Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Cell Biochem Funct ; 42(3): e4008, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613198

ABSTRACT

Temporal phases of wound healing and their corresponding healing factors are essential in wound regeneration. Mesenchymal stem cells (MSCs) accelerate wound healing via their paracrine secretions by enhancing cell migration, angiogenesis, and reducing inflammation. This study evaluated the local therapeutic effect of human umbilical cord MSCs (hUCMSCs) in the healing of cold-induced burn wounds. An in vitro wound (scratch) was developed in rat skin fibroblasts. The culture was maintained in the conditioned medium (CM) which was prepared by inducing an artificial wound in hUCMSCs in a separate experiment. Treated fibroblasts were analyzed for the gene expression profile of healing mediators involved in wound closure. Findings revealed enhanced cell migration and increased levels of healing mediators in the treated fibroblasts relative to the untreated group. Cold-induced burn wounds were developed in Wistar rats, followed by a single injection of hUCMSCs. Wound healing pattern was examined based on the healing phases: hemostasis/inflammation (Days 1, 3), cell proliferation (Day 7), and remodeling (Day 14). Findings exhibited enhanced wound closure in the treated wound. Gene expression, histological, and immunohistochemical analyses further confirmed enhanced wound regeneration after hUCMSC transplantation. Temporal gene expression profile revealed that the level of corresponding cytokines was substantially increased in the treated wound as compared with the control, indicating improvement in the processes of angiogenesis and remodeling, and a substantial reduction in inflammation. Histology revealed significant collagen formation along with regenerated skin layers and appendages, whereas immunohistochemistry exhibited increased neovascularization during remodeling. Leukocyte infiltration was also suppressed in the treated group. Overall findings demonstrate that a single dose of hUCMSCs enhances wound healing in vivo, and their secreted growth factors accelerate cell migration in vitro.


Subject(s)
Burns , Stem Cells , Animals , Female , Humans , Rats , Burns/therapy , Inflammation , Rats, Wistar , Wound Healing
2.
Pharm Dev Technol ; 29(4): 322-338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38502578

ABSTRACT

AIMS: Micellar systems have the advantage of being easily prepared, cheap, and readily loadable with bioactive molecular cargo. However, their fundamental pitfall is poor stability, particularly under dilution conditions. We propose to use simple quaternary ammonium surfactants, namely, hexadecylamine (HDA) and hexadecylpyridinium (HDAP), together with tripolyphosphate (TPP) anion, to generate ionotropically stabilized micelles capable of drug delivery into cancer cells. METHODS: optimized mixed HDA/HDAP micelles were prepared and stabilized with TPP. Curcumin was used as a loaded model drug. The prepared nanoparticles were characterized by dynamic light scattering, infrared spectroscopy, transmission electron microscopy, and differential scanning calorimetry. Moreover, their cellular uptake was assessed using flow cytometry and confocal fluorescence microscopy. RESULTS: The prepared nanoparticles were found to be stable under dilution and at high temperatures and to have a size range from 139 nm to 580 nm, depending on pH (4.6-7.4), dilution (up to 100 times), and temperature (25 - 80 °C). They were effective at delivering their load into cancer cells. Additionally, flow cytometry indicated the resulting stabilized micellar nanoparticles to be non-cytotoxic. CONCLUSIONS: The described novel stabilized micelles are simple to prepare and viable for cancer delivery.


Subject(s)
Amines , Curcumin , Drug Delivery Systems , Micelles , Nanoparticles , Polyphosphates , Humans , Amines/chemistry , Polyphosphates/chemistry , Nanoparticles/chemistry , Drug Delivery Systems/methods , Curcumin/administration & dosage , Curcumin/chemistry , Curcumin/pharmacology , Curcumin/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Drug Carriers/chemistry , Surface-Active Agents/chemistry , Surface-Active Agents/chemical synthesis , Particle Size , Cell Line, Tumor , Neoplasms/drug therapy
3.
Photodiagnosis Photodyn Ther ; 44: 103841, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832710

