Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 253
Filter
1.
J Imaging Inform Med ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693333

ABSTRACT

Ischemic stroke segmentation at an acute stage is vital in assessing the severity of patients' impairment and guiding therapeutic decision-making for reperfusion. Although many deep learning studies have shown attractive performance in medical segmentation, it is difficult to use these models trained on public data with private hospitals' datasets. Here, we demonstrate an ensemble model that employs two different multimodal approaches for generalization, a more effective way to perform on external datasets. First, after we jointly train a segmentation model on diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) MR modalities, the model is inferred on the DWI images. Second, a channel-wise segmentation model is trained by concatenating the DWI and ADC images as input, and then is inferred using both MR modalities. Before training with ischemic stroke data, we utilized BraTS 2021, a public brain tumor dataset, for transfer learning. An extensive ablation study evaluates which strategy learns better representations for ischemic stroke segmentation. In our study, nnU-Net well-known for robustness is selected as our baseline model. Our proposed method is evaluated on three different datasets: the Asan Medical Center (AMC) I and II, and the 2022 Ischemic Stroke Lesion Segmentation (ISLES). Our experiments are widely validated over a large, multi-center, and multi-scanner dataset with a huge amount of 846 scans. Not only stroke lesion models can benefit from transfer learning using brain tumor data, but combining the MR modalities using different training schemes also highly improves segmentation performance. The method achieved a top-1 ranking in the ongoing ISLES'22 challenge and performed particularly well on lesion-wise metrics of interest to neuroradiologists, achieving a Dice coefficient of 78.69% and a lesion-wise F1 score of 82.46%. Also, the method was relatively robust on the AMC I (Dice, 60.35%; lesion-wise F1, 68.30%) and II (Dice; 74.12%; lesion-wise F1, 67.53%) datasets in different settings. The high segmentation accuracy of our proposed method could improve radiologists' ability to detect ischemic stroke lesions in MRI images. Our model weights and inference code are available on https://github.com/MDOpx/ISLES22-model-inference .

2.
Biomed Eng Lett ; 14(3): 571-582, 2024 May.
Article in English | MEDLINE | ID: mdl-38645597

ABSTRACT

Intracardiac echocardiography (ICE) enables cardiac imaging with a wide field of view, deep imaging depth, and high frame rate during surgery. However, strong sidelobe and grating lobe artifacts created by the ultra-compact transducer degrade its image quality, making diagnosis and monitoring of treatment difficult. Conventionally, aperture apodization algorithms are often used to suppress sidelobe and grating lobe artifacts at the expense of lateral resolution, which is undesirable in ICE. In this study, we present comparative results of the beamforming methods specifically in ICE application. We demonstrate and compare five nonlinear beamforming algorithms in ICE: nonlinear pth root delay and sum (NL-p-DAS), nonlinear pth root spectral magnitude scaling (NL-p-SMS), delay-and-sum with coherence factors (DAS + SCF), delay and sum with apodization (DAS + apodization) and delay and sum (DAS). Phantom and ex-vivo experiment compare the performance of each algorithm in static and dynamic conditions. DAS + SCF shows the best lateral resolution, and all four algorithms improve the image contrast and sidelobe suppression over conventional DAS. NL-p-SMS stands out for the best axial resolution and suppression of grating lobe artifacts. For motion tracking, NL-p-SMS shows better temporal resolution than other methods. Overall, all the beamforming algorithms other than DAS showed improved image quality. Among them, NL-p-SMS, which has a high temporal resolution, showed the potential for providing more accurate information regards movement tracking. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-024-00352-9.

