Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
J Korean Med Sci ; 39(15): e136, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38651222

ABSTRACT

BACKGROUND: Haemophilus influenzae is a frequently encountered pathogen responsible for respiratory tract infections in children. Following the detection of ceftriaxone-resistant H. influenzae at our institution, we aimed to investigate the resistance mechanisms of ceftriaxone in H. influenzae, with a particular focus on alterations in penicillin-binding protein 3 (PBP3) and ß-lactamase production. METHODS: Among H. influenzae isolates collected at Asan Medical Center Children's Hospital from March 2014 to April 2019, ceftriaxone-resistant strains by the disk-diffusion test were included. Ceftriaxone minimum inhibitory concentrations (MICs) were determined using the E-test according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The presence of ß-lactamase was assessed through cefinase test and TEM-1/ROB-1 polymerase chain reaction (PCR). PBP3 alterations were explored via ftsI gene sequencing. RESULTS: Out of the 68 collected strains, 21 exhibited resistance to ceftriaxone in disk diffusion tests. Two strains were excluded due to failed subculture. Among 19 ceftriaxone-resistant H. influenzae isolates, eighteen were non-typeable H. influenzae, and twelve were positive for TEM-1 PCR. Isolates were classified into groups II (harboring only N526K, n = 3), III (N526K+S385T, n = 2), III+ (S385T+L389F+N526K, n = 11), and III-like+ (S385T+L389F+R517H, n = 3) according to the PBP3 alteration pattern. With a median ceftriaxone MIC of 0.190 mg/L (range, 0.008-0.750), the median ceftriaxone MIC was the highest in group III-like+ (0.250 mg/L), followed by groups III+ (0.190 mg/L), III (0.158 mg/L), and II (0.012 mg/L). All three strains belonging to group II, which did not harbor the S385T substitution, had ceftriaxone MICs of ≤ 0.125 mg/L. CONCLUSION: The emergence of ceftriaxone-resistant H. influenzae with ceftriaxone MIC values of up to 0.75 mg/L was observed even in children in South Korea, with most associated with S385T and L389F substitutions. The N526K mutation alone does not significantly impact ceftriaxone resistance. Further large-scale studies are essential to investigate changes in antibiotic resistance patterns and factors influencing antibiotic resistance in H. influenzae isolated from pediatric patients in Korea.


Subject(s)
Anti-Bacterial Agents , Ceftriaxone , Haemophilus Infections , Haemophilus influenzae , Microbial Sensitivity Tests , beta-Lactamases , Ceftriaxone/pharmacology , Haemophilus influenzae/drug effects , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/genetics , Humans , Anti-Bacterial Agents/pharmacology , Republic of Korea , beta-Lactamases/genetics , beta-Lactamases/metabolism , Child , Haemophilus Infections/microbiology , Haemophilus Infections/drug therapy , Penicillin-Binding Proteins/genetics , Child, Preschool , Drug Resistance, Bacterial , Infant , Female , Male , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
J Biotechnol ; 387: 49-57, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38556215

ABSTRACT

2'-Fucosyllactose (2'-FL), one of the major human milk oligosaccharides, was produced in several engineered microorganisms. However, the low solubility of α-1,2-fucosyltransferase (α1,2-FucT) often becomes a bottleneck to produce maximum amount of 2'-FL in the microorganisms. To overcome this solubility issue, the following studies were conducted to improve the soluble expression of α1,2-FucT. Initially, hydrophobic amino acids in the hydrophilic region of the 6 α-helices were mutated, adhering to the α-helix rule. Subsequently, gfp11 was fused to the C-terminal of futC gene encoding α1,2-FucT (FutC), enabling selection of high-fluorescence mutants through split-GFP. Each mutant library was screened via fluorescence activated cell sorting (FACS) to separate soluble mutants for high-throughput screening. As a result, L80C single mutant and A121D/P124A/L125R triple mutant were found, and a combined quadruple mutant was created. Furthermore, we combined mutations of conserved sequences (Q150H/C151R/Q239S) of FutC, which showed positive effects in the previous studies from our lab, with the above quadruple mutants (L80C/A121D/P124A/L125R). The resulting strain produced approximately 3.4-fold higher 2'-FL titer than that of the wild-type, suggesting that the conserved sequence mutations are an independent subset of the mutations that further improve the solubility of the target protein acquired by random mutagenesis using split-GFP.


