Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Nucl Med Biol ; 128-129: 108873, 2024.
Article in English | MEDLINE | ID: mdl-38154168

ABSTRACT

This report describes an updated, fully automated method for the production of [11C]PIB on a cassette-based automated synthesis module. The method allows for two separate productions of [11C]PIB, both of which meet all specification for use in clinical studies. The GE FASTlab developer system was used to create the cassette design as well as the controlling tracer package. The method takes 16 min from the delivery of [11C]MeOTf to the FASTlab, or 35 min from the End of Bombardment; and reliably produces 3547 ± 586 MBq of [11C]PIB in high radiochemical purity (> 98 %). This methodology increases the production capacity of radiopharmaceutical facilities for [11C]PIB, and can easily produce 4 batches in a single day with limited infrastructure footprint.


Subject(s)
Radiopharmaceuticals , Radiochemistry/methods
2.
J Neuroimaging ; 34(2): 211-216, 2024.
Article in English | MEDLINE | ID: mdl-38148283

ABSTRACT

BACKGROUND AND PURPOSE: Adverse neurological effects after cancer therapy are common, but biomarkers to diagnose, monitor, or risk stratify patients are still not validated or used clinically. An accessible imaging method, such as fluorodeoxyglucose positron emission tomography (FDG PET) of the brain, could meet this gap and serve as a biomarker for functional brain changes. We utilized FDG PET to evaluate which brain regions are most susceptible to altered glucose metabolism after chemoradiation in patients with head and neck cancer (HNCa). METHODS: Real-world FDG PET images were acquired as standard of care before and after chemoradiation for HNCa in 68 patients. Linear mixed-effects voxelwise models assessed changes after chemoradiation in cerebral glucose metabolism quantified with standardized uptake value ratio (SUVR), covarying for follow-up time and patient demographics. RESULTS: Voxelwise analysis revealed two large clusters of decreased glucose metabolism in the medial frontal and polar temporal cortices following chemoradiation, with decreases of approximately 5% SUVR after therapy. CONCLUSIONS: These findings provide evidence that standard chemoradiation for HNCa can lead to decreased neuronal glucose metabolism, contributing to literature emphasizing the vulnerability of the frontal and anterior temporal lobes, especially in HNCa, where these areas may be particularly vulnerable to indirect radiation-induced injury. FDG PET shows promise as a sensitive biomarker for assessing these changes.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Humans , Fluorodeoxyglucose F18/metabolism , Positron-Emission Tomography/methods , Biomarkers/metabolism , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy , Glucose/metabolism
3.
Clin Cancer Res ; 28(20): 4425-4434, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35929985

ABSTRACT

PURPOSE: Determine the safety and specificity of a tumor-targeted radiotracer (89Zr-pan) in combination with 18F-FDG PET/CT to improve diagnostic accuracy in head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN: Adult patients with biopsy-proven HNSCC scheduled for standard-of-care surgery were enrolled in a clinical trial and underwent systemic administration of 89Zirconium-panitumumab and panitumumab-IRDye800 followed by preoperative 89Zr-pan PET/CT and intraoperative fluorescence imaging. The sensitivity, specificity, and AUC were evaluated. RESULTS: A total of fourteen patients were enrolled and completed the study. Four patients (28.5%) had areas of high 18F-FDG uptake outside the head and neck region with maximum standardized uptake values (SUVmax) greater than 2.0 that were not detected on 89Zr-pan PET/CT. These four patients with incidental findings underwent further workup and had no evidence of cancer on biopsy or clinical follow-up. Forty-eight lesions (primary tumor, LNs, incidental findings) with SUVmax ranging 2.0-23.6 were visualized on 18F-FDG PET/CT; 34 lesions on 89Zr-pan PET/CT with SUVmax ranging 0.9-10.5. The combined ability of 18F-FDG PET/CT and 89Zr-pan PET/CT to detect HNSCC in the whole body was improved with higher specificity of 96.3% [confidence interval (CI), 89.2%-100%] compared to 18F-FDG PET/CT alone with specificity of 74.1% (CI, 74.1%-90.6%). One possibly related grade 1 adverse event of prolonged QTc (460 ms) was reported but resolved in follow-up. CONCLUSIONS: 89Zr-pan PET/CT imaging is safe and may be valuable in discriminating incidental findings identified on 18F-FDG PET/CT from true positive lesions and in localizing metastatic LNs.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms , Adult , Head and Neck Neoplasms/diagnostic imaging , Humans , Panitumumab , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radioisotopes , Radiopharmaceuticals , Sensitivity and Specificity , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Zirconium
4.
Clin Cancer Res ; 27(23): 6467-6478, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34475101