ABSTRACT

Wounds infected by Pseudomonas aeruginosa (P. aeruginosa) biofilms are characterized by poor healing and by being long lasting. Pyocyanin and pyoverdine are exotoxins that contribute to P. aeruginosa pathogenicity in wound infections and are known as virulence factors. Despite the usefulness of antimicrobial photodynamic therapy (PDT) in the management of wound infections, biofilms are hurdle for microbial photoinactivation. Quorum sensing (QS) is a cell density-dependent chemical signaling system P. aeruginosa uses to regulate biofilm formation and virulence factors production. In the current study, QS attenuation was used in combination with PDT against P. aeruginosa biofilm cultured on skin explant. Iberin is a QS inhibitor that attenuates P. aeruginosa virulence and affects biofilm integrity. The antibiofilm and QS inhibitory activities of iberin in combination with either riboflavin or 5,10,15,20-Tetrakis(1-methyl-4-pyridinio) porphyrin tetra p-toluenesulfonate (TMP) mediated PDT were investigated using viable count method and pyocyanin and pyoverdine assays, respectively. No bactericidal activity was reported when iberin was added to a mature biofilm (24 h) followed by PDT. When added to a growing biofilm at multiple time points (0 h, 24 h and 48 h), iberin inhibited P. aeruginosa biofilm QS signaling system. This inhibitory effect resulted in an observable decrease in the levels of the QS-regulated virulence factors, pyocyanin and pyoverdine, without any effect on the growth of the biofilm cultures. These changes in biofilm virulence were associated with a decrease in biofilm resistance to PDT and caused bactericidal effect upon photosensitizers treatment and irradiation. Iberin-treated-riboflavin-mediated PDT resulted in a significant 1.3 log reduction in biofilm population. Similarly, iberin-treated-TMP-mediated PDT caused a significant 1.8 log reduction in biofilm population. The combination of QS inhibitor with PDT is a promising alternative antimicrobial therapy for the management of biofilms.


Subject(s)
Photochemotherapy , Wound Infection , Humans , Pseudomonas aeruginosa , Pyocyanine , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Biofilms , Quorum Sensing , Anti-Bacterial Agents/pharmacology , Virulence Factors , Riboflavin/pharmacology
4.
PLoS One ; 18(6): e0287267, 2023.
Article in English | MEDLINE | ID: mdl-37319232

ABSTRACT

The interaction of pharmacologically active drugs with SC biochemical components is underestimated in pharmaceutical research. The aim of this research was to illustrate that some drugs intended for transdermal delivery could interact with the protein component of SC. Such interactions could be in favor of or opposition to their percutaneous absorption. IR microspectroscopy was used to delineate possible interaction of SC keratin with three losartan salts LOS-K, LOS-DEA and LOS-AML salts in addition to AML-BES salt. The results of PCA, combined with comparisons of average second derivative spectra of SC samples treated with these salts and the control SC, showed that LOS-DEA did not interact with SC, thus providing base line permeation of losartan. AML-BES, LOS-AML and LOS-K salts modified the conformational structure of keratin. The disorganization effect on the α-helical structure and induced formation of parallel ß-sheets and random coils were in the order of AML-BES˃LOS-AML˃LOS-K. The order of the impact of treatments which resulted in increased formation of ß-turns was AML-BES˃LOS-AML. The formation of antiparallel ß-sheets was manifested by LOS-AML. Thus, the overall effect of these salts on the SC protein was AML-BES˃LOS-AML˃LOS-K. The impact of LOS-K was associated with improved permeation whereas the impact of LOS-AML was associated with hindered permeation of both losartan and amlodipine. There is a possibility that losartan and amlodipine when present in combination inside SC, their binding to the protein is enhanced leading to being retained within SC.


Subject(s)
Leukemia, Myeloid, Acute , Losartan , Humans , Losartan/pharmacology , Salts/metabolism , Amlodipine , Pharmaceutical Preparations/chemistry , Keratins/metabolism , Leukemia, Myeloid, Acute/drug therapy , Skin/metabolism
5.
AAPS PharmSciTech ; 23(6): 210, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35902492

ABSTRACT

Transdermal drug delivery systems (TDDSs) were developed for prolonged tamsulosin (TMS) delivery. Double layer (DL) TDDSs were prepared using Eudragit® RL by conventional film-forming. Ethylene-vinyl acetate was used as the backing layer, triethylcitrate as plasticizer, and Capmul® PG-8-70 NF and Captex 170 EP as penetration enhancers (PEs). An increase in either drug or PE concentration caused a significant increase in drug permeation flux. Modulation of drug permeation across Strat-M® membrane was examined using a single layer (SL) having the same thickness and drug content as the DLs, while the DLs were formulated to have variable drug spatial distribution across each layer (DL 4:6 and DL 6:4). SL/TDDS showed significantly higher daily drug permeation than DL/TDDSs for the first 4 days which could be related to the presence of high TMS concentration located on the upper surface of SL/TDDS as a result of solute migration of TMS during the drying process. However, this increase was followed by a progressive linear decrease after 5 days. Deflection points that were characterized by lower drug flux had been shown by SL/TDDS at more than one-point times. In contrast, DL 4:6 and DL 6:4 TDDSs demonstrated an ability to sustain TMS delivery for up to 2 weeks.


