Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Blood ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684032

ABSTRACT

Hematopoietic stem cells (HSCs) are characterized by the ability to self-renew and to replenish the hematopoietic system. The cell-cycle kinase cyclin dependent-kinase 6 (CDK6) regulates transcription, whereby it has both kinase-dependent and kinase-independent functions. We here describe the complex role of CDK6, balancing quiescence, proliferation, self-renewal and differentiation in activated HSCs. Mouse HSCs expressing kinase-inactivated CDK6 show enhanced long-term repopulation and homing, whereas HSCs lacking CDK6 have impaired functionality. The transcriptomes of basal and serially transplanted HSCs expressing kinase-inactivated CDK6 exhibit an expression pattern dominated by HSC quiescence and self-renewal, proposing a concept where MAZ and NFY-A are critical CDK6 interactors. Pharmacologic kinase inhibition with a clinically used CDK4/6 inhibitor in murine and human HSCs validated our findings and resulted in increased repopulation capability and enhanced stemness. Our findings highlight a kinase-independent role of CDK6 in long-term HSC functionality. CDK6 kinase inhibition represents a possible strategy to improve HSC fitness.

2.
Biomed Pharmacother ; 153: 113486, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076504

ABSTRACT

Ribosomally synthesized and post-translationally modified peptides, such as plant cyclotides, are a diverse group of natural products well known as templates in drug discovery and therapeutic lead development. The cyclotide kalata B1 (kB1) has previously been discovered as immunosuppressive agent on T-lymphocytes, and a synthetic version of this peptide, [T20K]kB1 (T20K), has been effective in reducing clinical symptoms, such as inflammation and demyelination, in a mouse model of multiple sclerosis. Based on its T-cell modulatory impact we studied the effects of T20K and several analogs on the proliferation of anaplastic large cell lymphoma (ALCL), a heterogeneous group of clinically aggressive diseases associated with poor prognosis. T20K, as a prototype drug candidate, induces apoptosis and a proliferation arrest in human lymphoma T-cell lines (SR786, Mac-2a and the Jurkat E6.1) in a concentration dependent fashion, at least partially via increased STAT5 and p53 signaling. In contrary to its effect on IL-2 signaling in lymphocytes, the cytokine levels are not altered in lymphoma cells. In vivo mouse experiments revealed a promising activity of T20K on these cancer cells including decreased tumor weight and increased apoptosis. This study opens novel avenues for developing cyclotide-based drug candidates for therapy of patients with ALCL.


Subject(s)
Cyclotides , Lymphoma, Large-Cell, Anaplastic , Animals , Cyclotides/pharmacology , Cytokines/pharmacology , Humans , Lymphoma, Large-Cell, Anaplastic/drug therapy , Mice , T-Lymphocytes
3.
Front Oncol ; 12: 916682, 2022.
Article in English | MEDLINE | ID: mdl-36033505

ABSTRACT

The cell-cycle is a tightly orchestrated process where sequential steps guarantee cellular growth linked to a correct DNA replication. The entire cell division is controlled by cyclin-dependent kinases (CDKs). CDK activation is balanced by the activating cyclins and CDK inhibitors whose correct expression, accumulation and degradation schedule the time-flow through the cell cycle phases. Dysregulation of the cell cycle regulatory proteins causes the loss of a controlled cell division and is inevitably linked to neoplastic transformation. Due to their function as cell-cycle brakes, CDK inhibitors are considered as tumor suppressors. The CDK inhibitors p16INK4a and p15INK4b are among the most frequently altered genes in cancer, including hematopoietic malignancies. Aberrant cell cycle regulation in hematopoietic stem cells (HSCs) bears severe consequences on hematopoiesis and provokes hematological disorders with a broad array of symptoms. In this review, we focus on the importance and prevalence of deregulated CDK inhibitors in hematological malignancies.

