studies , Humans , Intensive Care Units , Lactates , Prospective Studies , Soft Tissue Infections/epidemiology , Soft Tissue Infections/therapy
4.
Acta Neuropathol Commun ; 10(1): 65, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35484633

ABSTRACT

Glioblastoma (GBM) is characterized by a particularly invasive phenotype, supported by oncogenic signals from the fibroblast growth factor (FGF)/ FGF receptor (FGFR) network. However, a possible role of FGFR4 remained elusive so far. Several transcriptomic glioma datasets were analyzed. An extended panel of primary surgical specimen-derived and immortalized GBM (stem)cell models and original tumor tissues were screened for FGFR4 expression. GBM models engineered for wild-type and dominant-negative FGFR4 overexpression were investigated regarding aggressiveness and xenograft formation. Gene set enrichment analyses of FGFR4-modulated GBM models were compared to patient-derived datasets. Despite widely absent in adult brain, FGFR4 mRNA was distinctly expressed in embryonic neural stem cells and significantly upregulated in glioblastoma. Pronounced FGFR4 overexpression defined a distinct GBM patient subgroup with dismal prognosis. Expression levels of FGFR4 and its specific ligands FGF19/FGF23 correlated both in vitro and in vivo and were progressively upregulated in the vast majority of recurrent tumors. Based on overexpression/blockade experiments in respective GBM models, a central pro-oncogenic function of FGFR4 concerning viability, adhesion, migration, and clonogenicity was identified. Expression of dominant-negative FGFR4 resulted in diminished (subcutaneous) or blocked (orthotopic) GBM xenograft formation in the mouse and reduced invasiveness in zebrafish xenotransplantation models. In vitro and in vivo data consistently revealed distinct FGFR4 and integrin/extracellular matrix interactions. Accordingly, FGFR4 blockade profoundly sensitized FGFR4-overexpressing GBM models towards integrin/focal adhesion kinase inhibitors. Collectively, FGFR4 overexpression contributes to the malignant phenotype of a highly aggressive GBM subgroup and is associated with integrin-related therapeutic vulnerabilities.


Subject(s)
Glioblastoma , Receptor, Fibroblast Growth Factor, Type 4 , Animals , Carcinogenesis , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Integrins , Mice , Neoplasm Recurrence, Local , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Zebrafish/metabolism , Zebrafish Proteins
5.
Cancers (Basel) ; 13(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917186

ABSTRACT

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most common cause of cancer-related death, with tumour associated liver endothelial cells being thought to be major drivers in HCC progression. This study aims to compare the gene expression profiles of tumour endothelial cells from the liver with endothelial cells from non-tumour liver tissue, to identify perturbed biologic functions, co-expression modules, and potentially drugable hub genes that could give rise to novel therapeutic targets and strategies. Gene Set Variation Analysis (GSVA) showed that cell growth-related pathways were upregulated, whereas apoptosis induction, immune and inflammatory-related pathways were downregulated in tumour endothelial cells. Weighted Gene Co-expression Network Analysis (WGCNA) identified several modules strongly associated to tumour endothelial cells or angiogenic activated endothelial cells with high endoglin (ENG) expression. In tumour cells, upregulated modules were associated with cell growth, cell proliferation, and DNA-replication, whereas downregulated modules were involved in immune functions, particularly complement activation. In ENG+ cells, upregulated modules were associated with cell adhesion and endothelial functions. One downregulated module was associated with immune system-related functions. Querying the STRING database revealed known functional-interaction networks underlying the modules. Several possible hub genes were identified, of which some (for example FEN1, BIRC5, NEK2, CDKN3, and TTK) are potentially druggable as determined by querying the Drug Gene Interaction database. In summary, our study provides a detailed picture of the transcriptomic differences between tumour and non-tumour endothelium in the liver on a co-expression network level, indicates several potential therapeutic targets and presents an analysis workflow that can be easily adapted to other projects.

6.
J Chem Inf Model ; 61(3): 1193-1203, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33570387

ABSTRACT

Rational-design methods have proven to be a valuable toolkit in the field of protein design. Numerical approaches such as free-energy calculations or QM/MM methods are fit to widen the understanding of a protein-sequence space but require large amounts of computational time and power. Here, we apply an efficient method for free-energy calculations that combines the one-step perturbation (OSP) with the third-power-fitting (TPF) approach. It is fit to calculate full free energies of binding from three different end states only. The nonpolar contribution to the free energies are calculated for a set of chosen amino acids from a single simulation of a judiciously chosen reference state. The electrostatic contributions, on the other hand, are predicted from simulations of the neutral and charged end states of the individual amino acids. We used this method to perform in silico saturation mutagenesis of two sites in human Caspase-2. We calculated relative binding free energies toward two different substrates that differ in their P1' site and in their affinity toward the unmutated protease. Although being approximate, our approach showed very good agreement upon validation against experimental data. 76% of the predicted relative free energies of amino acid mutations was found to be true positives or true negatives. We observed that this method is fit to discriminate amino acid mutations because the rate of false negatives is very low (<1.5%). The approach works better for a substrate with medium/low affinity with a Matthews correlation coefficient (MCC) of 0.63, whereas for a substrate with very low affinity, the MCC was 0.38. In all cases, the combined TPF + OSP approach outperformed the linear interaction energy method.


Subject(s)
Caspases , Peptide Hydrolases , Computer Simulation , Humans , Mutagenesis , Protein Binding , Thermodynamics
7.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28762722

ABSTRACT

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/enzymology , Heme/metabolism , Peroxidase/metabolism , Protein Processing, Post-Translational/physiology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalysis , Heme/chemistry , Heme/genetics , Ligands , Peroxidase/chemistry , Peroxidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...