ABSTRACT

PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Brain Neoplasms/pathology , Diazonium Compounds , Glioblastoma/pathology , Glycolysis , Humans , Mice , Positron-Emission Tomography/methods , Pyruvate Kinase/metabolism , Sulfanilic Acids
5.
Eur J Nucl Med Mol Imaging ; 48(8): 2416-2425, 2021 07.
Article in English | MEDLINE | ID: mdl-33416955

ABSTRACT

PURPOSE: While sampled or short-frame realizations have shown the potential power of deep learning to reduce radiation dose for PET images, evidence in true injected ultra-low-dose cases is lacking. Therefore, we evaluated deep learning enhancement using a significantly reduced injected radiotracer protocol for amyloid PET/MRI. METHODS: Eighteen participants underwent two separate 18F-florbetaben PET/MRI studies in which an ultra-low-dose (6.64 ± 3.57 MBq, 2.2 ± 1.3% of standard) or a standard-dose (300 ± 14 MBq) was injected. The PET counts from the standard-dose list-mode data were also undersampled to approximate an ultra-low-dose session. A pre-trained convolutional neural network was fine-tuned using MR images and either the injected or sampled ultra-low-dose PET as inputs. Image quality of the enhanced images was evaluated using three metrics (peak signal-to-noise ratio, structural similarity, and root mean square error), as well as the coefficient of variation (CV) for regional standard uptake value ratios (SUVRs). Mean cerebral uptake was correlated across image types to assess the validity of the sampled realizations. To judge clinical performance, four trained readers scored image quality on a five-point scale (using 15% non-inferiority limits for proportion of studies rated 3 or better) and classified cases into amyloid-positive and negative studies. RESULTS: The deep learning-enhanced PET images showed marked improvement on all quality metrics compared with the low-dose images as well as having generally similar regional CVs as the standard-dose. All enhanced images were non-inferior to their standard-dose counterparts. Accuracy for amyloid status was high (97.2% and 91.7% for images enhanced from injected and sampled ultra-low-dose data, respectively) which was similar to intra-reader reproducibility of standard-dose images (98.6%). CONCLUSION: Deep learning methods can synthesize diagnostic-quality PET images from ultra-low injected dose simultaneous PET/MRI data, demonstrating the general validity of sampled realizations and the potential to reduce dose significantly for amyloid imaging.


Subject(s)
Deep Learning , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Positron-Emission Tomography , Reproducibility of Results , Tomography, X-Ray Computed
6.
Mol Psychiatry ; 26(3): 888-896, 2021 03.
Article in English | MEDLINE | ID: mdl-31332262

ABSTRACT

Vascular endothelial growth factor (VEGF) is associated with the clinical manifestation of Alzheimer's disease (AD). However, the role of the VEGF gene family in neuroprotection is complex due to the number of biological pathways they regulate. This study explored associations between brain expression of VEGF genes with cognitive performance and AD pathology. Genetic, cognitive, and neuropathology data were acquired from the Religious Orders Study and Rush Memory and Aging Project. Expression of ten VEGF ligand and receptor genes was quantified using RNA sequencing of prefrontal cortex tissue. Global cognitive composite scores were calculated from 17 neuropsychological tests. ß-amyloid and tau burden were measured at autopsy. Participants (n = 531) included individuals with normal cognition (n = 180), mild cognitive impairment (n = 148), or AD dementia (n = 203). Mean age at death was 89 years and 37% were male. Higher prefrontal cortex expression of VEGFB, FLT4, FLT1, and PGF was associated with worse cognitive trajectories (p ≤ 0.01). Increased expression of VEGFB and FLT4 was also associated with lower cognition scores at the last visit before death (p ≤ 0.01). VEGFB, FLT4, and FLT1 were upregulated among AD dementia compared with normal cognition participants (p ≤ 0.03). All four genes associated with cognition related to elevated ß-amyloid (p ≤ 0.01) and/or tau burden (p ≤ 0.03). VEGF ligand and receptor genes, specifically genes relevant to FLT4 and FLT1 receptor signaling, are associated with cognition, longitudinal cognitive decline, and AD neuropathology. Future work should confirm these observations at the protein level to better understand how changes in VEGF transcription and translation relate to neurodegenerative disease.