Subject(s)
Escherichia coli , Flow Cytometry , Fucosyltransferases , Green Fluorescent Proteins , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Solubility , Trisaccharides/metabolism , Galactoside 2-alpha-L-fucosyltransferase , Mutation , High-Throughput Screening Assays/methods , Humans , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
3.
Anim Cells Syst (Seoul) ; 28(1): 66-74, 2024.
Article in English | MEDLINE | ID: mdl-38405356

ABSTRACT

C-terminal binding protein 1 (CtBP1) is a critical transcriptional corepressor of many tumor suppressor genes and plays diverse roles in the progression of cancers. The transcriptional repression function of CtBP1 is mediated by recruiting histone-modifying enzymes, such as histone deacetylases and histone methyltransferases, to target genes by binding with DNA-interacting factors. Several post-translational modifications of CtBP1 have been identified, including ubiquitination, phosphorylation, and SUMOylation. This paper reports that CtBP1 is conjugated by ISG15. Endogenous CtBP1 was modified by ISG15 after interferon-α treatment in HeLa cells. The ISGylation process of CtBP1 was regulated by deISGylation enzyme USP18 and ISG15 E3 ligase EFP. Interestingly, CtBP1 ISGylation affected the binding affinity between CtBP1 and some components of CtBP1-associated transcriptional complexes. HDAC1 and LSD1 bound more efficiently to ISG15-conjugated CtBP1 than non-conjugated CtBP1. On the other hand, binding between CtBP1 and HDAC4 was unaffected by ISG15 modification. Furthermore, ISG15 modification enhanced the transcriptional repression activity of CtBP1 on several target genes related to EMT and apoptosis. These findings suggest that the ISG15 modification of CtBP1 modulates the function and activity of CtBP1 and that CtBP1 ISGylation may provide a new insight for CtBP1-mediated cancers.

4.
BMC Infect Dis ; 24(1): 259, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402154

ABSTRACT

BACKGROUND: While there is a high burden of methicillin-resistant Staphylococcus aureus (MRSA) infections among pediatric patients, studies on the molecular epidemiology of MRSA infections in Korean children since the 2010s are lacking. This study aimed to investigate the molecular genotypes and clinical characteristics of MRSA isolates from children with MRSA bacteremia at Asan Medical Center Children's Hospital from 2016 to 2021. METHODS: Clinical data were retrospectively reviewed, and the molecular types of MRSA were determined using multilocus sequence typing (MLST) and Staphylococcal cassette chromosome mec (SCCmec) typing. RESULTS: The overall methicillin resistance rate of S. aureus bacteremia was 44.8% (77/172); 49.5% in the period 2016-2018 (period 1) and 37.3% in the period 2019-2021 (period 2) (P = 0.116). Community-acquired infections accounted for only 3.9% of cases. The predominant ST group was ST72 group (67.6%), followed by ST5 group (18.9%) and ST1 group (5.4%). The proportion of ST5 was significantly lower in period 2 compared to period 1 (P = 0.02). Compared to the ST5 and ST1 groups, the ST72 group exhibited lower overall antibiotic resistance and multidrug-resistant (MDR) rates (12.0% [6/50] in ST72 group vs. 100.0% [14/14] in ST5 group vs. 50.0% [2/4] in ST1 group; P < 0.001). In the multivariate analysis, the ST1 group was an independent risk factor for 30-day all-cause mortality (aOR, 44.12; 95% CI, 3.46-562.19). CONCLUSION: The ST72-MRSA strain remained the most frequently isolated genotype in Korean children, while the ST1 group emerged as an independent risk factor for 30-day all-cause mortality in pediatric MRSA bacteremia. Ongoing efforts to uncover the evolving epidemiology of MRSA are essential for developing effective strategies for prevention and treatment.


