Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nucleic Acids Res ; 52(D1): D368-D375, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37933859

ABSTRACT

The AlphaFold Database Protein Structure Database (AlphaFold DB, https://alphafold.ebi.ac.uk) has significantly impacted structural biology by amassing over 214 million predicted protein structures, expanding from the initial 300k structures released in 2021. Enabled by the groundbreaking AlphaFold2 artificial intelligence (AI) system, the predictions archived in AlphaFold DB have been integrated into primary data resources such as PDB, UniProt, Ensembl, InterPro and MobiDB. Our manuscript details subsequent enhancements in data archiving, covering successive releases encompassing model organisms, global health proteomes, Swiss-Prot integration, and a host of curated protein datasets. We detail the data access mechanisms of AlphaFold DB, from direct file access via FTP to advanced queries using Google Cloud Public Datasets and the programmatic access endpoints of the database. We also discuss the improvements and services added since its initial release, including enhancements to the Predicted Aligned Error viewer, customisation options for the 3D viewer, and improvements in the search engine of AlphaFold DB.


The AlphaFold Protein Structure Database (AlphaFold DB) is a massive digital library of predicted protein structures, with over 214 million entries, marking a 500-times expansion in size since its initial release in 2021. The structures are predicted using Google DeepMind's AlphaFold 2 artificial intelligence (AI) system. Our new report highlights the latest updates we have made to this database. We have added more data on specific organisms and proteins related to global health and expanded to cover almost the complete UniProt database, a primary data resource of protein sequences. We also made it easier for our users to access the data by directly downloading files or using advanced cloud-based tools. Finally, we have also improved how users view and search through these protein structures, making the user experience smoother and more informative. In short, AlphaFold DB has been growing rapidly and has become more user-friendly and robust to support the broader scientific community.


Subject(s)
Artificial Intelligence , Protein Structure, Secondary , Proteome , Amino Acid Sequence , Databases, Protein , Search Engine , Proteins/chemistry
2.
Acta Crystallogr D Struct Biol ; 79(Pt 6): 449-461, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37259835

ABSTRACT

The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world.


Subject(s)
Proteins , Software , Proteins/chemistry , Crystallography, X-Ray , Macromolecular Substances
3.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1079-1089, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048148

ABSTRACT

Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability. There is also an issue of long-term data maintenance and availability of structure-solution projects as the links between experimental observations and the final results deposited in the PDB. In this article, CCP4 Cloud, a new front-end of the CCP4 software suite, is presented which mitigates these effects by providing an online, cloud-based environment for crystallographic computation. CCP4 Cloud was developed for the efficient delivery of computing power, database services and seamless integration with web resources. It provides a rich graphical user interface that allows project sharing and long-term storage for structure-solution projects, and can be linked to data-producing facilities. The system is distributed with the CCP4 software suite version 7.1 and higher, and an online publicly available instance of CCP4 Cloud is provided by CCP4.


Subject(s)
Cloud Computing , Software , Crystallography, X-Ray , Macromolecular Substances/chemistry
4.
Acta Crystallogr D Struct Biol ; 74(Pt 6): 492-505, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29872001

ABSTRACT

Recent advances in instrumentation and software have resulted in cryo-EM rapidly becoming the method of choice for structural biologists, especially for those studying the three-dimensional structures of very large macromolecular complexes. In this contribution, the tools available for macromolecular structure refinement into cryo-EM reconstructions that are available via CCP-EM are reviewed, specifically focusing on REFMAC5 and related tools. Whilst originally designed with a view to refinement against X-ray diffraction data, some of these tools have been able to be repurposed for cryo-EM owing to the same principles being applicable to refinement against cryo-EM maps. Since both techniques are used to elucidate macromolecular structures, tools encapsulating prior knowledge about macromolecules can easily be transferred. However, there are some significant qualitative differences that must be acknowledged and accounted for; relevant differences between these techniques are highlighted. The importance of phases is considered and the potential utility of replacing inaccurate amplitudes with their expectations is justified. More pragmatically, an upper bound on the correlation between observed and calculated Fourier coefficients, expressed in terms of the Fourier shell correlation between half-maps, is demonstrated. The importance of selecting appropriate levels of map blurring/sharpening is emphasized, which may be facilitated by considering the behaviour of the average map amplitude at different resolutions, as well as the utility of simultaneously viewing multiple blurred/sharpened maps. Features that are important for the purposes of computational efficiency are discussed, notably the Divide and Conquer pipeline for the parallel refinement of large macromolecular complexes. Techniques that have recently been developed or improved in Coot to facilitate and expedite the building, fitting and refinement of atomic models into cryo-EM maps are summarized. Finally, a tool for symmetry identification from a given map or coordinate set, ProSHADE, which can identify the point group of a map and thus may be used during deposition as well as during molecular visualization, is introduced.