3.
J Biomed Opt ; 29(Suppl 1): S11528, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38505737

ABSTRACT

Significance: Endocavity ultrasound (US) imaging is a frequently employed diagnostic technique in gynecology and urology for the assessment of male and female genital diseases that present challenges for conventional transabdominal imaging. The integration of photoacoustic (PA) imaging with clinical US imaging has displayed promising outcomes in clinical research. Nonetheless, its application has been constrained due to size limitations, restricting it to spatially confined locations such as vaginal or rectal canals. Aim: This study presents the development of a video-rate (20 Hz) endocavity PA/harmonic US imaging (EPAUSI) system. Approach: The approach incorporates a commercially available endocavity US probe with a miniaturized laser delivery unit, comprised of a single large-core fiber and a line beamshaping engineered diffuser. The system facilitates real-time image display and subsequent processing, including angular energy density correction and spectral unmixing, in offline mode. Results: The spatial resolutions of the concurrently acquired PA and harmonic US images were measured at 318 µm and 291 µm in the radial direction, respectively, and 1.22 deg and 1.50 deg in the angular direction, respectively. Furthermore, the system demonstrated its capability in multispectral PA imaging by successfully distinguishing two clinical dyes in a tissue-mimicking phantom. Its rapid temporal resolution enabled the capture of kinetic dye perfusion into an ex vivo porcine ovary through the depth of porcine uterine tissue. EPAUSI proved its clinical viability by detecting pulsating hemodynamics in the male rat's prostate in vivo and accurately classifying human blood vessels into arteries and veins based on sO2 measurements. Conclusions: Our proposed EPAUSI system holds the potential to unveil previously overlooked indicators of vascular alterations in genital cancers or endometriosis, addressing pressing requirements in the fields of gynecology and urology.


Subject(s)
Diagnostic Imaging , Photoacoustic Techniques , Swine , Animals , Male , Female , Humans , Ultrasonography/methods , Phantoms, Imaging , Spectrum Analysis , Coloring Agents , Photoacoustic Techniques/methods
4.
Photoacoustics ; 35: 100587, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312809

ABSTRACT

The X-ray free-electron laser (XFEL) has remarkably advanced X-ray imaging technology and enabled important scientific achievements. The XFEL's extremely high power, short pulse width, low emittance, and high coherence make possible such diverse imaging techniques as absorption/emission spectroscopy, diffraction imaging, and scattering imaging. Here, we demonstrate a novel XFEL-based imaging modality that uses the X-ray induced acoustic (XA) effect, which we call X-ray free-electron laser induced acoustic microscopy (XFELAM). Initially, we verified the XA effect by detecting XA signals from various materials, then we validated the experimental results with simulation outcomes. Next, in resolution experiments, we successfully imaged a patterned tungsten target with drilled various-sized circles at a spatial resolution of 7.8 ± 5.1 µm, which is the first micron-scale resolution achieved by XA imaging. Our results suggest that the novel XFELAM can expand the usability of XFEL in various areas of fundamental scientific research.

5.
Nat Commun ; 15(1): 1444, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365897

ABSTRACT

Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.


Subject(s)
Photoacoustic Techniques , Humans , Photoacoustic Techniques/methods , Transducers , Equipment Design , Ultrasonography , Electric Impedance
6.
Bioeng Transl Med ; 8(6): e10480, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023698

ABSTRACT

Ultrasonography is one of the key medical imaging modalities for evaluating breast lesions. For differentiating benign from malignant lesions, computer-aided diagnosis (CAD) systems have greatly assisted radiologists by automatically segmenting and identifying features of lesions. Here, we present deep learning (DL)-based methods to segment the lesions and then classify benign from malignant, utilizing both B-mode and strain elastography (SE-mode) images. We propose a weighted multimodal U-Net (W-MM-U-Net) model for segmenting lesions where optimum weight is assigned on different imaging modalities using a weighted-skip connection method to emphasize its importance. We design a multimodal fusion framework (MFF) on cropped B-mode and SE-mode ultrasound (US) lesion images to classify benign and malignant lesions. The MFF consists of an integrated feature network (IFN) and a decision network (DN). Unlike other recent fusion methods, the proposed MFF method can simultaneously learn complementary information from convolutional neural networks (CNNs) trained using B-mode and SE-mode US images. The features from the CNNs are ensembled using the multimodal EmbraceNet model and DN classifies the images using those features. The experimental results (sensitivity of 100 ± 0.00% and specificity of 94.28 ± 7.00%) on the real-world clinical data showed that the proposed method outperforms the existing single- and multimodal methods. The proposed method predicts seven benign patients as benign three times out of five trials and six malignant patients as malignant five out of five trials. The proposed method would potentially enhance the classification accuracy of radiologists for breast cancer detection in US images.