Subject(s)
Polymers , Polymethacrylic Acids , Administration, Cutaneous , Drug Delivery Systems , Skin , Tamsulosin , Transdermal Patch
6.
Biophys Chem ; 285: 106809, 2022 06.
Article in English | MEDLINE | ID: mdl-35367785

ABSTRACT

Insulin detemir (IDt) is long-acting insulin whose protraction mechanism is based on a covalently attached fatty acid to an insulin molecule. Utilizing the high affinity of fatty acids towards human serum albumin (HA), the modified detemir molecule binds with good affinity to HA, which functions as a reservoir that leads to a slow and prolonged release of insulin. However, questions were raised over potential interactions between other drugs and IDt through competitive binding on the binding site(s) of HA. In a previous study, concomitant use of esomeprazole (Esom) and erythromycin resulted in severe hypoglycemia, and thus: the drugs including Esom were suggested as enhancers of IDt action through displacing it from its binding site on HA. To further study this possibility, studies utilizing different techniques including, semipermeable membrane dialysis, capillary electrophoresis, UV,NMR spectroscopy, and molecular docking were carried out. Results from various techniques supported the simultaneous binding of Esom along with IDt to HA (i.e., binding in two different sites without signs of competition between the two). Moreover, capillary electrophoresis suggested an increase in the binding affinity of Esom to HA in the presence of IDt (1.9 × 103 Vs 2.7 × 104M-1). Perhaps most interesting was the observation that Esom could bind directly to IDt which was evidenced by all the employed techniques. Direct binding of Esom to IDt, might explain the enhancement in insulin action associated with the concomitant use of Esom. Therefore, Esom might represent a leading insulin-sensitizing compound that might lead to more effective insulin enhancing and less unwanted effects.


Subject(s)
Esomeprazole , Hypoglycemia , Insulin Detemir , Drug Interactions , Esomeprazole/adverse effects , Fatty Acids , Humans , Hypoglycemia/chemically induced , Hypoglycemic Agents/adverse effects , Insulin , Insulin Detemir/adverse effects , Molecular Docking Simulation , Serum Albumin, Human
7.
J Immunol Res ; 2022: 6031776, 2022.
Article in English | MEDLINE | ID: mdl-35284577

ABSTRACT

Introduction: This study is aimed at investigating the immunological response after treating THP-1 cells with gold nanorods conjugated with a phosphatidylinositol 3-kinase (PI3Kα) inhibitor. Methodology. Gold nanorods were synthesized and functionalized with cholesterol-PEG-SH moiety, and the treatment groups were as follows: nanocomplex (a drug-conjugated gold nanorods), free drug (phosphatidylinositol 3-kinase (PI3Kα) inhibitor), and GNR (the nanocarrier; cholesterol-coated gold nanorods). THP-1 cells were differentiated into macrophages and characterized by measuring the expression of macrophage surface markers by flow cytometry. Then, differentiated cells were activated by lipopolysaccharide (LPS). Afterwards, activated macrophages were treated with the different treatments: nanocomplex, free drug, and GNR, for 24 hrs. After treatment, the production of the inflammatory cytokines measured at gene and protein levels by using qPCR and CBA array beads by flow cytometry. Results: Our results show that THP-1 cells were successfully differentiated into macrophages. For inflammatory cytokine expression response, nanocomplex and free drug showed the same expression level of cytokines at gene level, as the expression of IL-1ß, IL-6, and TNF-α was significantly downregulated (p < 0.0005, p < 0.0005, p < 0.00005), respectively, while IL-8, IL-10, and TGF-ß were all upregulated in a significant manner for nanocomplex (p < 0.00005, p < 0.00005, p < 0.00005) and free drug treatment group (p < 0.00005, p < 0.05, p < 0.05) compared to the control untreated group. While in the GNR group, IL-6 and TNF-α were downregulated (p < 0.005, p < 0.00005), and IL-12p40 (p < 0.00005) was upregulated all in a statistically significant manner. While at protein level, cells were treated with our nanocomplex: IL-1ß, IL-6, TNF-α, and IL-12p70 and were significantly decreased (p < 0.00005,p < 0.005,p < 0.05,p < 0.00005), and IL-10 was found to be significantly increased in culture compared to the untreated control group (p < 0.005). For free drug; IL-1ß and IL-12p70 were significantly decreased (p < 0.00005, p < 0.00005), while a significant increase in the secretion levels of IL-10 only was noticed compared to the untreated group (p < 0.005). For GNR treatment groups, IL-1ß, TNF-α, and IL-12p70 were significantly decreased (p < 0.00005, p < 0.05, p < 0.00005). Conclusion: We can conclude that our nanocomplex is a potent effector that prevents tumoral progression by activating three main immunological strategies: switching the surface expression profile of the activated macrophages into a proinflammatory M1-like phenotype, downregulating the expression of proinflammatory cytokines, and upregulating the expression level of anti-inflammatory cytokines.