Subject(s)
Bacteremia , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Child , Staphylococcus aureus , Molecular Epidemiology , Multilocus Sequence Typing , Retrospective Studies , Staphylococcal Infections/epidemiology , Microbial Sensitivity Tests , Bacteremia/epidemiology , Genotype , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
5.
Nat Commun ; 14(1): 8066, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38052834

ABSTRACT

Understanding the degradation mechanism of organic light-emitting diodes (OLED) is essential to improve device performance and stability. OLED failure, if not process-related, arises mostly from chemical instability. However, the challenges of sampling from nanoscale organic layers and interfaces with enough analytical information has hampered identification of degradation products and mechanisms. Here, we present a high-resolution diagnostic method of OLED degradation using an Orbitrap mass spectrometer equipped with a gas cluster ion beam to gently desorb nanometre levels of materials, providing unambiguous molecular information with 7-nm depth resolution. We chemically depth profile and analyse blue phosphorescent and thermally-activated delayed fluorescent (TADF) OLED devices at different degradation levels. For OLED devices with short operational lifetimes, dominant chemical degradation mainly relate to oxygen loss of molecules that occur at the interface between emission and electron transport layers (EML/ETL) where exciton distribution is maximised, confirmed by emission zone measurements. We also show approximately one order of magnitude increase in lifetime of devices with slightly modified host materials, which present minimal EML/ETL interfacial degradation and show the method can provide insight for future material and device architecture development.

7.
RSC Adv ; 13(40): 28160-28164, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37753393

ABSTRACT

Understanding the precise effects of defects on the photophysical properties of quantum dots (QDs) is essential to their development with near-unity luminescence. Because of the complicated nature of defects in QDs, the origins and detailed roles of the defects still remain rarely understood. In this regard, we used detailed chemical analysis to investigate the effect of surface defects on the optical properties of InP/ZnSe/ZnS QDs by introducing shell defects through controlled trifluoroacetic acid (TFA) etching. TFA treatment on the InP/ZnSe/ZnS QDs partially removed the ZnS shell as well as ligands and reduced the quantum yield by generating energetically deep surface traps. The surface defects of QDs by TFA cause charged trap sites inducing an Auger recombination process with a rate of ca. 200 ps. Based on these results, we proposed possible trap-assisted non-radiative decay pathways between the band-edge state and surface deep traps in InP/ZnSe/ZnS QDs.

8.
Phys Chem Chem Phys ; 24(36): 21995-21999, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36069412

ABSTRACT

Intramolecular charge transfer (ICT) plays a critical role in determining the photophysical properties of organic molecules, including their luminescence efficiencies. Twisted intramolecular charge transfer (TICT) is a process in which structural change accompanies ICT. Herein, we used time-resolved spectroscopy to study TICT in pyrene derivatives that are promising blue organic light emitting diode (OLED) emitter candidates; these derivatives show strong solvent-dependent charge-transfer (CT) behavior with unique fluorescence properties, increased fluorescence intensity in polar solvent. Slight structural changes that do not affect excited state dynamics were observed in nonpolar solvents, while polar solvents were found to affect excited state dynamics and CT characteristics, which affect their unusual fluorescence behavior. The TICT behavior of these pyrene derivatives can be modulated through structural modification. Our study provides valuable guidelines for the control of optical properties, including the luminescence efficiencies of OLED emitters that show TICT characteristics.

10.
Nat Commun ; 13(1): 2759, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589733

ABSTRACT

Defect engineering is one of the key technologies in materials science, enriching the modern semiconductor industry and providing good test-beds for solid-state physics. While homogenous doping prevails in conventional defect engineering, various artificial defect distributions have been predicted to induce desired physical properties in host materials, especially associated with symmetry breakings. Here, we show layer-by-layer defect-gradients in two-dimensional PtSe2 films developed by selective plasma treatments, which break spatial inversion symmetry and give rise to the Rashba effect. Scanning transmission electron microscopy analyses reveal that Se vacancies extend down to 7 nm from the surface and Se/Pt ratio exhibits linear variation along the layers. The Rashba effect induced by broken inversion symmetry is demonstrated through the observations of nonreciprocal transport behaviors and first-principles density functional theory calculations. Our methodology paves the way for functional defect engineering that entangles spin and momentum of itinerant electrons for emerging electronic applications.