7.
Adv Sci (Weinh) ; 10(36): e2303966, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847902

ABSTRACT

To combat the irreversible decline in renal function associated with kidney disease, it is essential to establish non-invasive biomarkers for assessing renal microcirculation. However, the limited resolution and/or vascular sensitivity of existing diagnostic imaging techniques hinders the visualization of complex cortical vessels. Here, a 3D renal ultrafast Doppler (UFD) imaging system that uses a high ultrasound frequency (18 MHz) and ultrahigh frame rate (1 KHz per slice) to scan the entire volume of a rat's kidney in vivo is demonstrated. The system, which can visualize the full 3D renal vascular branching pyramid at a resolution of 167 µm without any contrast agent, is used to chronically and noninvasively monitor kidneys with acute kidney injury (AKI, 3 days) and diabetic kidney disease (DKD, 8 weeks). Multiparametric UFD analyses (e.g., vessel volume occupancy (VVO), fractional moving blood volume (FMBV), vessel number density (VND), and vessel tortuosity (VT)) describe rapid vascular rarefaction from AKI and long-term vascular degeneration from DKD, while the renal pathogeneses are validated by in vitro blood serum testing and stained histopathology. This work demonstrates the potential of 3D renal UFD to offer valuable insights into assessing kidney perfusion levels for future research in diabetes and kidney transplantation.


Subject(s)
Acute Kidney Injury , Diabetes Mellitus , Diabetic Nephropathies , Rats , Animals , Diabetic Nephropathies/diagnostic imaging , Contrast Media , Kidney/diagnostic imaging , Ultrasonography, Doppler/methods , Acute Kidney Injury/diagnostic imaging
9.
Sensors (Basel) ; 23(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37836978

ABSTRACT

Photoacoustic (PA) imaging is a non-invasive biomedical imaging technique that combines the benefits of optics and acoustics to provide high-resolution structural and functional information. This review highlights the emergence of three-dimensional handheld PA imaging systems as a promising approach for various biomedical applications. These systems are classified into four techniques: direct imaging with 2D ultrasound (US) arrays, mechanical-scanning-based imaging with 1D US arrays, mirror-scanning-based imaging, and freehand-scanning-based imaging. A comprehensive overview of recent research in each imaging technique is provided, and potential solutions for system limitations are discussed. This review will serve as a valuable resource for researchers and practitioners interested in advancements and opportunities in three-dimensional handheld PA imaging technology.


Subject(s)
Imaging, Three-Dimensional , Photoacoustic Techniques , Ultrasonography , Spectrum Analysis , Photoacoustic Techniques/methods
11.
Microorganisms ; 11(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764156

ABSTRACT

Probiotics, including Lacticaseibacillus rhamnosus (L. rhamnosus), have gained recognition for their potential health benefits, such as enhancing immune function, maintaining gut health, and improving nutrient absorption. This study investigated the effectiveness of L. rhamnosus LM1019 (LM1019) in enhancing immune function. In RAW 264.7 cells, LM1019 demonstrated dose-dependent immune stimulation by increasing nitric oxide production, gene expression of proinflammatory cytokines, and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). These effects were mediated through the activation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) translocation without inducing cytotoxicity. Furthermore, orally administered LM1019 was evaluated in immunosuppressed mice induced by cyclophosphamide (CTX). High-dose administration of LM1019 significantly increased the subpopulations of lymphocytes, specifically helper T cells (CD4+), as well as two subtypes of natural killer (NK) cells, namely, IFN-γ+ and granzyme B+ NK cells. Additionally, LM1019 at a high dose led to elevated levels of proinflammatory cytokines, including IFN-γ and IL-12, compared to CTX-treated mice. These findings highlight the potential of LM1019 in enhancing the immune system. The study contributes to the growing body of research on the beneficial effects of probiotics on immune function.

12.
Small ; 19(50): e2303668, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37612796

ABSTRACT

Transcytosis is an active transcellular transportation pathway that has garnered interest for overcoming the limited deep penetration of nanomedicines in solid tumors. In this study, a charge-convertible nanomedicine that facilitates deep penetration into solid tumors via transcytosis is designed. It is an albumin-based calcium phosphate nanomedicine loaded with IR820 (mAlb-820@CaP) for high-resolution photoacoustic imaging and enhanced photothermal therapy. Biomineralization on the surface stabilizes the albumin-IR820 complex during circulation and provides calcium ions (Ca2+ ) for tissue penetration on degradation in an acidic environment. pH-triggered transcytosis of the nanomedicine enabled by caveolae-mediated endocytosis and calcium ion-induced exocytosis in 2D cellular, 3D spheroid, and in vivo tumor models is demonstrated. Notably, the extravasation and penetration ability of the nanomedicine is observed in vivo using a high-resolution photoacoustic system, and nanomedicine shows the most potent photothermal antitumor effect in vivo. Overall, the strategy provides a versatile theragnosis platform for both noninvasive photoacoustic imaging and high therapeutic efficiency resulting from deep penetration of nanomedicine.