Subject(s)
Cryoelectron Microscopy/methods , Models, Molecular , Macromolecular Substances/chemistry , Protein Conformation , Software
5.
Acta Crystallogr D Struct Biol ; 74(Pt 3): 215-227, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29533229

ABSTRACT

Refinement is a process that involves bringing into agreement the structural model, available prior knowledge and experimental data. To achieve this, the refinement procedure optimizes a posterior conditional probability distribution of model parameters, including atomic coordinates, atomic displacement parameters (B factors), scale factors, parameters of the solvent model and twin fractions in the case of twinned crystals, given observed data such as observed amplitudes or intensities of structure factors. A library of chemical restraints is typically used to ensure consistency between the model and the prior knowledge of stereochemistry. If the observation-to-parameter ratio is small, for example when diffraction data only extend to low resolution, the Bayesian framework implemented in REFMAC5 uses external restraints to inject additional information extracted from structures of homologous proteins, prior knowledge about secondary-structure formation and even data obtained using different experimental methods, for example NMR. The refinement procedure also generates the `best' weighted electron-density maps, which are useful for further model (re)building. Here, the refinement of macromolecular structures using REFMAC5 and related tools distributed as part of the CCP4 suite is discussed.


Subject(s)
Bayes Theorem , Macromolecular Substances/chemistry , Protein Conformation , Proteins/analysis , Proteins/chemistry , Software , Computer Simulation , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular
6.
Methods Mol Biol ; 1607: 565-593, 2017.
Article in English | MEDLINE | ID: mdl-28573589

ABSTRACT

This review describes some of the problems encountered during low-resolution refinement and map calculation. Refinement is considered as an application of Bayes' theorem, allowing combination of information from various sources including crystallographic experimental data and prior chemical and structural knowledge. The sources of prior knowledge relevant to macromolecules include basic chemical information such as bonds and angles, structural information from reference models of known homologs, knowledge about secondary structures, hydrogen bonding patterns, and similarity of non-crystallographically related copies of a molecule. Additionally, prior information encapsulating local conformational conservation is exploited, keeping local interatomic distances similar to those in the starting atomic model. The importance of designing an accurate likelihood function-the only link between model parameters and observed data-is emphasized. The review also reemphasizes the importance of phases, and describes how the use of raw observed amplitudes could give a better correlation between the calculated and "true" maps. It is shown that very noisy or absent observations can be replaced by calculated structure factors, weighted according to the accuracy of the atomic model. This approach helps to smoothen the map. However, such replacement should be used sparingly, as the bias toward errors in the model could be too much to avoid. It is in general recommended that, whenever a new map is calculated, map quality should be judged by inspection of the parts of the map where there is no atomic model. It is also noted that it is advisable to work with multiple blurred and sharpened maps, as different parts of a crystal may exhibit different degrees of mobility. Doing so can allow accurate building of atomic models, accounting for overall shape as well as finer structural details. Some of the results described in this review have been implemented in the programs REFMAC5, ProSMART and LORESTR, which are available as part of the CCP4 software suite.


Subject(s)
Crystallography, X-Ray/methods , Electrons , Hydrogen/chemistry , Macromolecular Substances/ultrastructure , Proteins/ultrastructure , Software , Algorithms , Bayes Theorem , Crystallography, X-Ray/statistics & numerical data , Hydrogen Bonding , Likelihood Functions , Macromolecular Substances/chemistry , Models, Molecular , Protein Conformation , Proteins/chemistry , Static Electricity
7.
Acta Crystallogr D Struct Biol ; 72(Pt 10): 1149-1161, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27710936

ABSTRACT

Since the ratio of the number of observations to adjustable parameters is small at low resolution, it is necessary to use complementary information for the analysis of such data. ProSMART is a program that can generate restraints for macromolecules using homologous structures, as well as generic restraints for the stabilization of secondary structures. These restraints are used by REFMAC5 to stabilize the refinement of an atomic model. However, the optimal refinement protocol varies from case to case, and it is not always obvious how to select appropriate homologous structure(s), or other sources of prior information, for restraint generation. After running extensive tests on a large data set of low-resolution models, the best-performing refinement protocols and strategies for the selection of homologous structures have been identified. These strategies and protocols have been implemented in the Low-Resolution Structure Refinement (LORESTR) pipeline. The pipeline performs auto-detection of twinning and selects the optimal scaling method and solvent parameters. LORESTR can either use user-supplied homologous structures, or run an automated BLAST search and download homologues from the PDB. The pipeline executes multiple model-refinement instances using different parameters in order to find the best protocol. Tests show that the automated pipeline improves R factors, geometry and Ramachandran statistics for 94% of the low-resolution cases from the PDB included in the test set.