4.
Cancers (Basel) ; 14(6)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35326705

ABSTRACT

Cyclin-dependent kinase 6 (CDK6) represents a novel therapeutic target for the treatment of certain subtypes of acute myeloid leukaemia (AML). CDK4/6 kinase inhibitors have been widely studied in many cancer types and their effects may be limited by primary and secondary resistance mechanisms. CDK4/6 degraders, which eliminate kinase-dependent and kinase-independent effects, have been suggested as an alternative therapeutic option. We show that the efficacy of the CDK6-specific protein degrader BSJ-03-123 varies among AML subtypes and depends on the low expression of the INK4 proteins p16INK4A and p18INK4C. INK4 protein levels are significantly elevated in KMT2A-MLLT3+ cells compared to RUNX1-RUNX1T1+ cells, contributing to the different CDK6 degradation efficacy. We demonstrate that CDK6 complexes containing p16INK4A or p18INK4C are protected from BSJ-mediated degradation and that INK4 levels define the proliferative response to CDK6 degradation. These findings define INK4 proteins as predictive markers for CDK6 degradation-targeted therapies in AML.

5.
Blood ; 138(23): 2347-2359, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34320169

ABSTRACT

The transcription factors signal transducer and activator of transcription 5A (STAT5A) and STAT5B are critical in hematopoiesis and leukemia. They are widely believed to have redundant functions, but we describe a unique role for STAT5B in driving the self-renewal of hematopoietic and leukemic stem cells (HSCs/LSCs). We find STAT5B to be specifically activated in HSCs and LSCs, where it induces many genes associated with quiescence and self-renewal, including the surface marker CD9. Levels of CD9 represent a prognostic marker for patients with STAT5-driven leukemia, and our findings suggest that anti-CD9 antibodies may be useful in their treatment to target and eliminate LSCs. We show that it is vital to consider STAT5A and STAT5B as distinct entities in normal and malignant hematopoiesis.


Subject(s)
Hematopoietic Stem Cells/pathology , Leukemia/pathology , Neoplastic Stem Cells/pathology , STAT5 Transcription Factor/metabolism , Signal Transduction , Tetraspanin 29/metabolism , Animals , Cell Self Renewal , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Leukemia/metabolism , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/metabolism , Tumor Cells, Cultured
6.
Hemasphere ; 5(3): e536, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33623882

ABSTRACT

During the past few years, our understanding of molecular mechanisms and cellular interactions relevant to malignant blood cell disorders has improved substantially. New insights include a detailed knowledge about disease-initiating exogenous factors, endogenous (genetic, somatic, epigenetic) elicitors or facilitators of disease evolution, and drug actions and interactions that underlie efficacy and adverse event profiles in defined cohorts of patients. As a result, precision medicine and personalized medicine are rapidly growing new disciplines that support the clinician in making the correct diagnosis, in predicting outcomes, and in optimally selecting patients for interventional therapies. In addition, precision medicine tools are greatly facilitating the development of new drugs, therapeutic approaches, and new multiparametric prognostic scoring models. However, although the emerging roles of precision medicine and personalized medicine in hematology and oncology are clearly visible, several questions remain. For example, it remains unknown how precision medicine tools can be implemented in healthcare systems and whether all possible approaches are also affordable. In addition, there is a need to define terminologies and to relate these to specific and context-related tools and strategies in basic and applied science. To discuss these issues, a working conference was organized in September 2019. The outcomes of this conference are summarized herein and include a proposal for definitions, terminologies, and applications of precision and personalized medicine concepts and tools in hematologic neoplasms. We also provide proposals aimed at reducing costs, thereby making these applications affordable in daily practice.

7.
Blood Adv ; 5(1): 39-53, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33570624

ABSTRACT

Studies of molecular mechanisms of hematopoiesis and leukemogenesis are hampered by the unavailability of progenitor cell lines that accurately mimic the situation in vivo. We now report a robust method to generate and maintain LSK (Lin-, Sca-1+, c-Kit+) cells, which closely resemble MPP1 cells. HPCLSKs reconstitute hematopoiesis in lethally irradiated recipient mice over >8 months. Upon transformation with different oncogenes including BCR/ABL, FLT3-ITD, or MLL-AF9, their leukemic counterparts maintain stem cell properties in vitro and recapitulate leukemia formation in vivo. The method to generate HPCLSKs can be applied to transgenic mice, and we illustrate it for CDK6-deficient animals. Upon BCR/ABLp210 transformation, HPCLSKsCdk6-/- induce disease with a significantly enhanced latency and reduced incidence, showing the importance of CDK6 in leukemia formation. Studies of the CDK6 transcriptome in murine HPCLSK and human BCR/ABL+ cells have verified that certain pathways depend on CDK6 and have uncovered a novel CDK6-dependent signature, suggesting a role for CDK6 in leukemic progenitor cell homing. Loss of CDK6 may thus lead to a defect in homing. The HPCLSK system represents a unique tool for combined in vitro and in vivo studies and enables the production of large quantities of genetically modifiable hematopoietic or leukemic stem/progenitor cells.