Subject(s)
Nanoparticles , Neoplasms , Photoacoustic Techniques , Humans , Nanomedicine , Calcium/metabolism , Theranostic Nanomedicine/methods , Cell Line, Tumor , Nanoparticles/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Phototherapy/methods , Transcytosis , Albumins/metabolism , Photoacoustic Techniques/methods
13.
Exp Biol Med (Maywood) ; 248(9): 762-774, 2023 05.
Article in English | MEDLINE | ID: mdl-37452700

ABSTRACT

Photoacoustic imaging has been developed as a new biomedical molecular imaging modality. Due to its similarity to conventional ultrasound imaging in terms of signal detection and image generation, dual-modal photoacoustic and ultrasound imaging has been applied to visualize physiological and morphological information in biological systems in vivo. By complementing each other, dual-modal photoacoustic and ultrasound imaging showed synergistic advances in photoacoustic imaging with the guidance of ultrasound images. In this review, we introduce our recent progresses in dual-modal photoacoustic and ultrasound imaging systems at various scales of study, from preclinical small animals to clinical humans. A summary of the works reveals various strategies for combining the structural information of ultrasound images with the molecular information of photoacoustic images.


Subject(s)
Photoacoustic Techniques , Humans , Animals , Photoacoustic Techniques/methods , Ultrasonography/methods , Ultrasonography, Interventional
14.
Nano Converg ; 10(1): 29, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37335405

ABSTRACT

Functional photoacoustic imaging is a promising biological imaging technique that offers such unique benefits as scalable resolution and imaging depth, as well as the ability to provide functional information. At nanoscale, photoacoustic imaging has provided super-resolution images of the surface light absorption characteristics of materials and of single organelles in cells. At the microscopic and macroscopic scales. photoacoustic imaging techniques have precisely measured and quantified various physiological parameters, such as oxygen saturation, vessel morphology, blood flow, and the metabolic rate of oxygen, in both human and animal subjects. This comprehensive review provides an overview of functional photoacoustic imaging across multiple scales, from nano to macro, and highlights recent advances in technology developments and applications. Finally, the review surveys the future prospects of functional photoacoustic imaging in the biomedical field.

15.
Photoacoustics ; 31: 100512, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37252650

ABSTRACT

Photoacoustic (PA) imaging has gained much attention, providing structural and functional information in combination with clinical ultrasound (US) imaging systems. 2D PA and US imaging is easily implemented, but its heavy dependence on operator skills makes 3D imaging preferable. In this study, we propose a panoramic volumetric clinical PA and US imaging system equipping a handheld imaging scanner weighing 600 g and measuring 70 × 62 × 110 mm3. Multiple PA/US scans were performed to cover a large field-of-view (FOV), and the acquired PA/US volumes were mosaic-stitched after manually correcting the positions and rotations in a total of 6 degrees of freedom. PA and US maximum amplitude projection images were visualized online, while spectral unmixed data was quantified offline. The performance of the system was tested via tissue-mimicking phantom experiments. The system's potential was confirmed in vivo by panoramically imaging vascular networks in human arms and necks, with FOVs of 331 × 38 and 129 × 120 mm2, respectively. Further, we quantified hemoglobin oxygen saturation levels in the radial artery, brachial artery, carotid artery, and jugular vein. We hope that this system can be applied for various clinical fields such as cardiovascular imaging, dermatology, vascular surgery, internal medicine, and oncology.

16.
Photoacoustics ; 31: 100510, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37228578

ABSTRACT

Photoacoustic imaging (PAI) has emerged as a molecular-selective imaging technology based on optical absorption contrast. Dichroism-sensitive photoacoustic (DS-PA) imaging has been reported, where the absorption coefficient has a vector characteristic, featuring dimensions of contrast in polarization and wavelength. Herein, we present a DS-PA microscopy (DS-PAM) system that implements optical anisotropy contrast and molecular selectivity. Moreover, we propose mathematical solutions to fully derive dichroic properties. A wavelength for the PAI of collagenous tissue was used, and the proposed algorithms were validated using linear dichroic materials. We successfully mapped dichroic information in fibrous tissue imaging based on the degree of anisotropy and axis orientation, and also deduced mechanical assessment from the tissue arrangement. The proposed DS-PAM system and algorithms have great potential in various diagnostic fields using polarimetry, such as musculoskeletal and cardiovascular systems.

