Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
2.
Bioengineering (Basel) ; 11(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534481

ABSTRACT

CT protocols that diagnose COVID-19 vary in regard to the associated radiation exposure and the desired image quality (IQ). This study aims to evaluate CT protocols of hospitals participating in the RACOON (Radiological Cooperative Network) project, consolidating CT protocols to provide recommendations and strategies for future pandemics. In this retrospective study, CT acquisitions of COVID-19 patients scanned between March 2020 and October 2020 (RACOON phase 1) were included, and all non-contrast protocols were evaluated. For this purpose, CT protocol parameters, IQ ratings, radiation exposure (CTDIvol), and central patient diameters were sampled. Eventually, the data from 14 sites and 534 CT acquisitions were analyzed. IQ was rated good for 81% of the evaluated examinations. Motion, beam-hardening artefacts, or image noise were reasons for a suboptimal IQ. The tube potential ranged between 80 and 140 kVp, with the majority between 100 and 120 kVp. CTDIvol was 3.7 ± 3.4 mGy. Most healthcare facilities included did not have a specific non-contrast CT protocol. Furthermore, CT protocols for chest imaging varied in their settings and radiation exposure. In future, it will be necessary to make recommendations regarding the required IQ and protocol parameters for the majority of CT scanners to enable comparable IQ as well as radiation exposure for different sites but identical diagnostic questions.

3.
Sci Rep ; 14(1): 5695, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459104

ABSTRACT

The successful integration of neural networks in a clinical setting is still uncommon despite major successes achieved by artificial intelligence in other domains. This is mainly due to the black box characteristic of most optimized models and the undetermined generalization ability of the trained architectures. The current work tackles both issues in the radiology domain by focusing on developing an effective and interpretable cardiomegaly detection architecture based on segmentation models. The architecture consists of two distinct neural networks performing the segmentation of both cardiac and thoracic areas of a radiograph. The respective segmentation outputs are subsequently used to estimate the cardiothoracic ratio, and the corresponding radiograph is classified as a case of cardiomegaly based on a given threshold. Due to the scarcity of pixel-level labeled chest radiographs, both segmentation models are optimized in a semi-supervised manner. This results in a significant reduction in the costs of manual annotation. The resulting segmentation outputs significantly improve the interpretability of the architecture's final classification results. The generalization ability of the architecture is assessed in a cross-domain setting. The assessment shows the effectiveness of the semi-supervised optimization of the segmentation models and the robustness of the ensuing classification architecture.


Subject(s)
Artificial Intelligence , Cardiomegaly , Humans , Cardiomegaly/diagnostic imaging , Generalization, Psychological , Heart , Image Processing, Computer-Assisted , Neural Networks, Computer
4.
Bioengineering (Basel) ; 10(12)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38136012

ABSTRACT

In medical imaging, deep learning models serve as invaluable tools for expediting diagnoses and aiding specialized medical professionals in making clinical decisions. However, effectively training deep learning models typically necessitates substantial quantities of high-quality data, a resource often lacking in numerous medical imaging scenarios. One way to overcome this deficiency is to artificially generate such images. Therefore, in this comparative study we train five generative models to artificially increase the amount of available data in such a scenario. This synthetic data approach is evaluated on a a downstream classification task, predicting four causes for pneumonia as well as healthy cases on 1082 chest X-ray images. Quantitative and medical assessments show that a Generative Adversarial Network (GAN)-based approach significantly outperforms more recent diffusion-based approaches on this limited dataset with better image quality and pathological plausibility. We show that better image quality surprisingly does not translate to improved classification performance by evaluating five different classification models and varying the amount of additional training data. Class-specific metrics like precision, recall, and F1-score show a substantial improvement by using synthetic images, emphasizing the data rebalancing effect of less frequent classes. However, overall performance does not improve for most models and configurations, except for a DreamBooth approach which shows a +0.52 improvement in overall accuracy. The large variance of performance impact in this study suggests a careful consideration of utilizing generative models for limited data scenarios, especially with an unexpected negative correlation between image quality and downstream classification improvement.

5.
Tomography ; 9(6): 2190-2210, 2023 12 08.
Article in English | MEDLINE | ID: mdl-38133074

ABSTRACT

Imaging of the temporal bone and middle ear is challenging for radiologists due to the abundance of distinct anatomical structures and the plethora of possible pathologies. The basis for a precise diagnosis is knowledge of the underlying anatomy as well as the clinical presentation and the individual patient's otological status. In this article, we aimed to summarize the most common inflammatory lesions of the temporal bone and middle ear, describe their specific imaging characteristics, and highlight their differential diagnoses. First, we introduce anatomical and imaging fundamentals. Additionally, a point-to-point comparison of the radiological and histological features of the wide spectrum of inflammatory diseases of the temporal bone and middle ear in context with a review of the current literature and current trends is given.


Subject(s)
Ear Diseases , Humans , Ear Diseases/diagnostic imaging , Ear Diseases/pathology , Tomography, X-Ray Computed/methods , Ear, Middle/diagnostic imaging , Temporal Bone/diagnostic imaging , Temporal Bone/pathology
SELECTION OF CITATIONS
SEARCH DETAIL