Subject(s)
Alzheimer Disease , Cognitive Aging , Cognitive Dysfunction , Neurodegenerative Diseases , Aging , Alzheimer Disease/genetics , Amyloid beta-Peptides , Brain , Cognitive Dysfunction/genetics , Female , Humans , Male , Neuropsychological Tests , Vascular Endothelial Growth Factor A/genetics
7.
Eur J Nucl Med Mol Imaging ; 48(7): 2233-2244, 2021 07.
Article in English | MEDLINE | ID: mdl-32572562

ABSTRACT

PURPOSE: In vivo measurement of the spatial distribution of neurofibrillary tangle pathology is critical for early diagnosis and disease monitoring of Alzheimer's disease (AD). METHODS: Forty-nine participants were scanned with 18F-PI-2620 PET to examine the distribution of this novel PET ligand throughout the course of AD: 36 older healthy controls (HC) (age range 61 to 86), 11 beta-amyloid+ (Aß+) participants with cognitive impairment (CI; clinical diagnosis of either mild cognitive impairment or AD dementia, age range 57 to 86), and 2 participants with semantic variant primary progressive aphasia (svPPA, age 66 and 78). Group differences in brain regions relevant in AD (medial temporal lobe, posterior cingulate cortex, and lateral parietal cortex) were examined using standardized uptake value ratios (SUVRs) normalized to the inferior gray matter of the cerebellum. RESULTS: SUVRs in target regions were relatively stable 60 to 90 min post-injection, with the exception of very high binders who continued to show increases over time. Robust elevations in 18F-PI-2620 were observed between HC and Aß+ CI across all AD regions. Within the HC group, older age was associated with subtle elevations in target regions. Mildly elevated focal uptake was observed in the anterior temporal pole in one svPPA patient. CONCLUSION: Preliminary results suggest strong differences in the medial temporal lobe and cortical regions known to be impacted in AD using 18F-PI-2620 in patients along the AD trajectory. This work confirms that 18F-PI-2620 holds promise as a tool to visualize tau aggregations in AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Aged, 80 and over , Aging , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Brain/diagnostic imaging , Brain/metabolism , Carbolines , Humans , Middle Aged , Positron-Emission Tomography , tau Proteins/metabolism
8.
J Neurosurg Pediatr ; 27(2): 131-138, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33260138

ABSTRACT

OBJECTIVE: Imaging evaluation of the cerebral ventricles is important for clinical decision-making in pediatric hydrocephalus. Although quantitative measurements of ventricular size, over time, can facilitate objective comparison, automated tools for calculating ventricular volume are not structured for clinical use. The authors aimed to develop a fully automated deep learning (DL) model for pediatric cerebral ventricle segmentation and volume calculation for widespread clinical implementation across multiple hospitals. METHODS: The study cohort consisted of 200 children with obstructive hydrocephalus from four pediatric hospitals, along with 199 controls. Manual ventricle segmentation and volume calculation values served as "ground truth" data. An encoder-decoder convolutional neural network architecture, in which T2-weighted MR images were used as input, automatically delineated the ventricles and output volumetric measurements. On a held-out test set, segmentation accuracy was assessed using the Dice similarity coefficient (0 to 1) and volume calculation was assessed using linear regression. Model generalizability was evaluated on an external MRI data set from a fifth hospital. The DL model performance was compared against FreeSurfer research segmentation software. RESULTS: Model segmentation performed with an overall Dice score of 0.901 (0.946 in hydrocephalus, 0.856 in controls). The model generalized to external MR images from a fifth pediatric hospital with a Dice score of 0.926. The model was more accurate than FreeSurfer, with faster operating times (1.48 seconds per scan). CONCLUSIONS: The authors present a DL model for automatic ventricle segmentation and volume calculation that is more accurate and rapid than currently available methods. With near-immediate volumetric output and reliable performance across institutional scanner types, this model can be adapted to the real-time clinical evaluation of hydrocephalus and improve clinician workflow.