Subject(s)
Gold , Macrophages , Cytokines/metabolism , Gold/metabolism , Gold/pharmacology , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , THP-1 Cells
8.
9.
ACS Omega ; 6(24): 15903-15910, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179634

ABSTRACT

Herein, the antiproliferative effect of surface-decorated gold nanorods (GNRs) was investigated against three different breast cancer cell lines. The results indicate that the cell lines exhibited different biological responses and death modalities toward the treatment. The cell lines exhibited similar cellular uptake of the nanoparticles; however, MDA-MB-231 demonstrated the highest cytotoxicity compared to other cell lines upon treatment with GNRs. The expression of the CDH1 gene, which is involved in cell adhesion and metastasis, was dramatically increased in treated MDA-MB-231 cells compared to other cell lines. Early apoptosis and late apoptosis are the dominant cellular death modalities of MDA-MB-231 cells upon treatment with GNRs.

10.
Biomolecules ; 11(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33673519

ABSTRACT

Phospholipid-modified gold nanorods (phospholipid-GNRs) have demonstrated drastic cytotoxicity towards MCF-7 breast cancer cells compared to polyethylene glycol-coated GNRs (PEG-GNRs). In this study, the mechanism of cytotoxicity of phospholipid-GNRs towards MCF-7 cells was investigated using mass spectrometry-based global metabolic profiling and compared to PEGylated counterparts. The results showed that when compared to PEG-GNRs, phospholipid-GNRs induced significant and more pronounced impact on the metabolic profile of MCF-7 cells. Phospholipid-GNRs significantly decreased the levels of metabolic intermediates and end-products associated with cellular energy metabolisms resulting in dysfunction in TCA cycle, a reduction in glycolytic activity, and imbalance of the redox state. Additionally, phospholipid-GNRs disrupted several metabolism pathways essential for the normal growth and proliferation of cancer cells including impairment in purine, pyrimidine, and glutathione metabolisms accompanied by lower amino acid pools. On the other hand, the effects of PEG-GNRs were limited to alteration of glycolysis and pyrimidine metabolism. The current work shed light on the importance of metabolomics as a valuable analytical approach to explore the molecular effects of GNRs with different surface chemistry on cancer cell and highlights metabolic targets that might serve as promising treatment strategy in cancer.


Subject(s)
Energy Metabolism , Gold/chemistry , Metabolomics , Nanotubes/chemistry , Phospholipids/chemistry , Cell Death , Chromatography, Liquid , Cluster Analysis , Humans , MCF-7 Cells , Mass Spectrometry , Metabolic Networks and Pathways , Metabolome , Multivariate Analysis , Polyethylene Glycols/chemistry
11.
PLoS One ; 16(3): e0247879, 2021.
Article in English | MEDLINE | ID: mdl-33730060

ABSTRACT

The focus of this research was to develop and validate a suitable HPLC method, which allows simultaneous determination of three proposed skin model penetrants to investigate the percutaneous diffusion behavior of their combination: caffeine, methyl paraben and butyl paraben. These penetrants were selected because they represent a wide range of lipophilicities. This model highlights the effect of combining penetrants of different molecular properties on their diffusion behavior through skin. The proposed method employed a gradient system that was systematically optimized for separation and quantification of the penetrants. The effect of the stationary phase (C18, C4 and cyano (CN)) was assessed with CN proven to be superior in terms of peak shape, retentivity and dynamic linear range. Significant differences in retention time, peak broadening, and quantifiability between different stationary phases could be demonstrated. The method was validated as per ICH guidelines Q2 (R1) with a satisfactory outcome. The method was successfully applied for real diffusion experiments, and revealed notable differences between the individual penetrants and their ternary mixture on transdermal permeation. The method could potentially be extended to determine these analytes in other related skin permeation investigations.


