Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 55(16): 7114-40, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22803959

ABSTRACT

Sodium-hydrogen exchanger isoform 1 (NHE1) is a ubiquitously expressed transmembrane ion channel responsible for intracellular pH regulation. During myocardial ischemia, low pH activates NHE1 and causes increased intracellular calcium levels and aberrant cellular processes, leading to myocardial stunning, arrhythmias, and ultimately cell damage and death. The role of NHE1 in cardiac injury has prompted interest in the development of NHE1 inhibitors for the treatment of heart failure. This report outlines our efforts to identify a compound suitable for once daily, oral administration with low drug-drug interaction potential starting from NHE1 inhibitor sabiporide. Substitution of a piperidine for the piperazine of sabiporide followed by replacement of the pyrrole moiety and subsequent optimization to improve potency and eliminate off-target activities resulted in the identification of N-[4-(1-acetyl-piperidin-4-yl)-3-trifluoromethyl-benzoyl]-guanidine (60). Pharmacological evaluation of 60 revealed a remarkable ability to prevent ischemic damage in an ex vivo model of ischemia reperfusion injury in isolated rat hearts.


Subject(s)
Benzamides/chemical synthesis , Guanidines/chemical synthesis , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/prevention & control , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Animals , Benzamides/chemistry , Benzamides/pharmacology , Biological Availability , Blood Platelets/cytology , Blood Platelets/drug effects , Cell Line , Cell Membrane Permeability , Cell Size , Cytochrome P-450 Enzyme Inhibitors , Dogs , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Guanidines/chemistry , Guanidines/pharmacology , Humans , Male , Membranes, Artificial , Microsomes, Liver/metabolism , Models, Molecular , Permeability , Protein Isoforms/antagonists & inhibitors , Rats , Rats, Sprague-Dawley , Sodium-Hydrogen Exchanger 1 , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 22(1): 738-42, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22056746

ABSTRACT

A series of inhibitors for the 90 kDa ribosomal S6 kinase (RSK) based on an 1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-8-carboxamide scaffold were optimized for cellular potency and kinase selectivity. This led to the identification of compound 24, BIX 02565, an attractive candidate for use in vitro and in vivo to explore the role of RSK as a target for the treatment heart failure.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indoles/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Amides/chemistry , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Drug Evaluation, Preclinical/methods , Humans , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Nitrogen/chemistry , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 22(1): 733-7, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22100312

ABSTRACT

A series of inhibitors for the 90 kDa ribosomal S6 kinase (RSK) based on an 1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a]indole-8-carboxamide scaffold were identified through high throughput screening. An RSK crystal structure and exploratory SAR were used to define the series pharmacophore. Compounds with good cell potency, such as compounds 43, 44, and 55 were identified, and form the basis for subsequent kinase selectivity optimization.


Subject(s)
Azepines/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Indoles/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Amides/chemistry , Azepines/pharmacology , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Inhibitory Concentration 50 , Models, Chemical , Molecular Conformation , Nitrogen/chemistry , Structure-Activity Relationship
4.
J Pharmacol Exp Ther ; 340(3): 492-500, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22128344

ABSTRACT

We previously reported the discovery of a novel ribosomal S6 kinase 2 (RSK2) inhibitor, (R)-5-Methyl-1-oxo-2,3,4,5-tetrahydro-1H-[1,4]diazepino[1,2-a] indole-8-carboxylic acid [1-(3-dimethylamino-propyl)-1H-benzoimidazol-2-yl]-amide (BIX 02565), with high potency (IC(50) = 1.1 nM) targeted for the treatment of heart failure. In the present study, we report that despite nanomolar potency at the target, BIX 02565 elicits off-target binding at multiple adrenergic receptor subtypes that are important in the control of vascular tone and cardiac function. To elucidate in vivo the functional consequence of receptor binding, we characterized the cardiovascular (CV) profile of the compound in an anesthetized rat CV screen and telemetry-instrumented conscious rats. Infusion of BIX 02565 (1, 3, and 10 mg/kg) in the rat CV screen resulted in a precipitous decrease in both mean arterial pressure (MAP; to -65 ± 6 mm Hg below baseline) and heart rate (-93 ± 13 beats/min). In telemetry-instrumented rats, BIX 02565 (30, 100, and 300 mg/kg p.o. QD for 4 days) elicited concentration-dependent decreases in MAP after each dose (to -39 ± 4 mm Hg on day 4 at T(max)); analysis by Demming regression demonstrated strong correlation independent of route of administration and influence of anesthesia. Because of pronounced off-target effects of BIX 02565 on cardiovascular function, a high-throughput selectivity screen at adrenergic α(1A) and α(2A) was performed for 30 additional RSK2 inhibitors in a novel chemical series; a wide range of adrenergic binding was achieved (0-92% inhibition), allowing for differentiation within the series. Eleven lead compounds with differential binding were advanced to the rat CV screen for in vivo profiling. This led to the identification of potent RSK2 inhibitors (cellular IC(50) <0.14 nM) without relevant α(1A) and α(2A) inhibition and no adverse cardiovascular effects in vivo.