11.
Nat Commun ; 13(1): 1883, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35388012

ABSTRACT

Lithium metal batteries using solid electrolytes are considered to be the next-generation lithium batteries due to their enhanced energy density and safety. However, interfacial instabilities between Li-metal and solid electrolytes limit their implementation in practical batteries. Herein, Li-metal batteries using tailored garnet-type Li7-xLa3-aZr2-bO12 (LLZO) solid electrolytes is reported, which shows remarkable stability and energy density, meeting the lifespan requirements of commercial applications. We demonstrate that the compatibility between LLZO and lithium metal is crucial for long-term stability, which is accomplished by bulk dopant regulating and dopant-specific interfacial treatment using protonation/etching. An all-solid-state with 5 mAh cm-2 cathode delivers a cumulative capacity of over 4000 mAh cm-2 at 3 mA cm-2, which to the best of our knowledge, is the highest cycling parameter reported for Li-metal batteries with LLZOs. These findings are expected to promote the development of solid-state Li-metal batteries by highlighting the efficacy of the coupled bulk and interface doping of solid electrolytes.

12.
Biotechnol Bioeng ; 119(5): 1264-1277, 2022 05.
Article in English | MEDLINE | ID: mdl-35099812

ABSTRACT

2'-Fucosyllactose (2'-FL) is the most abundant oligosaccharide in human milk and one of the most actively studied human milk oligosaccharides (HMOs). When 2'-FL is produced through biological production using a microorganism, like Escherichia coli, d-lactose is often externally fed as an acceptor substrate for fucosyltransferase (FT). When d-glucose is used as a carbon source for the cell growth and d-lactose is transported by lactose permease (LacY) in lac operon, d-lactose transport is under the control of catabolite repression (CR), limiting the supply of d-lactose for FT reaction in the cell, hence decreasing the production of 2'-FL. In this study, a remarkable increase of 2'-FL production was achieved by relieving the CR from the lac operon of the host E. coli BL21 and introducing adequate site-specific mutations into α-1,2-FT (FutC) for enhancement of catalytic activity and solubility. For the host engineering, the native lac promoter (Plac ) was substituted for tac promoter (Ptac ), so that the lac operon could be turned on, but not subjected to CR by high d-glucose concentration. Next, for protein engineering of FutC, family multiple sequence analysis for conserved amino acid sequences and protein-ligand substrate docking analysis led us to find several mutation sites, which could increase the solubility of FutC and its activity. As a result, a combination of four mutation sites (F40S/Q150H/C151R/Q239S) was identified as the best candidate, and the quadruple mutant of FutC enhanced 2'-FL titer by 2.4-fold. When the above-mentioned E. coli mutant host transformed with the quadruple mutant of futC was subjected to fed-batch culture, 40 g l-1 of 2'-FL titer was achieved with the productivity of 0.55 g l-1 h-1 and the specific 2'-FL yield of 1.0 g g-1 dry cell weight.


Subject(s)
Escherichia coli Proteins , Symporters , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Glucose/metabolism , Humans , Lac Operon , Lactose/metabolism , Monosaccharide Transport Proteins/genetics , Oligosaccharides/metabolism , Solubility , Symporters/genetics , Trisaccharides
13.
Sensors (Basel) ; 22(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009922

ABSTRACT

The demand for wheelchairs has increased recently as the population of the elderly and patients with disorders increases. However, society still pays less attention to infrastructure that can threaten the wheelchair user, such as sidewalks with cracks/potholes. Although various studies have been proposed to recognize such challenges, they mainly depend on RGB images or IMU sensors, which are sensitive to outdoor conditions such as low illumination, bad weather, and unavoidable vibrations, resulting in unsatisfactory and unstable performance. In this paper, we introduce a novel system based on various convolutional neural networks (CNNs) to automatically classify the condition of sidewalks using images captured with depth and infrared modalities. Moreover, we compare the performance of training CNNs from scratch and the transfer learning approach, where the weights learned from the natural image domain (e.g., ImageNet) are fine-tuned to the depth and infrared image domain. In particular, we propose applying the ResNet-152 model pre-trained with self-supervised learning during transfer learning to leverage better image representations. Performance evaluation on the classification of the sidewalk condition was conducted with 100% and 10% of training data. The experimental results validate the effectiveness and feasibility of the proposed approach and bring future research directions.