Subject(s)
Artificial Intelligence , Cerebral Ventricles/diagnostic imaging , Hydrocephalus/diagnostic imaging , Hydrocephalus/diagnosis , Adolescent , Child , Child, Preschool , Cohort Studies , Deep Learning , Female , Humans , Image Processing, Computer-Assisted , Infant , Infant, Newborn , Magnetic Resonance Imaging/methods , Male , Models, Theoretical , Neural Networks, Computer , Software , Young Adult
9.
Eur J Nucl Med Mol Imaging ; 47(13): 2998-3007, 2020 12.
Article in English | MEDLINE | ID: mdl-32535655

ABSTRACT

PURPOSE: We aimed to evaluate the performance of deep learning-based generalization of ultra-low-count amyloid PET/MRI enhancement when applied to studies acquired with different scanning hardware and protocols. METHODS: Eighty simultaneous [18F]florbetaben PET/MRI studies were acquired, split equally between two sites (site 1: Signa PET/MRI, GE Healthcare, 39 participants, 67 ± 8 years, 23 females; site 2: mMR, Siemens Healthineers, 64 ± 11 years, 23 females) with different MRI protocols. Twenty minutes of list-mode PET data (90-110 min post-injection) were reconstructed as ground-truth. Ultra-low-count data obtained from undersampling by a factor of 100 (site 1) or the first minute of PET acquisition (site 2) were reconstructed for ultra-low-dose/ultra-short-time (1% dose and 5% time, respectively) PET images. A deep convolution neural network was pre-trained with site 1 data and either (A) directly applied or (B) trained further on site 2 data using transfer learning. Networks were also trained from scratch based on (C) site 2 data or (D) all data. Certified physicians determined amyloid uptake (+/-) status for accuracy and scored the image quality. The peak signal-to-noise ratio, structural similarity, and root-mean-squared error were calculated between images and their ground-truth counterparts. Mean regional standardized uptake value ratios (SUVR, reference region: cerebellar cortex) from 37 successful site 2 FreeSurfer segmentations were analyzed. RESULTS: All network-synthesized images had reduced noise than their ultra-low-count reconstructions. Quantitatively, image metrics improved the most using method B, where SUVRs had the least variability from the ground-truth and the highest effect size to differentiate between positive and negative images. Method A images had lower accuracy and image quality than other methods; images synthesized from methods B-D scored similarly or better than the ground-truth images. CONCLUSIONS: Deep learning can successfully produce diagnostic amyloid PET images from short frame reconstructions. Data bias should be considered when applying pre-trained deep ultra-low-count amyloid PET/MRI networks for generalization.


Subject(s)
Deep Learning , Amyloid , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed
11.
Neurobiol Aging ; 87: 18-25, 2020 03.
Article in English | MEDLINE | ID: mdl-31791659

ABSTRACT

Literature suggests vascular endothelial growth factor A (VEGFA) is protective among those at highest risk for Alzheimer's disease (AD). Apolipoprotein E (APOE) ε4 allele carriers represent a highly susceptible population for cognitive decline, and VEGF may confer distinct protection among APOE-ε4 carriers. We evaluated interactions between cortical expression of 10 VEGF gene family members and APOE-ε4 genotype to clarify which VEGF genes modify the association between APOE-ε4 and cognitive decline. Data were obtained from the Religious Orders Study and Rush Memory and Aging Project (N = 531). Linear regression assessed interactions on global cognition. VEGF genes NRP1 and VEGFA interacted with APOE-ε4 on cognitive performance (p.fdr < 0.05). Higher NRP1 expression correlated with worse outcomes among ε4 carriers but better outcomes among ε4 noncarriers, suggesting NRP1 modifies the risk for poor cognitive scores based on APOE-ε4 status. NRP1 regulates angiogenesis, and literature suggests vessels in APOE-ε4 brains are more prone to leaking, perhaps placing young vessels at risk for ischemia. Results suggest that future therapeutics targeting brain angiogenesis should also consider ε4 allele status.