Subject(s)
Fusion Proteins, bcr-abl , Hematopoietic Stem Cells , Animals , Hematopoiesis , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33255177

ABSTRACT

Despite the development of targeted therapies and novel inhibitors, cancer remains an undefeated disease. Resistance mechanisms arise quickly and alternative treatment options are urgently required, which may be partially met by drug combinations. Protein kinases as signaling switchboards are frequently deregulated in cancer and signify vulnerable nodes and potential therapeutic targets. We here focus on the cell cycle kinase CDK6 and on the MAPK pathway and on their interplay. We also provide an overview on clinical studies examining the effects of combinational treatments currently explored for several cancer types.

9.
iScience ; 23(10): 101602, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33205015

ABSTRACT

CDK6 is frequently overexpressed in various cancer types and functions as a positive regulator of the cell cycle and as a coregulator of gene transcription. We provide evidence that CDK6 is involved in the process of DNA methylation, at least in ALL. We observe a positive correlation of CDK6 and DNMT expression in a large number of ALL samples. ChIP-seq analysis reveals CDK6 binding to genomic regions associated with DNA methyltransferases (DNMTs). ATAC-seq shows a strong reduction in chromatin accessibility for DNMT3B in CDK6-deficient BCR-ABL + Cdk6-/- cells, accompanied by lower levels of DNMT3B mRNA and less chromatin-bound DNMT3B, as shown by RNA-seq and chromatome analysis. Motif analysis suggests that ETS family members interact with CDK6 to regulate DNMT3B. Reduced representation bisulfite sequencing analysis uncovers reversible and cell line-specific changes in DNA methylation patterns upon CDK6 loss. The results reveal a function of CDK6 as a regulator of DNA methylation in transformed cells.

10.
Int J Cancer ; 147(11): 2988-2995, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32406095

ABSTRACT

The regulation and function of cyclin-dependent kinase 6 (CDK6)- and cyclin-dependent kinase 4 (CDK4)-cyclin complexes are commonly altered with enhanced kinase activity found in hematopoietic malignancies, breast cancer and melanoma making CDK4 and CDK6 attractive targets for therapeutic interference. Although dual CDK4/6 inhibitors have revolutionized treatment of breast cancer patients and reveal promising results in several solid tumors and hematological malignancies, there is a need for novel compounds targeting the versatile kinase-independent functions of CDK6 to improve cancer treatment. The following review summarizes the latest findings on CDK6 in cancer development and discusses novel therapeutic approaches to selectively inhibit CDK6s function as a transcriptional regulator.


Subject(s)
Cyclin-Dependent Kinase 6/metabolism , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Clinical Trials as Topic , Cyclin-Dependent Kinase 6/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Precision Medicine , Protein Kinase Inhibitors/therapeutic use
11.
Int J Mol Sci ; 21(7)2020 Apr 05.
Article in English | MEDLINE | ID: mdl-32260549

ABSTRACT

Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.


Subject(s)
Cyclin-Dependent Kinase 6/antagonists & inhibitors , Leukemia, Myeloid, Acute/drug therapy , Piperazines/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Animals , Clinical Trials as Topic , Cyclin-Dependent Kinase 6/metabolism , Humans , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology
12.
Oncotarget ; 10(14): 1346-1359, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30858922

ABSTRACT

The cyclin-dependent kinases CDK4 and CDK6 promote progression through the cell cycle, where their functions are considered to be redundant. Recent studies have identified an additional role for CDK6 in the transcriptional regulation of cancer-relevant genes such as VEGF-A and EGR1 in hematopoietic malignancies. We show that the CDK4/6 inhibitor PD0332991 causes a significant decrease in tumor growth in a xenotransplantation mouse model of human melanoma. shRNA knockdown of either CDK4 or CDK6 significantly reduces cell proliferation and impedes their migratory capacity in vitro, which translates into a strong inhibition of tumor growth in xenotransplantation experiments. CDK4/6 inhibition results not only in the pronounced reduction of cell proliferation but also in an impaired tumor angiogenesis. CDK6 knockdown in melanoma cell lines impairs VEGF-A expression and reduces the potential stimulation of endothelial cell growth. The knockdown of CDK4 ends in similar results. The effect is caused by changes of CDK6 localization, less CDK6 is detected on the VEGF-A promoter. Bioinformatic analysis of human melanoma patient data verifies the key role of CDK6 in tumor angiogenesis in melanoma. The results highlight the importance of the delicate balance between CDK4 and CDK6 in regulating the cell cycle and transcription.

