Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
ACS Appl Mater Interfaces ; 16(33): 43951-43960, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39112427

ABSTRACT

Microcapsules with a cyclic polyphthalaldehyde (cPPA) shell and oil core were fabricated by an emulsification process. The low ceiling temperature cPPA shell was made phototriggerable by incorporating a photoacid generator (PAG). Photoactivation of the PAG created a strong acid which catalyzed cPPA depolymerization, resulting in the release of the core payload, as quantified by 1H NMR. The high molecular weight cPPA (197 kDa) yielded uniform spherical microcapsules. The core diameter was 24.8 times greater than the cPPA shell thickness (2.4 to 21.6 µm). Nonionic bis(cyclohexylsulfonyl)diazomethane (BCSD) and N-hydroxynaphthalimide triflate (HNT) PAGs were used as the PAG in the microcapsule shells. BCSD required dual stimuli of UV radiation and post-exposure baking at 60 °C to activate cPPA depolymerization while room temperature irradiation of HNT resulted in instantaneous core release. A 300 s UV exposure (365 nm, 10.8 J/cm2) of the cPPA/HNT microcapsules resulted in 66.5 ± 9.4% core release. Faster core release was achieved by replacing cPPA with a phthalaldehyde/propanal copolymer. A 30 s UV exposure (365 nm, 1.08 J/cm2) resulted in 82 ± 13% core release for the 75 mol % phthalaldehyde/25 mol % propanal copolymer microcapsules. The photoresponsive shell provides a versatile polymer microcapsule technology for on-demand, controlled release of hydrophobic core payloads.


Subject(s)
Capsules , Capsules/chemistry , Ultraviolet Rays , Polymers/chemistry , Drug Liberation
2.
Phys Chem Chem Phys ; 25(17): 12522-12531, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37133822

ABSTRACT

In this study, we investigate the molecular mechanisms of a microwave-driven selective heating process by performing molecular dynamics simulations for three different systems including pure water, pure polyethylene oxide (PEO), and water-PEO mixed systems in the presence of a microwave with two different intensities of electric field such as 0.001 V Å-1 and 0.01 V Å-1 at a frequency of 100 GHz. First, from performing molecular dynamics simulations of CO and CO2 in the presence of the microwave, it is confirmed that the molecular dipole moment is responsible for the rotational motion induced by the oscillating electric field. Second, by analyzing the MD simulations of the pure water system, we discover that the dipole moment of water exhibits a time lag with respect to the microwave. During the heating process, however, the temperature, kinetic, and potential energies increase synchronously with the oscillating electric field of the microwave, showing that the heating of the water system is caused by the molecular reaction of water to the microwave. Comparing the water-PEO mixed system to the pure water and pure PEO systems, the water-PEO mixed system has a higher heating rate than the pure PEO system but a lower heating rate than the pure water system. Therefore, we conclude that heating the water-PEO mixed system is driven by water molecules selectively activated by microwave irradiation. We also calculate the diffusion coefficients of water molecules and PEO chains by describing their mean square displacements, demonstrating that the diffusion coefficients are increased in the presence of microwaves for both water and PEO in pure and mixed systems. Lastly, during the microwave heating process, the structures of the water-PEO mixed system are altered as a function of the intensity of electric field, which is mainly driven by the response of water molecules.

3.
ACS Appl Mater Interfaces ; 11(31): 27906-27912, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31298521

ABSTRACT

Solid polymer electrolytes (SPEs) have the potential to enhance the safety and energy density of lithium batteries. However, poor interfacial contact between the lithium metal anode and SPE leads to high interfacial resistance and low specific capacity of the battery. In this work, we present a novel strategy to improve this solid-solid interface problem and maintain good interfacial contact during battery cycling by introducing an adaptive buffer layer (ABL) between the Li metal anode and SPE. The ABL consists of low molecular-weight polypropylene carbonate , poly(ethylene oxide) (PEO), and lithium salt. Rheological experiments indicate that ABL is viscoelastic and that it flows with a higher viscosity compared to PEO-only SPE. ABL also has higher ionic conductivity than PEO-only SPE. In the presence of ABL, the interface resistance of the Li/ABL/SPE/LiFePO4 battery only increased 20% after 150 cycles, whereas that of the battery without ABL increased by 117%. In addition, because ABL makes a good solid-solid interface contact between the Li metal anode and SPE, the battery with ABL delivered an initial discharge specific capacity of >110 mA·h/g, which is nearly twice that of the battery without ABL, which is 60 mA·h/g. Moreover, ABL is able to maintain electrode-electrolyte interfacial contact during battery cycling, which stabilizes the battery Coulombic efficiency.

4.
ACS Appl Mater Interfaces ; 10(33): 28062-28068, 2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30040372

ABSTRACT

We demonstrate phototriggered depolymerization of a low ceiling temperature ( Tc) polymer, poly(phthalaldehyde) (PPHA), via internal light emission from integrated organic light-emitting diodes (OLEDs) fabricated directly on flexible PPHA substrates with silver nanowire electrodes. The depolymerization of the PPHA substrates is triggered by absorption of the OLED emission by a sensitizer that activates a photoacid generator via energetically favorable electron transfer. We confirm with Fourier-transform infrared spectroscopy that the photon doses delivered by the integrated OLED are sufficient to depolymerize the PPHA substrates. We determine this critical dosage by measuring the operating lifetimes of the OLEDs whose failure is believed to be due to significant mechanical softening during the liquefaction of decomposed phthalaldehyde monomers.