Subject(s)
Aging/genetics , Apolipoprotein E4/genetics , Cognitive Aging , Cognitive Dysfunction/genetics , Gene Expression , Genetic Association Studies , Genetic Predisposition to Disease/genetics , Vascular Endothelial Growth Factor A/genetics , Aged , Aged, 80 and over , Female , Genotype , Humans , Male , Neovascularization, Physiologic/genetics , Neuropilin-1/genetics , Neuropilin-1/physiology
12.
J Digit Imaging ; 33(2): 447-455, 2020 04.
Article in English | MEDLINE | ID: mdl-31659587

ABSTRACT

The high-background glucose metabolism of normal gray matter on [18F]-fluoro-2-D-deoxyglucose (FDG) positron emission tomography (PET) of the brain results in a low signal-to-background ratio, potentially increasing the possibility of missing important findings in patients with intracranial malignancies. To explore the strategy of using a deep learning classifier to aid in distinguishing normal versus abnormal findings on PET brain images, this study evaluated the performance of a two-dimensional convolutional neural network (2D-CNN) to classify FDG PET brain scans as normal (N) or abnormal (A). METHODS: Two hundred eighty-nine brain FDG-PET scans (N; n = 150, A; n = 139) resulting in a total of 68,260 images were included. Nine individual 2D-CNN models with three different window settings for axial, coronal, and sagittal axes were trained and validated. The performance of these individual and ensemble models was evaluated and compared using a test dataset. Odds ratio, Akaike's information criterion (AIC), and area under curve (AUC) on receiver-operative-characteristic curve, accuracy, and standard deviation (SD) were calculated. RESULTS: An optimal window setting to classify normal and abnormal scans was different for each axis of the individual models. An ensembled model using different axes with an optimized window setting (window-triad) showed better performance than ensembled models using the same axis and different windows settings (axis-triad). Increase in odds ratio and decrease in SD were observed in both axis-triad and window-triad models compared with individual models, whereas improvements of AUC and AIC were seen in window-triad models. An overall model averaging the probabilities of all individual models showed the best accuracy of 82.0%. CONCLUSIONS: Data ensemble using different window settings and axes was effective to improve 2D-CNN performance parameters for the classification of brain FDG-PET scans. If prospectively validated with a larger cohort of patients, similar models could provide decision support in a clinical setting.


Subject(s)
Brain , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Neural Networks, Computer , Positron-Emission Tomography
13.
HPB (Oxford) ; 19(5): 458-464, 2017 05.
Article in English | MEDLINE | ID: mdl-28190710

ABSTRACT

BACKGROUND: Prospectively predicting response to intra-arterial therapy for hepatocellular carcinoma (HCC) is challenging. Neutrophil/lymphocyte ratio (NLR) is a serum biomarker that is associated with survival for multiple malignancies. It was hypothesized that increased NLR would be associated with early disease progression after intra-arterial therapy of HCC. METHODS: The outcomes of 86 treatment-naïve patients who had chemoembolization or radioembolization of HCC between July 2013-July 2014 were reviewed. Pre-treatment laboratory tests and imaging were used to measure NLR, Child-Pugh (CP) score, tumor number and tumor size. High/low NLR groups were defined as >3 and <3 respectively. Follow-up imaging at two months with assessed response using modified response criteria in solid tumors (mRECIST). RESULTS: NLR >3 was seen in 25/86 patients (range 3.0-21.6). NLR >3 patients had a significantly higher baseline CP score. Comorbidities were otherwise similar between groups as was tumor number/size. Disease control was significantly worse (p = 0.014) with NLR >3. Logistic regression for tumor response revealed NLR >3 as the best predictor of early progression (p < 0.0001). DISCUSSION: NLR may be a serologic biomarker of early progressive disease after intra-arterial therapy of HCC. Future research should focus on outcomes by treatment type or potentially combining arterial therapies with ablation and/or targeted biologic agents.


Subject(s)
Antineoplastic Agents/administration & dosage , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Chemoembolization, Therapeutic , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Lymphocytes/immunology , Neutrophils/immunology , Radiopharmaceuticals/administration & dosage , Aged , Antineoplastic Agents/adverse effects , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Chemoembolization, Therapeutic/adverse effects , Chi-Square Distribution , Disease Progression , Female , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Logistic Models , Lymphocyte Count , Magnetic Resonance Imaging , Male , Middle Aged , Multivariate Analysis , Predictive Value of Tests , Radiopharmaceuticals/adverse effects , Retrospective Studies , Risk Factors , Time Factors , Tomography, X-Ray Computed , Treatment Outcome
14.
Brain Imaging Behav ; 11(1): 205-213, 2017 02.
Article in English | MEDLINE | ID: mdl-26843008