17.
Sci Adv ; 9(16): eadf4049, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37083532

ABSTRACT

An integrated textile electronic system is reported here, enabling a truly free form factor system via textile manufacturing integration of fiber-based electronic components. Intelligent and smart systems require freedom of form factor, unrestricted design, and unlimited scale. Initial attempts to develop conductive fibers and textile electronics failed to achieve reliable integration and performance required for industrial-scale manufacturing of technical textiles by standard weaving technologies. Here, we present a textile electronic system with functional one-dimensional devices, including fiber photodetectors (as an input device), fiber supercapacitors (as an energy storage device), fiber field-effect transistors (as an electronic driving device), and fiber quantum dot light-emitting diodes (as an output device). As a proof of concept applicable to smart homes, a textile electronic system composed of multiple functional fiber components is demonstrated, enabling luminance modulation and letter indication depending on sunlight intensity.

18.
Sci Rep ; 13(1): 6252, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069244

ABSTRACT

Microplastics (MPs) are now a global issue due to increased plastic production and use. Recently, various studies have been performed in response to the human health risk assessment. However, these studies have focused on spherical MPs, which have smooth edges and a spherical shape and account for less than 1% of MPs in nature. Unfortunately, studies on fragment-type MPs are very limited and remain in the initial stages. In this study, we studied the effect that 16.4 µm fragment type polypropylene (PP) MPs, which have an irregular shape and sharp edges and form naturally in the environment, had on breast cancer. The detrimental effects of PPMPs on breast cancer metastasis were examined. Here, 1.6 mg/ml of PPMP, which does not induce cytotoxicity in MDA-MB-231, was used, and at this concentration, PPMP did not induce morphological changes or cellular migrating in the MDA-MB-231 and MCF-7 cells. However, PPMP incubation for 24 hours in the MDA-MB-231 cells significantly altered the level of cell cycle-related transcripts in an RNA-seq analysis. When confirmed by qRT-PCR, the gene expression of TMBIM6, AP2M1, and PTP4A2 was increased, while the transcript level of FTH1 was decreased. Further, secretion of the pro-inflammatory cytokine IL-6 from cancer cells was elevated with the incubation of PPMP for 12 hours. These results suggest that PPMP enhances metastasis-related gene expression and cytokines in breast cancer cells, exacerbating breast cancer metastasis.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Polypropylenes , Microplastics , Plastics , Cytokines , Membrane Proteins , Apoptosis Regulatory Proteins , Protein Tyrosine Phosphatases
19.
Photoacoustics ; 30: 100485, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37082618

ABSTRACT

Postprandial hyperglycemia, blood glucose spikes, induces endothelial dysfunction, increasing cardiovascular risks. Endothelial dysfunction leads to vasoconstriction, and observation of this phenomenon is important for understanding acute hyperglycemia. However, high-resolution imaging of microvessels during acute hyperglycemia has not been fully developed. Here, we demonstrate that photoacoustic microscopy can noninvasively monitor morphological changes in blood vessels of live animals' extremities when blood glucose rises rapidly. As blood glucose level rose from 100 to 400 mg/dL following intraperitoneal glucose injection, heart/breath rate, and body temperature remained constant, but arterioles constricted by approximately -5.7 ± 1.1% within 20 min, and gradually recovered for another 40 min. In contrast, venular diameters remained within about 0.6 ± 1.5% during arteriolar constriction. Our results experimentally and statistically demonstrate that acute hyperglycemia produces transitory vasoconstriction in arterioles, with an opposite trend of change in blood glucose. These findings could help understanding vascular glucose homeostasis and the relationship between diabetes and cardiovascular diseases.

20.
RSC Adv ; 13(14): 9441-9447, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36968039

ABSTRACT

Exogenous contrast agents in photoacoustic imaging help improve spatial resolution and penetration depth and enable targeted molecular imaging. To screen efficient photoacoustic signaling materials as contrast agents, we propose a light absorption-weighted figure of merit (FOM) that can be calculated using material data from the literature and numerically simulated light absorption cross-sections. The calculated light absorption-weighted FOM shows that a Ti nanodisc has a photoacoustic conversion performance similar to that of an Au nanodisc and better than that of a Pt nanodisc. The photoacoustic imaging results of Ti, Au, and Pt nanodiscs, which are physically synthesized with identical shapes and dimensions, experimentally demonstrated that the Ti nanodisc could be a highly efficient contrast agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...