Subject(s)
Wheelchairs , Aged , Humans , Machine Learning , Neural Networks, Computer
14.
Adv Mater ; 34(48): e2103286, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34309090

ABSTRACT

Wafer-scale growth of transition metal dichalcogenides with precise control over the number of layers, and hence the electronic state is an essential technology for expanding the practical application of 2D materials. Herein, a new growth method, phase-transition-induced growth (PTG), is proposed for the precisely controlled growth of molybdenum disulfide (MoS2 ) films consisting of one to eleven layers with spatial uniformity on a 2 in. wafer. In this method, an energetically unstable amorphous MoSx Oy (a-MoSx Oy ) phase is effectively converted to a thermodynamically stable crystalline MoS2 film. The number of MoS2 layers is readily controlled layer-by-layer by controlling the amount of Mo atoms in a-MoSx Oy , which is also applicable for the growth of heteroatom-inserted MoS2 . The electronic states of intrinsic and Nb-inserted MoS2 with one and four layers grown by PTGare are analyzed based on their work functions. The work function of monolayer MoS2 effectively increases with the substitution of Nb for Mo. As the number of layers increases to four, charge screening becomes weaker, dopant ionization becomes easier, and ultimately the work function increases further. Thus, better electronic state modulation is achieved in a thicker layer, and in this respect, PTG has the advantage of enabling precise control over the film thickness.

15.
Anim Cells Syst (Seoul) ; 25(5): 312-322, 2021.
Article in English | MEDLINE | ID: mdl-34745437

ABSTRACT

Castration-resistant prostate cancer (CRPC) is a highly aggressive and advanced prostate cancer that is currently incurable with conventional therapies. The recurrence and chemotherapy-resistant properties of CRPC are attributed to prostate cancer stem cells (CSCs). On the other hand, the factors regulating the prostate CSC-like properties have not been studied extensively. Previously, ubiquitin C-terminal hydrolase-L1 (UCH-L1) and ubiquitin C-terminal hydrolase-L3 (UCH-L3) were reported to be involved in prostate cancer cell progression through the epithelial-to-mesenchymal transition (EMT) regulation. Here, the differential regulation on the CSC-like properties by UCH-L1 and UCH-L3 were identified in prostate cancer cells. The CSC-like characteristics, such as the expression of pluripotency markers, chemoresistance, and sphere-forming ability, were promoted by UCH-L1, whereas those were repressed by UCH-L3. Moreover, the modulation of CSC-like properties by UCH-L1 and UCH-L3 was through the PI3 K/Akt signaling pathway. The CSC-like properties induced by UCH-L1 overexpression or UCH-L3 depletion were suppressed by the PI3 K/Akt pathway inhibitor. In conclusion, UCH-L1 and UCH-L3 are novel regulators of the CSC-like properties and shed light on new therapeutic strategies to overcome CSCs in prostate cancers.

16.
ACS Appl Mater Interfaces ; 13(41): 49163-49171, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34632769

ABSTRACT

Preparation of edge-rich two-dimensional (2D) transition metal dichalocogenides (TMDs) has been actively investigated with the aim to improve their electrical and catalytic properties. Here, we elucidate the role of potassium ions in oxidation of TMDs and suggest a consequent novel anisotropic etching mechanism driven by self-running oxide droplets. We discover that potassium-mediated oxidation of MoS2 leads to the formation of K-intercalated hexagonal-phase molybdenum oxides (h-KxMoO3), whereas orthorhombic-phase oxides are formed in the absence of potassium ions. Metastable h-KxMoO3 appears to have decomposed into oxide droplets at higher temperature. Self-running of the oxide droplets leads to layer-by-layer anisotropic etching of MoS2 along the armchair direction. The motion of the droplets appears to be triggered by the surface energy instability between the oxide droplets and the underlying MoS2 layer. This study opens new possibilities to design and manufacture novel edge-rich 2D TMDs that do not follow the equilibrium Wulff shape by modulating their oxidation with the assistance of alkali metals and also offers fundamental insights into the interactions between nanodroplets and 2D materials toward edge engineering.