ABSTRACT

Women are disproportionately affected by Alzheimer's disease (AD) in terms of both disease prevalence and severity. Previous autopsy work has suggested that, in the presence of AD neuropathology, females are more susceptible to the clinical manifestation of AD. This manuscript extends that work by evaluating whether sex alters the established associations between cerebrospinal fluid (CSF) biomarker levels and brain aging outcomes (hippocampal volume, cognition). Participants were drawn from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and included individuals with normal cognition (n = 348), mild cognitive impairment (n = 565), and AD (n = 185). We leveraged mixed effects regression models to assess the interaction between sex and baseline cerebrospinal fluid biomarker levels of amyloid-ß42 (Aß-42) and total tau on cross-sectional and longitudinal brain aging outcomes. We found a significant interaction between sex and Aß-42 on longitudinal hippocampal atrophy (p = 0.002), and longitudinal decline in memory (p = 0.017) and executive function (p = 0.025). Similarly, we observed an interaction between sex and total tau level on longitudinal hippocampal atrophy (p = 0.008), and longitudinal decline in executive function (p = 0.034). Women with Aß-42 and total tau levels indicative of worse pathological changes showed more rapid hippocampal atrophy and cognitive decline. The sex difference was particularly pronounced among individuals with MCI, with lower education, and varied by APOE Îµ4 allele. These results suggest females may be more susceptible to the clinical manifestation of AD.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Sex Characteristics , Aged , Aged, 80 and over , Aging/genetics , Aging/pathology , Aging/physiology , Aging/psychology , Alzheimer Disease/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Apolipoprotein E4/genetics , Atrophy , Biomarkers , Brain/physiopathology , Cognitive Dysfunction/genetics , Cross-Sectional Studies , Female , Humans , Longitudinal Studies , Male , Middle Aged , Peptide Fragments/cerebrospinal fluid , Regression Analysis , tau Proteins/cerebrospinal fluid
15.
J Am Coll Radiol ; 13(9): 1145-50, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27297700

ABSTRACT

PURPOSE: We tested the hypothesis that establishing a dedicated interventional oncology (IO) clinical service line would increase clinic visits and procedural volumes at a single quaternary care academic medical center. METHODS: Two time periods were defined: July 2012 to June 2013 (pre-IO clinic) and July 2013 to June 2014 (first year of dedicated IO service). Staff was recruited, and clinic space was provided in the institution's comprehensive cancer center. Clinic visits and procedure numbers were documented using the institution's electronic medical record and billing forms. IO procedures included were transarterial chemoembolization, Y-90 radioembolization, perfusion mapping for Y-90, portal vein embolization, and bland embolization. We compared changes in clinic visit and procedure numbers using paired t tests. Changes after IO initiation were compared to 1-year changes in the Medicare 5% Limited Data Set by cross-referencing Current Procedure Terminology and International Classification of Diseases codes in 2012 and 2013. RESULTS: Clinic visits increased from 9 to 204 (P = .003, t = 8.89, df = 3). Procedures increased from 60 to 239 (P = .018, t = 3.85, df = 4). Procedural volumes increased at least 150% for each subtype. The volumes in the 5% Limited Data Set did not change significantly over the 2-year period (443 to 385, P > .05). CONCLUSIONS: The establishment of a dedicated IO service significantly increased clinic visits and procedural volumes. National trends were unchanged, suggesting that the impact of our program was not part of a sudden increase of IO procedures.


Subject(s)
Cancer Care Facilities/organization & administration , Embolization, Therapeutic/statistics & numerical data , Neoplasms/therapy , Radiation Oncology/organization & administration , Radiography, Interventional/statistics & numerical data , Radiology, Interventional/organization & administration , Comprehensive Health Care/statistics & numerical data , Efficiency, Organizational , Humans , Models, Organizational , National Cancer Institute (U.S.)/organization & administration , Neoplasms/diagnosis , Neoplasms/epidemiology , Prevalence , Tennessee/epidemiology , United States , Workload
16.
Biomed Rep ; 5(6): 745-748, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28105342