Subject(s)
Caffeine/analysis , Chromatography, High Pressure Liquid/methods , Parabens/analysis , Skin/drug effects , Administration, Cutaneous , Caffeine/administration & dosage , Humans , Parabens/administration & dosage , Skin Absorption/drug effects
12.
RSC Adv ; 11(33): 19956-19966, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-35479887

ABSTRACT

Herein, a polymeric nanofiber scaffold loaded with Quercetin (Quer)-gold nanorods (GNR) was developed and characterized. Several parameters related to loading Quer into GNR, incorporating the GNR-Quer into polymeric solutions, and fabricating the nanofibers by electrospinning were optimized. GNR-Quer loaded into a polymeric mixture of poly(lactic-co-glycolic acid) (PLGA) (21%) and poloxamer 407 (23%) has produced intact GNR-Quer-nanofibers with enhanced physical and mechanical properties. GNR-Quer-nanofibers demonstrated a slow pattern of Quer release over time compared to nanofibers free of GNR-Quer. Dynamic mechanical thermal analysis (DMTA) revealed enhanced uniformity and homogeneity of the GNR-Quer-nanofibers. GNR-Quer-nanofibers demonstrated a high ability to retain water upon incubation in phosphate buffer saline (PBS) for 24 h compared to nanofibers free of GNR-Quer. A cellular toxicity study indicated that the average cellular viability of human dermal fibroblasts was 76% after 24 h of exposure to the nanofibers containing a low concentration of GNR-Quer.

13.
Int J Mol Sci ; 21(9)2020 May 08.
Article in English | MEDLINE | ID: mdl-32397063

ABSTRACT

Conjugating drugs with gold nanoparticles (GNP) is a key strategy in cancer therapy. Herein, the potential inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, and other pathways of the MCF-7 cell-line, was investigated upon treatment with gold nanorods (GNR) conjugated with a PI3K inhibitor drug. The results revealed that the coupling of GNR with the drug drastically modulated the expression of PI3Kα at the gene and protein levels compared to the drug or GNR alone. The PI3Kα pathway is involved in tumor progression and development through the mediation of different mechanisms such as apoptosis, proliferation, and DNA damage. Treatment with the nanocomplex significantly affected the gene expression of several transcription factors responsible for cell growth and proliferation, apoptotic pathways, and cell cycle arrest. Furthermore, the gene expression of different regulatory proteins involved in cancer progression and immune responses were significantly modified upon treatment with the nanocomplex compared to the free drug or GNR alone.


Subject(s)
Breast Neoplasms/drug therapy , Gold/therapeutic use , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/pharmacology , Breast Neoplasms/pathology , Female , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O3/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Gold/chemistry , Humans , I-kappa B Proteins/metabolism , MCF-7 Cells , Metal Nanoparticles/therapeutic use , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Biomater Sci ; 8(7): 2041, 2020 03 31.
Article in English | MEDLINE | ID: mdl-32175554

ABSTRACT

Correction for 'Nanoparticle size and chemical modification play a crucial role in the interaction of nano gold with the brain: extent of accumulation and toxicity' by Nouf N. Mahmoud et al., Biomater. Sci., 2020, DOI: 10.1039/c9bm02072a.