Subject(s)
Crystallography, X-Ray/methods , Proteins/chemistry , Software , Databases, Protein , Models, Molecular , Protein Conformation
8.
Biochemistry ; 55(36): 5021-7, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27559824

ABSTRACT

Lin28A is a post-transcriptional regulator of gene expression that interacts with and negatively regulates the biogenesis of let-7 family miRNAs. Recent data suggested that Lin28A also binds the putative tumor suppressor miR-363, a member of the 106~363 cluster of miRNAs. Affinity for this miRNA and the stoichiometry of the protein-RNA complex are unknown. Characterization of human Lin28's interaction with RNA has been complicated by difficulties in producing stable RNA-free protein. We have engineered a maltose binding protein fusion with Lin28, which binds let-7 miRNA with a Kd of 54.1 ± 4.2 nM, in agreement with previous data on a murine homologue. We show that human Lin28A binds miR-363 with a 1:1 stoichiometry and with a similar, if not higher, affinity (Kd = 16.6 ± 1.9 nM). Further analysis suggests that the interaction of the N-terminal cold shock domain of Lin28A with RNA is salt-dependent, supporting a model in which the cold shock domain allows the protein to sample RNA substrates through transient electrostatic interactions.


Subject(s)
MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Fluorescence Polarization , Humans , Protein Binding
9.
Dev Dyn ; 245(1): 34-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26447465

ABSTRACT

BACKGROUND: Lin28 proteins are post-transcriptional regulators of gene expression with multiple roles in development and the regulation of pluripotency in stem cells. Much attention has focussed on Lin28 proteins as negative regulators of let-7 miRNA biogenesis; a function that is conserved in several animal groups and in multiple processes. However, there is increasing evidence that Lin28 proteins have additional roles, distinct from regulation of let-7 abundance. We have previously demonstrated that lin28 proteins have functions associated with the regulation of early cell lineage specification in Xenopus embryos, independent of a lin28/let-7 regulatory axis. However, the nature of lin28 targets in Xenopus development remains obscure. RESULTS: Here, we show that mir-17∼92 and mir-106∼363 cluster miRNAs are down-regulated in response to lin28 knockdown, and RNAs from these clusters are co-expressed with lin28 genes during germ layer specification. Mature miRNAs derived from pre-mir-363 are most sensitive to lin28 inhibition. We demonstrate that lin28a binds to the terminal loop of pre-mir-363 with an affinity similar to that of let-7, and that this high affinity interaction requires to conserved a GGAG motif. CONCLUSIONS: Our data suggest a novel function for amphibian lin28 proteins as positive regulators of mir-17∼92 family miRNAs.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation , MicroRNAs/metabolism , RNA-Binding Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Embryo, Nonmammalian/physiology , Germ Layers/metabolism , MicroRNAs/genetics , RNA-Binding Proteins/genetics , Xenopus , Xenopus Proteins/genetics
10.
Proteins ; 78(8): 1870-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20225260

ABSTRACT

B. cereus HlyIIR belongs to the TetR family of dimeric transcriptional regulators. Unlike other members of the TetR family, HlyIIR contains an insert between alpha-helices alpha8 and alpha9, which is located at the subunit-subunit interface. N-terminal segment of this insert (amino acids, Pro161-Ser169) forms a short alpha-helix alpha8* that occupies a complementary cavity on the surface of the adjacent subunit, whereas the C-terminal segment comprising 16 amino acids (Leu170-Glu185) is disordered. To understand whether this disordered segment is important for protein's function, we determined crystal structures of two engineered HlyIIR proteins where this segment was either substituted by a seven-residue flexible Ser-Gly linker or replaced by a cleavable peptide containing proteolytic sites at both ends. Unexpectedly, alteration or proteolytic removal of the disordered segment resulted in changes in protein's conformation and in a remarkable rearrangement at the subunit-subunit interface. X-ray structures of the two engineered proteins revealed an unusual plasticity at the dimerization interface of HlyIIR enabling it to form dimers stabilized by different sets of interactions. Structural comparison indicates that in spite of the flexible nature of the disordered segment, it is critical for maintaining the native structure as it influences the position of alpha8*. The data demonstrate how disordered loops on protein surfaces may affect folding and subunit-subunit interactions.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/chemistry , Hemolysin Proteins/chemistry , Protein Multimerization , Transcription, Genetic , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Mutant Proteins/chemistry , Protein Structure, Secondary , Protein Subunits/chemistry
11.
EMBO Rep ; 10(6): 592-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19444313