ABSTRACT

Resin Yttrium-90 (Y90) microspheres have historically been infused using sterile water (H2O). In 2013, recommendations expanded to allow delivery with 5% dextrose in water (D5W). In this retrospective study, we hypothesized that D5W would improve Y90 delivery with a lower incidence of stasis. We reviewed 190 resin Y90 infusions using H2O (n=137) or D5W (n=53). Y90 dosimetry was calculated using the body surface area method. Infusion was halted if intra-arterial stasis was fluoroscopically identified prior to clearing the vial. Differences between H2O and D5W groups were calculated for activity prescription, percentage of cases reaching stasis, and percentage delivery of prescribed activity using z- and t-test comparisons, with α=0.05. Thirty-one of 137 H2O infusions developed stasis compared to 2 of 53 with D5W (z=3.07, p=1.05E-03). D5W also had a significantly higher prescribed activity than H2O [28.2 millicuries (mCi) vs. 20.4 mCi, respectively; t=5.0, p=1.1E-6]. D5W had a higher delivery percentage of the prescribed dose compared to H2O (101.5 vs. 92.7%, respectively; t=3.8, p=1.92E-4). In conclusion, resin microsphere infusion utilizing D5W has a significantly lower rate of stasis than H2O and results in more complete dose delivery. D5W is preferable to H2O for resin microsphere infusion.

17.
Front Aging Neurosci ; 6: 183, 2014.
Article in English | MEDLINE | ID: mdl-25140149

ABSTRACT

BACKGROUND: While a great deal of work has gone into understanding the relationship between Cerebrospinal fluid (CSF) biomarkers, brain atrophy, and disease progression, less work has attempted to investigate how genetic variation modifies these relationships. The goal of this study was two-fold. First, we sought to identify high-risk vs. low-risk individuals based on their CSF tau and Aß load and characterize these individuals with regard to brain atrophy in an AD-relevant region of interest. Next, we sought to identify genetic variants that modified the relationship between biomarker classification and neurodegeneration. METHODS: Participants were categorized based on established cut-points for biomarker positivity. Mixed model regression was used to quantify longitudinal change in the left inferior lateral ventricle. Interaction analyses between single nucleotide polymorphisms (SNPs) and biomarker group status were performed using a genome wide association study (GWAS) approach. Correction for multiple comparisons was performed using the Bonferroni procedure. RESULTS: One intergenic SNP (rs4866650) and one SNP within the SPTLC1 gene (rs7849530) modified the association between amyloid positivity and neurodegeneration. A transcript variant of WDR11-AS1 gene (rs12261764) modified the association between tau positivity and neurodegeneration. These effects were consistent across the two sub-datasets and explained approximately 3% of variance in ventricular dilation. One additional SNP (rs6887649) modified the association between amyloid positivity and baseline ventricular volume, but was not observed consistently across the sub-datasets. CONCLUSIONS: Genetic variation modifies the association between AD biomarkers and neurodegeneration. Genes that regulate the molecular response in the brain to oxidative stress may be particularly relevant to neural vulnerability to the damaging effects of amyloid-ß.

18.
J Neurodev Disord ; 6(1): 8, 2014.
Article in English | MEDLINE | ID: mdl-24713364

ABSTRACT

BACKGROUND: Individuals with Down Syndrome (DS) are reported to experience early onset of brain aging. However, it is not well understood how pre-existing neurodevelopmental effects versus neurodegenerative processes might be contributing to the observed pattern of brain atrophy in younger adults with DS. The aims of the current study were to: (1) to confirm previous findings of age-related changes in DS compared to adults with typical development (TD), (2) to test for an effect of these age-related changes in a second neurodevelopmental disorder, Williams syndrome (WS), and (3) to identify a pattern of regional age-related effects that are unique to DS. METHODS: High-resolution T1-weighted MRI of the brains of subjects with DS, WS, and TD controls were segmented, and estimates of regional brain volume were derived using FreeSurfer. A general linear model was employed to test for age-related effects on volume between groups. Secondary analyses in the DS group explored the relationship between brain volume and neuropsychological tests and APOE. RESULTS: Consistent with previous findings, the DS group showed significantly greater age-related effects relative to TD controls in total gray matter and in regions of the orbitofrontal cortex and the parietal cortex. Individuals with DS also showed significantly greater age-related effects on volume of the left and right inferior lateral ventricles (LILV and RILV, respectively). There were no significant differences in age-related effects on volume when comparing the WS and TD groups. In the DS group, cognitive tests scores measuring signs of dementia and APOE ϵ4 carrier status were associated with LILV and RILV volume. CONCLUSIONS: Individuals with DS demonstrated a unique pattern of age-related effects on gray matter and ventricular volume, the latter of which was associated with dementia rating scores in the DS group. Results may indicate that early onset of brain aging in DS is primarily due to DS-specific neurodegenerative processes, as opposed to general atypical neurodevelopment.