Subject(s)
Azepines/pharmacology , Benzimidazoles/pharmacology , Blood Pressure/drug effects , Protein Kinase Inhibitors/pharmacology , Receptors, Adrenergic, alpha-1/metabolism , Receptors, Adrenergic, alpha-2/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Drug Discovery , Male , Rats , Rats, Sprague-Dawley
5.
Bioorg Med Chem Lett ; 21(22): 6842-51, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21963986

ABSTRACT

We report a SAR of non-steroidal glucocorticoid mimetics that utilize indoles as A-ring mimetics. Detailed SAR is discussed with a focus on improving PR and MR selectivity, GR agonism, and in vitro dissociation profile. SAR analysis led to compound (R)-33 which showed high PR and MR selectivity, potent agonist activity, and reduced transactivation activity in the MMTV and aromatase assays. The compound is equipotent to prednisolone in the LPS-TNF model of inflammation. In mouse CIA, at 30 mg/kg compound (R)-33 inhibited disease progression with an efficacy similar to the 3 mg/kg dose of prednisolone.


Subject(s)
Glucocorticoids/chemistry , Glucocorticoids/pharmacology , Indoles/chemistry , Indoles/pharmacology , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/metabolism , Animals , HeLa Cells , Humans , Mice , Models, Molecular , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 19(9): 2386-91, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19356929

ABSTRACT

An effort aimed at exploring structural diversity in the N-pyrazole-N'-naphthylurea class of p38 kinase inhibitors led to the synthesis and characterization of N-phenyl-N'-naphthylureas. Examples of these compounds displayed excellent inhibition of TNF-alpha production in vitro, as well as efficacy in a mouse model of lipopolysaccharide induced endotoxemia. In addition, perspective is provided on the role of a sulfonamide functionality in defining inhibitor potency.


Subject(s)
2-Naphthylamine/analogs & derivatives , Protein Kinase Inhibitors/pharmacology , Urea/analogs & derivatives , p38 Mitogen-Activated Protein Kinases/metabolism , 2-Naphthylamine/chemistry , Animals , Chemistry, Organic/methods , Chemistry, Pharmaceutical/methods , Crystallography, X-Ray/methods , Drug Design , Inhibitory Concentration 50 , Lipopolysaccharides/metabolism , Mice , Models, Chemical , Molecular Structure , Tumor Necrosis Factor-alpha/metabolism , Urea/chemistry
7.
Bioorg Med Chem Lett ; 17(15): 4242-7, 2007 Aug 01.
Article in English | MEDLINE | ID: mdl-17560108

ABSTRACT

Discovery of the pyrazole-naphthyl urea class of p38 MAP kinase inhibitors typified by the clinical candidate BIRB 796 has encouraged further exploration of this particular scaffold. Modification to the part of the inhibitor that occupies the adenine/ATP binding site has resulted in a new way to obtain potent inhibitors that possess favorable in vitro and in vivo properties.


Subject(s)
Adenine/metabolism , Protein Kinase Inhibitors/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Binding Sites , Humans , Models, Molecular , Protein Kinase Inhibitors/metabolism , Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Bioorg Med Chem Lett ; 15(21): 4761-9, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16112571

ABSTRACT

Compound 1, a potent glucocorticoid receptor ligand, contains a quaternary carbon bearing trifluoromethyl and hydroxyl groups. This paper describes the effect of replacing the trifluoromethyl group on binding and agonist activity of the GR ligand 1. The results illustrate that replacing the CF3 group with a cyclohexylmethyl or benzyl group maintains the GR binding potency. These substitutions alter the functional behavior of the GR ligands from agonists to antagonists. Docking studies suggest that the benzyl analog 19 binds in a similar fashion as the GR antagonist, RU486. The central benzyl group of 19 and the C-11 dimethylaniline moiety of RU486 overlay. Binding of compound 19 is believed to force helix 12 to adopt an open conformation and this leads to the antagonist properties of the non-CF3 ligands carrying a large group at the center of the molecule.


Subject(s)
Chlorofluorocarbons, Methane/chemistry , Receptors, Glucocorticoid/agonists , Receptors, Glucocorticoid/antagonists & inhibitors , Cells, Cultured , Chlorofluorocarbons, Methane/pharmacology , Fibroblasts , HeLa Cells , Humans , Interleukin-6/biosynthesis , Interleukin-6/genetics , Ligands , Models, Molecular , Protein Binding , Protein Conformation/drug effects , Receptors, Cytoplasmic and Nuclear/drug effects , Structure-Activity Relationship , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...