17.
Small ; 17(52): e2102792, 2021 12.
Article in English | MEDLINE | ID: mdl-34636144

ABSTRACT

Non-toxic InP-based nanocrystals have been developed for promising candidates for commercial optoelectronic applications and they still require further improvement on photophysical properties, compared to Cd-based quantum dots (QDs), for better device efficiency and long-term stability. It is, therefore, essential to understand the precise mechanism of carrier trapping even in the state-of-the-art InP-based QD with near-unity luminescence. Here, it is shown that using time-resolved spectroscopic measurements of systematically size-controlled InP/ZnSe/ZnS core/shell/shell QDs with the quantum yield close to one, carrier trapping decreases with increasing the energy difference between band-edge and trap states, indicating that the process follows the energy gap law, well known in molecular photochemistry for nonradiative internal conversion between two electronic states. Similar to the molecular view of the energy gap law, it is found that the energy gap between the band-edge and trap states is closely associated with ZnSe phonons that assist carrier trapping into defects in highly luminescent InP/ZnSe/ZnS QDs. These findings represent a striking departure from the generally accepted view of carrier trapping mechanism in QDs in the Marcus normal region, providing a step forward understanding how excitons in nanocrystals interact with traps, and offering valuable guidance for making highly efficient and stable InP-based QDs.


Subject(s)
Quantum Dots , Luminescence , Sulfides , Zinc Compounds
18.
Phys Rev Lett ; 127(9): 097203, 2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34506205

ABSTRACT

Since the discovery of charge disproportionation in the FeO_{2} square-lattice compound Sr_{3}Fe_{2}O_{7} by Mössbauer spectroscopy more than fifty years ago, the spatial ordering pattern of the disproportionated charges has remained "hidden" to conventional diffraction probes, despite numerous x-ray and neutron scattering studies. We have used neutron Larmor diffraction and Fe K-edge resonant x-ray scattering to demonstrate checkerboard charge order in the FeO_{2} planes that vanishes at a sharp second-order phase transition upon heating above 332 K. Stacking disorder of the checkerboard pattern due to frustrated interlayer interactions broadens the corresponding superstructure reflections and greatly reduces their amplitude, thus explaining the difficulty of detecting them by conventional probes. We discuss the implications of these findings for research on "hidden order" in other materials.

19.
Rev Sci Instrum ; 92(4): 043549, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243449

ABSTRACT

A Thomson scattering (TS) system has been utilized to measure the electron temperature and density of the core region of Versatile Experiment Spherical Torus (VEST). Recently, the laser injection system is successfully upgraded adopting the burst laser with the repetition rate of 1 kHz and the energy of 2 J. Furthermore, improved collection optics with additional polychromators and a 32-channel fast digitizer are prepared to observe the fast time evolution of radial profiles. This improvement is essential to study fast phenomena such as internal reconnection event (IRE). We increase the TS signal and reduce the stray light by introducing new filters having better optical properties such as high optical density at 1064 nm, transmission, and reflectance. Moreover, the optimum reverse bias voltages are newly set to make the system operational independent of the background radiation. As a result, 1 kHz radial profiles of the core electron temperature and density are measured for the first time, showing characteristics of IREs in VEST.

20.
ACS Appl Mater Interfaces ; 13(30): 36499-36506, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34310129

ABSTRACT

HfO2-based ferroelectrics are highly expected to lead the new paradigm of nanoelectronic devices owing to their unexpected ability to enhance ferroelectricity in the ultimate thickness scaling limit (≤2 nm). However, an understanding of its physical origin remains uncertain because its direct microstructural and chemical characterization in such a thickness regime is extremely challenging. Herein, we solve the mystery for the continuous retention of high ferroelectricity in an ultrathin hafnium zirconium oxide (HZO) film (∼2 nm) by unveiling the evolution of microstructures and crystallographic orientations using a combination of state-of-the-art structural analysis techniques beyond analytical limits and theoretical approaches. We demonstrate that the enhancement of ferroelectricity in ultrathin HZO films originates from textured grains with a preferred orientation along an unusual out-of-plane direction of (112). In principle, (112)-oriented grains can exhibit 62% greater net polarization than the randomly oriented grains observed in thicker samples (>4 nm). Our first-principles calculations prove that the hydroxyl adsorption during the deposition process can significantly reduce the surface energy of (112)-oriented films, thereby stabilizing the high-index facet of (112). This work provides new insights into the ultimate scaling of HfO2-based ferroelectrics, which may facilitate the design of future extremely small-scale logic and memory devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...