19.
Alzheimers Dement ; 10(6): 637-645.e1, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24656848

ABSTRACT

BACKGROUND: A subset of individuals present at autopsy with the pathologic features of Alzheimer's disease having never manifest the clinical symptoms. We sought to identify genetic factors that modify the relationship between phosphorylated tau (PTau) and dilation of the lateral inferior ventricles. METHODS: We used data from 700 subjects enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI). A genome-wide association study approach was used to identify PTau × single nucleotide polymorphism (SNP) interactions. Variance explained by these interactions was quantified using hierarchical linear regression. RESULTS: Five SNP × PTau interactions passed a Bonferroni correction, one of which (rs4728029, POT1, 2.6% of variance) was consistent across ADNI-1 and ADNI-2/GO subjects. This interaction also showed a trend-level association with memory performance and levels of interleukin-6 receptor. CONCLUSIONS: Our results suggest that rs4728029 modifies the relationship between PTau and both ventricular dilation and cognition, perhaps through an altered neuroinflammatory response.


Subject(s)
Alzheimer Disease/pathology , Lateral Ventricles/pathology , Nerve Degeneration/etiology , Polymorphism, Single Nucleotide/genetics , tau Proteins/genetics , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/complications , Alzheimer Disease/genetics , Apolipoproteins E/genetics , Brain/pathology , Cognition Disorders/etiology , Cytokines/metabolism , Female , Genome-Wide Association Study , Genotype , Humans , Linear Models , Magnetic Resonance Imaging , Male
20.
J Alzheimers Dis ; 38(1): 145-54, 2014.
Article in English | MEDLINE | ID: mdl-24077433

ABSTRACT

The genetic etiology of late-onset Alzheimer's disease (LOAD) has proven complex, involving clinical and genetic heterogeneity and gene-gene interactions. Recent genome wide association studies in LOAD have led to the discovery of novel genetic risk factors; however, the investigation of gene-gene interactions has been limited. Conventional genetic studies often use binary disease status as the primary phenotype, but for complex brain-based diseases, neuroimaging data can serve as quantitative endophenotypes that correlate with disease status and closely reflect pathological changes. In the Alzheimer's Disease Neuroimaging Initiative cohort, we tested for association of genetic interactions with longitudinal MRI measurements of the inferior lateral ventricles (ILVs), which have repeatedly shown a relationship to LOAD status and progression. We performed linear regression to evaluate the ability of pathway-derived SNP-SNP pairs to predict the slope of change in volume of the ILVs. After Bonferroni correction, we identified four significant interactions in the right ILV (RILV) corresponding to gene-gene pairs SYNJ2-PI4KA, PARD3-MYH2, PDE3A-ABHD12B, and OR2L13-PRKG1 and one significant interaction in the left ILV (LILV) corresponding to SYNJ2-PI4KA. The SNP-SNP interaction corresponding to SYNJ2-PI4KA was identical in the RILV and LILV and was the most significant interaction in each (RILV: p = 9.13 × 10(-12); LILV: p = 8.17 × 10(-13)). Both genes belong to the inositol phosphate signaling pathway which has been previously associated with neurodegeneration in AD and we discuss the possibility that perturbation of this pathway results in a down-regulation of the Akt cell survival pathway and, thereby, decreased neuronal survival, as reflected by increased volume of the ventricles.


Subject(s)
Alzheimer Disease/pathology , Cognitive Dysfunction/pathology , Inositol/genetics , Lateral Ventricles/pathology , Signal Transduction/genetics , Aged , Aged, 80 and over , Alzheimer Disease/genetics , Cognitive Dysfunction/genetics , Down-Regulation/genetics , Enzymes/genetics , Enzymes/metabolism , Female , Functional Laterality , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Inositol/metabolism , Longitudinal Studies , Male , Phenotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...