13.
Blood ; 133(15): 1677-1690, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30635286

ABSTRACT

Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired somatic JAK2 V617F mutation. JAK inhibition is not curative and fails to induce a persistent response in most patients, illustrating the need for the development of novel therapeutic approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with 3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes nuclear factor κB (NF-κB) signaling and contributes to cytokine production while inhibiting apoptosis. The effects are not mirrored by palbociclib, showing that the functions of CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide a rationale for targeting CDK6 in MPN.


Subject(s)
Apoptosis , Cyclin-Dependent Kinase 6/pharmacology , Janus Kinase 2/genetics , Mutation , Myeloproliferative Disorders/etiology , NF-kappa B/metabolism , Humans , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/mortality , Myeloproliferative Disorders/pathology , Neoplasms , Signal Transduction
14.
Cancer Discov ; 8(7): 884-897, 2018 07.
Article in English | MEDLINE | ID: mdl-29899063

ABSTRACT

Tumor formation is a multistep process during which cells acquire genetic and epigenetic changes until they reach a fully transformed state. We show that CDK6 contributes to tumor formation by regulating transcriptional responses in a stage-specific manner. In early stages, the CDK6 kinase induces a complex transcriptional program to block p53 in hematopoietic cells. Cells lacking CDK6 kinase function are required to mutate TP53 (encoding p53) to achieve a fully transformed immortalized state. CDK6 binds to the promoters of genes including the p53 antagonists Prmt5, Ppm1d, and Mdm4 The findings are relevant to human patients: Tumors with low levels of CDK6 have mutations in TP53 significantly more often than expected.Significance: CDK6 acts at the interface of p53 and RB by driving cell-cycle progression and antagonizing stress responses. While sensitizing cells to p53-induced cell death, specific inhibition of CDK6 kinase activity may provoke the outgrowth of p53-mutant clones from premalignant cells. Cancer Discov; 8(7); 884-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.


Subject(s)
Carcinogenesis , Cyclin-Dependent Kinase 6/metabolism , Mutation , Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasms/genetics
15.
Sci Rep ; 7(1): 6460, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28744019

ABSTRACT

Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.


Subject(s)
Bone Remodeling/physiology , Bone and Bones/cytology , Estrogens/metabolism , RANK Ligand/genetics , Alkaline Phosphatase/genetics , Animals , Bone Density , Bone Marrow Transplantation/methods , Bone Remodeling/genetics , Bone and Bones/physiology , Estrogen Receptor alpha/genetics , Estrogens/genetics , Female , GPI-Linked Proteins/genetics , Gene Expression Regulation , Humans , Isoenzymes/genetics , Mesenchymal Stem Cells/radiation effects , Mice, Knockout , Mice, Transgenic , RANK Ligand/metabolism , Rats, Inbred F344
16.
Haematologica ; 102(6): 995-1005, 2017 06.
Article in English | MEDLINE | ID: mdl-28255017

ABSTRACT

Mice lacking Cdk6 kinase activity suffer from mild anemia accompanied by elevated numbers of Ter119+ cells in the bone marrow. The animals show hardly any alterations in erythroid development, indicating that Cdk6 is not required for proliferation and maturation of erythroid cells. There is also no difference in stress erythropoiesis following hemolysis in vivo However, Cdk6-/- erythrocytes have a shortened lifespan and are more sensitive to mechanical stress in vitro, suggesting differences in cytoskeletal architecture. Erythroblasts contain both Cdk4 and Cdk6, while mature erythrocytes apparently lack Cdk4 and their Cdk6 is partly associated with the cytoskeleton. We used mass spectrometry to show that Cdk6 interacts with a number of proteins involved in cytoskeleton organization. Cdk6-/- erythroblasts show impaired F-actin formation and lower levels of gelsolin, which interacts with Cdk6. We also found that Cdk6 regulates the transcription of a panel of genes involved in actin (de-)polymerization. Cdk6-deficient cells are sensitive to drugs that interfere with the cytoskeleton, suggesting that our findings are relevant to the treatment of patients with anemia - and may be relevant to cancer patients treated with the new generation of CDK6 inhibitors.