15.
Biomater Sci ; 8(6): 1669-1682, 2020 Mar 17.
Article in English | MEDLINE | ID: mdl-31984985

ABSTRACT

The blood brain barrier (BBB) is a very selective barrier that protects the brain and the central nervous system (CNS) from the entry of harmful substances and helps regulate the exchange of different molecules and nutrients from and into the brain and the CNS. This selectivity makes delivering therapeutic and diagnostic materials across the BBB very challenging. In this study, different shapes and sizes of gold nanoparticles (GNP) were synthesized and functionalized with five different thiolated ligands to obtain GNP with various surface chemistries. The potential of GNP of different properties to be accumulated into the brain through the BBB and into other organs was investigated in a mouse model using qualitative and quantitative approaches. Gold nanorods (GNR) functionalized with 4-mercaptophenol (Mph) showed the highest penetration ability across the BBB into the brain with no significant deposition in other organs. Interestingly, increasing the size of GNR retarded their delivery into the brain, while enhancing their accumulation in other organs. On the other hand, gold nanospheres (GNS) demonstrated high deposition percentages in the brain and other organs with possible toxic effects. The properties of GNP play a crucial role in their interaction with the BBB and accumulation in the brain and other organs. Thus, GNP can be considered a promising nano-platform for drug delivery into the brain and as a photothermal-inducing agent against brain cancer.


Subject(s)
Blood-Brain Barrier/chemistry , Brain Chemistry/drug effects , Gold/administration & dosage , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Animals , Drug Delivery Systems , Gold/chemistry , Gold/pharmacokinetics , Gold/toxicity , Injections, Intraperitoneal , Male , Metal Nanoparticles , Mice , Models, Animal , Particle Size , Tissue Distribution
16.
Nanomaterials (Basel) ; 9(8)2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31390794

ABSTRACT

Herein, the cytotoxicity, cellular uptake and wound healing of human dermal fibroblasts were investigated upon treatment with gold nanorods (GNR) decorated with different ligands. Neutral and cationic poly ethylene glycol (PEG)-decorated GNR demonstrated the least cytotoxicity and cellular internalization, while anionic- and bovine serum albumin (BSA)-coated GNR revealed significant cytotoxicity and cellular uptake into human dermal fibroblasts. The cell scratch test demonstrated that neutral, cationic PEGylated GNR and anionic-decorated GNR have accelerated the wound healing rate in vitro after 24 h of incubation with scratched human dermal fibroblasts compared to control, while there was a drastic retardation of wound healing rate of scratched fibroblasts upon exposure to BSA-GNR accompanied with a significant release of the inflammatory cytokine; interlukin-1ß (IL-1ß). The cytotoxicity of GNR against the dermal cells and their ability to enhance the wound healing in vitro are greatly linked to their surface modifications.

17.
Mol Pharm ; 16(10): 4149-4164, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31398052

ABSTRACT

Gold nanorods (GNRs) have gained pronounced recognition in the diagnosis and treatment of cancers driven by their distinctive properties. Herein, a gold-based nanosystem was prepared by utilizing a phospholipid moiety linked to thiolated polyethylene glycol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG-SH, as a surface decorating agent. The synthesized phospholipid-PEG-GNRs displayed good colloidal stability upon exposure to the tissue culture medium. Cytotoxicity of phospholipid-PEG-GNRs was investigated toward MCF-7 and T47D breast cancer cells using sulforhodamine B test. The results revealed that phospholipid-PEG-GNRs demonstrated  high cytotoxicity to MCF-7 cells compared to T47D cells, and minimal cytotoxicity to human dermal fibroblasts. The cellular uptake studies performed by imaging and quantitative analysis demonstrated  massive internalization of phospholipid-coated GNRs into  MCF-7 cells in comparison to T47D cells. The cellular death modality of cancer cells after treatment with phospholipid-PEG-GNRs was evaluated using mitochondrial membrane potential assay (JC-1 dye), gene expression analysis, and flow cytometry study. The overall results suggest that phospholipid-modified GNRs enhanced mainly the cellular apoptotic events in MCF-7 cells in addition to necrosis, whereas cellular necrosis and suppression of cellular invasion contributed to the cellular death modality in the T47D cell line upon treatment with phospholipid-PEG-GNRs. The phospholipid-coated GNRs interact in a different manner with breast cancer cell lines and could be considered for breast cancer treatment.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Gold/chemistry , Nanotubes/toxicity , Phospholipids/chemistry , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Nanotubes/chemistry , Polyethylene Glycols/chemistry , Tumor Cells, Cultured
18.
Int J Pharm ; 565: 174-186, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31075436