5.
J Colloid Interface Sci ; 418: 37-42, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24461815

ABSTRACT

We report a facile method for the production of graphene sheets through liquid-phase exfoliation of graphite in organic solvents with addition of naphthalene. The production yield of graphene is significantly increased with the addition of naphthalene in most solvents tested in this work. Naphthalene serves as a "molecular wedge" to intercalate into the edge of graphite, which plays a key role during sonication and significantly improves the production yield of graphene. The graphene concentration of the dispersion in 1-methyl-2-pyrrolidinone is as high as 0.15 mg/mL (after sonication for 90 min), which allows this method to easily produce films and composites for a range of applications.

6.
Annu Rev Chem Biomol Eng ; 2: 379-401, 2011.
Article in English | MEDLINE | ID: mdl-22432624

ABSTRACT

Future integrated circuits and packages will require extraordinary dielectric materials for interconnects to allow transistor advances to be translated into system-level advances. Exceedingly low-permittivity and low-loss materials are required at every level of the electronic system, from chip-level insulators to packages and printed wiring boards. In this review, the requirements and goals for future insulators are discussed followed by a summary of current state-of-the-art materials and technical approaches. Much work needs to be done for insulating materials and structures to meet future needs.


Subject(s)
Electronics/instrumentation , Electronics/methods , Electronics/trends , Equipment Design , Microtechnology/instrumentation , Microtechnology/methods , Forecasting , Molecular Structure , Organic Chemicals/chemistry
7.
ChemSusChem ; 3(12): 1398-402, 2010 Dec 17.
Article in English | MEDLINE | ID: mdl-21069660

ABSTRACT

Anion exchange ionomers (AEI) synthesized here were characterized by use of a novel fuel cell configuration. The new analysis method involves assembling the AEI electrode of interest as the cathode in a hybrid, acid/alkaline, fuel cell configuration. The hybrid cell includes a conventional proton conducting anode/membrane half-cell along with the anionic conductor of interest at the cathode. Electrochemical impedance spectroscopy and voltammetry were used to evaluate the performance of the hybrid AEI-containing fuel cell with H2 and O2. In particular, the AEI electrode response in impedance spectroscopy was easily identified because the contributions from other components are largely minimized in the presented hybrid cell configuration. The properties of ionomers used in the AEI electrode were shown to have a substantial effect on the electrode performance. Low catalyst utilization, due to high water uptake and low conductivity, was identified as the major causes of poor performance in AEI electrodes.


Subject(s)
Polymers/chemistry , Sulfones/chemistry , Anions/chemistry , Catalysis , Dielectric Spectroscopy/methods , Electric Power Supplies , Polymers/chemical synthesis , Sulfones/chemical synthesis
9.
Science ; 320(5877): 756-7, 2008 May 09.
Article in English | MEDLINE | ID: mdl-18467580
10.
J Phys Chem B ; 109(41): 19454-62, 2005 Oct 20.
Article in English | MEDLINE | ID: mdl-16853514

ABSTRACT

The electrochemical stability of 10 organic cations, which can be used in ionic liquids (IL), was investigated as solutes in acetonitrile (ACN). The stability of three of the salts, BenMe2EtNCl (salt III), 1-butyl-2-methyl pyrrolidium chloride (salt VI), and its structural isomer, BuMe2ProNCl (salt VII), were also compared in chloroaluminate ILs. The chloroaluminate ILs of salts VI and VII are investigated for the first time. The NaCl-neutralized ILs of salts VI and VII have melting points of 43.2 and 3.7 degrees C, respectively. The benzyl-substituted cation, salt III, was more easily reduced in ACN or as the neutral chloroaluminate IL than the alkyl-substituted cation, salt VII, due to the better leaving ability of the benzyl group. Mass spectroscopy measurements before and after electrolysis on the benzyl-substituted solutions confirmed that reduction involves the loss of an alkyl group. In ACN, salt VI was found to be the most difficult to reduce (1 mA/cm2 at -2.09 V) due to its cyclic structure. However, in the chloroaluminate IL, the pyrrolidinium cation was more easily reduced than salt III or its isomer, salt VII, resulting in an insoluble black deposit. This is consistent with the mass spectrometry data, which do not show formation of low-molecular-weight products, as in the reduction of salts III and VII. The IL of salt VII was the most stable in the presence of sodium. Sodium ions could be reduced and reoxidized with a maximum Coulombic efficiency of 94.1% versus 87.2% for salt VI. Reduction of the pyrrolidinium cation produces insoluble products, most likely through opening of the cyclic ring, and an inferior medium for sodium ion reduction compared to the benzyl- and butyl-substituted cations, even though reduction of the cation occurs at a more negative potential in acetonitrile.

SELECTION OF CITATIONS
SEARCH DETAIL