Subject(s)
Cyclin-Dependent Kinase 6/physiology , Cytoskeleton/ultrastructure , Erythroid Cells/ultrastructure , Actin Cytoskeleton , Actins/metabolism , Anemia , Animals , Gelsolin/metabolism , Gene Expression Regulation , Mass Spectrometry , Mice , Mice, Inbred C57BL
18.
Blood ; 125(1): 90-101, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25342715

ABSTRACT

The cyclin-dependent kinase 6 (CDK6) and CDK4 have redundant functions in regulating cell-cycle progression. We describe a novel role for CDK6 in hematopoietic and leukemic stem cells (hematopoietic stem cells [HSCs] and leukemic stem cells [LSCs]) that exceeds its function as a cell-cycle regulator. Although hematopoiesis appears normal under steady-state conditions, Cdk6(-/-) HSCs do not efficiently repopulate upon competitive transplantation, and Cdk6-deficient mice are significantly more susceptible to 5-fluorouracil treatment. We find that activation of HSCs requires CDK6, which interferes with the transcription of key regulators, including Egr1. Transcriptional profiling of HSCs is consistent with the central role of Egr1. The impaired repopulation capacity extends to BCR-ABL(p210+) LSCs. Transplantation with BCR-ABL(p210+)-infected bone marrow from Cdk6(-/-) mice fails to induce disease, although recipient mice do harbor LSCs. Egr1 knock-down in Cdk6(-/-) BCR-ABL(p210+) LSKs significantly enhances the potential to form colonies, underlining the importance of the CDK6-Egr1 axis. Our findings define CDK6 as an important regulator of stem cell activation and an essential component of a transcriptional complex that suppresses Egr1 in HSCs and LSCs.


Subject(s)
Cyclin-Dependent Kinase 6/physiology , Early Growth Response Protein 1/metabolism , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Leukemia/metabolism , Animals , Cell Cycle , Cell Transplantation , Cyclin-Dependent Kinase 6/genetics , Disease Progression , Fusion Proteins, bcr-abl/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Poly I-C/metabolism , Stem Cells/cytology , Transcription, Genetic
19.
Blood ; 124(15): 2380-90, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25157181

ABSTRACT

Cdk4 and Cdk6 are related protein kinases that bind d-type cyclins and regulate cell-cycle progression. Cdk4/6 inhibitors are currently being used in advanced clinical trials and show great promise against many types of tumors. Cdk4 and Cdk6 are inhibited by INK4 proteins, which exert tumor-suppressing functions. To test the significance of this inhibitory mechanism, we generated knock-in mice that express a Cdk6 mutant (Cdk6 R31C) insensitive to INK4-mediated inhibition. Cdk6(R/R) mice display altered development of the hematopoietic system without enhanced tumor susceptibility, either in the presence or absence of p53. Unexpectedly, Cdk6 R31C impairs the potential of hematopoietic progenitors to repopulate upon adoptive transfer or after 5-fluorouracil-induced damage. The defects are overcome by eliminating sensitivity of cells to INK4 inhibitors by introducing the INK4-insensitive Cdk4 R24C allele, and INK4-resistant mice are more susceptible to hematopoietic and endocrine tumors. In BCR-ABL-transformed hematopoietic cells, Cdk6 R31C causes increased binding of p16(INK4a) to wild-type Cdk4, whereas cells harboring Cdk4 R24C and Cdk6 R31C are fully insensitive to INK4 inhibitors, resulting in accelerated disease onset. Our observations reveal that Cdk4 and Cdk6 cooperate in hematopoietic tumor development and suggest a role for Cdk6 in sequestering INK4 proteins away from Cdk4.


Subject(s)
Carcinogenesis/metabolism , Carcinogenesis/pathology , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/metabolism , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Alleles , Animals , Cell Death , Cell Line, Transformed , Cell Proliferation , Cyclin-Dependent Kinase 6/genetics , Fusion Proteins, bcr-abl/metabolism , Gene Ontology , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Mice , Mutant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...