ABSTRACT

Nanotechnology-based platforms have gained a growing interest in skin wound healing. Herein, gold nanoparticles (AuNPs) of different shapes (rods and spheres) and surface modifications (neutral, cationic and anionic charged polymers) were synthesized, characterized and loaded into a thermosensitive hydrogel (poloxamer 407). AuNPs-hydrogels exhibited excellent colloidal stability and demonstrated slow and prolonged release behavior over a 48-h of exposure using in vitro model. Hydrogels of poly ethylene glycol (PEG)-gold nanorods (AuNRs) and cationic poly allyl amine hydrochloride (PAH)-AuNRs demonstrated remarkable wound healing properties upon topical application on wounds using an animal model. PEGylated and cationic charged-AuNRs hydrogels have enhanced skin re-epithelization and collagen deposition after 14 days of daily wound treatment compared to controls, and they affected the gene expression of several inflammatory and anti-inflammatory mediators. Hydrogels of PEG-AuNRs and PAH-AuNRs exhibited potent in vitro antibacterial activity against staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa). Furthermore, AuNPs of different shapes and surface modifications demonstrated low percentages of deposition into the main body organs after 21 days of daily wound treatment. Hydrogels of AuNRs could be a promising nano-platform for wound healing.


Subject(s)
Gold/administration & dosage , Hydrogels/administration & dosage , Metal Nanoparticles/administration & dosage , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Antigens, CD/genetics , Antigens, Differentiation, Myelomonocytic/genetics , Cytokines/genetics , Drug Liberation , Female , Gene Expression/drug effects , Gold/chemistry , Gold/pharmacokinetics , Hydrogels/chemistry , Hydrogels/pharmacokinetics , Metal Nanoparticles/chemistry , Polymers/administration & dosage , Polymers/chemistry , Polymers/pharmacokinetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Rats, Wistar , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Surface Properties , Tissue Distribution
19.
Sci Rep ; 9(1): 5796, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962476

ABSTRACT

Herein, a library of gold nanorods (GNR) decorated with polyethylene glycol-thiol (PEG-SH) containing different functionalities were synthesized and characterized by optical absorption spectroscopy, zeta potential, dynamic light scattering (DLS), transmission electron microscope (TEM) and proton nuclear magnetic resonance (1H-NMR). The colloidal stability of GNR when exposed to skin, and their preferential accumulation into excised human skin layers were investigated. Confocal laser scanning microscopy, transmission electron microscope (TEM) and inductively coupled plasma-optical emission spectroscopy (ICP-OES) were utilized to track the penetration of GNR into different skin layers. The results demonstrated that cholesterol-PEG coated GNR were preferentially loaded up in the upper layers of skin (stratum corneum), while phospholipid-PEG coated counterparts were drastically deposited in skin dermis. Neutral methoxy-PEG-coated GNR were distributed in both SC and dermis skin layers, while charged GNR (anionic-carboxylic acid-PEG-GNR and cationic-amine-PEG-GNR) revealed a minimal accumulation into skin. DSPE-PEG-GNR and Chol-PEG-GNR demonstrated antibacterial activities against Staphylococcus aureus (S aureus) at MIC values of 0.011 nM and 0.75 nM, respectively. Photothermal treatment for S. aureus at sub-MIC concentrations resulted in a significant bactericidal effect when using Chol-PEG-GNR but not DSPE-PEG-GNR. Gold-based nanoscale systems have great value as a promising platform for skin diseases therapy.


Subject(s)
Anti-Bacterial Agents/chemistry , Nanotubes/chemistry , Skin/metabolism , Adult , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Cholesterol/chemistry , Female , Gold/chemistry , Humans , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , Staphylococcus aureus/drug effects
20.
Pharm Dev Technol ; 24(3): 390-393, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29873575

ABSTRACT

Ex vivo evaluation of drug release and skin permeation from topical formulations of antileishmanial drug paromomycin sulphate was carried out using intact full thickness human skin. Potency-based microbiological assay was used for the analysis of paromomycin concentrations. A total percentage drug recovery of 86 ± 26% was obtained. Incubation periods of 1 and 3 h resulted in percentage drug permeation into deep skin layers ranging from 1.3 ± 0.04% to 5.3 ± 2.0% with paraffin-based ointment and from 1.6 ± 0.8% to 3.9 ± 1% with microemulsion-based emulgel. Although a small percentage, this is still significantly higher than those previously reported using animal skin models.


Subject(s)
Antiprotozoal Agents/administration & dosage , Paromomycin/administration & dosage , Skin Absorption , Skin/metabolism , Administration, Cutaneous , Animals , Antiprotozoal Agents/pharmacokinetics , Drug Liberation , Emulsions , Female , Humans , Ointments , Paromomycin/pharmacokinetics , Permeability , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...