ABSTRACT

The DNA-packaging motor in tailed bacteriophages requires nuclease activity to ensure that the genome is packaged correctly. This nuclease activity is tightly regulated as the enzyme is inactive for the duration of DNA translocation. Here, we report the X-ray structure of the large terminase nuclease domain from bacteriophage SPP1. Similarity with the RNase H family endonucleases allowed interactions with the DNA to be predicted. A structure-based alignment with the distantly related T4 gp17 terminase shows the conservation of an extended beta-sheet and an auxiliary beta-hairpin that are not found in other RNase H family proteins. The model with DNA suggests that the beta-hairpin partly blocks the active site, and in vivo activity assays show that the nuclease domain is not functional in the absence of the ATPase domain. Here, we propose that the nuclease activity is regulated by movement of the beta-hairpin, altering active site access and the orientation of catalytically essential residues.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Amino Acid Sequence , Biocatalysis , Catalytic Domain , DNA Mutational Analysis , Metals/metabolism , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Viral Proteins/chemistry
12.
Nucleic Acids Res ; 35(19): 6451-7, 2007.
Article in English | MEDLINE | ID: mdl-17881379

ABSTRACT

Concerted, stochastic and sequential mechanisms of action have been proposed for different hexameric AAA+ molecular motors. Here we report the crystal structure of the E1 helicase from bovine papillomavirus, where asymmetric assembly is for the first time observed in the absence of nucleotide cofactors and DNA. Surprisingly, the ATP-binding sites adopt specific conformations linked to positional changes in the DNA-binding hairpins, which follow a wave-like trajectory, as observed previously in the E1/DNA/ADP complex. The protein's assembly thus maintains such an asymmetric state in the absence of DNA and nucleotide cofactors, allowing consideration of the E1 helicase action as the propagation of a conformational wave around the protein ring. The data imply that the wave's propagation within the AAA+ domains is not necessarily coupled with a strictly sequential hydrolysis of ATP. Since a single ATP hydrolysis event would affect the whole hexamer, such events may simply serve to rectify the direction of the wave's motion.


Subject(s)
DNA Helicases/chemistry , DNA-Binding Proteins/chemistry , Viral Proteins/chemistry , Adenosine Triphosphate/chemistry , Binding Sites , Crystallography, X-Ray , DNA/chemistry , Models, Molecular , Nucleotides/chemistry , Protein Structure, Tertiary
13.
FEBS Lett ; 581(6): 1190-6, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17346714

ABSTRACT

HlyIIR is a negative transcriptional regulator of hemolysin II gene from B. cereus. It binds to a long DNA perfect inverted repeat (44bp) located upstream the hlyII gene. Here we show that HlyIIR is dimeric in solution and in bacterial cells. No protein-protein interactions between dimers and no significant modification of target DNA conformation upon complex formation were observed. Two HlyIIR dimers were found to bind to native operator independently with Kd level in the nanomolar range. The minimal HlyIIR binding site was identified as a half of the long DNA perfect inverted repeat.


Subject(s)
Bacillus cereus/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Hemolysin Proteins/genetics , Operator Regions, Genetic , Repetitive Sequences, Nucleic Acid , Binding Sites , Dimerization , Genes, Bacterial , Nucleic Acid Conformation , Protein Binding
14.
J Mol Biol ; 365(3): 825-34, 2007 Jan 19.
Article in English | MEDLINE | ID: mdl-17097673

ABSTRACT

Production of Bacillus cereus and Bacillus anthracis toxins is controlled by a number of transcriptional regulators. Here we report the crystal structure of B. cereus HlyIIR, a regulator of the gene encoding the pore-forming toxin hemolysin II. We show that HlyIIR forms a tight dimer with a fold and overall architecture similar to the TetR family of repressors. A remarkable feature of the structure is a large internal cavity with a volume of 550 A(3) suggesting that the activity of HlyIIR is modulated by binding of a ligand, which triggers the toxin production. Virtual ligand library screening shows that this pocket can accommodate compounds with molecular masses of up to 400-500 Da. Based on structural data and previous biochemical evidence, we propose a model for HlyIIR interaction with the DNA.


Subject(s)
Bacillus cereus/chemistry , Bacterial Proteins/chemistry , Bacterial Toxins/genetics , Hemolysin Proteins/genetics , Transcription, Genetic , Amino Acid Sequence , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Dimerization , Ligands , Molecular Sequence Data , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Static Electricity , Structural Homology, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...