Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Phys Condens Matter ; 35(5)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36395508

ABSTRACT

The pseudomorphic growth of Ge1-xSnxon Ge causes in-plane compressive strain, which degrades the superior properties of the Ge1-xSnxalloys. Therefore, efficient strain engineering is required. In this article, we present strain and band-gap engineering in Ge1-xSnxalloys grown on Ge a virtual substrate using post-growth nanosecond pulsed laser melting (PLM). Micro-Raman and x-ray diffraction (XRD) show that the initial in-plane compressive strain is removed. Moreover, for PLM energy densities higher than 0.5 J cm-2, the Ge0.89Sn0.11layer becomes tensile strained. Simultaneously, as revealed by Rutherford Backscattering spectrometry, cross-sectional transmission electron microscopy investigations and XRD the crystalline quality and Sn-distribution in PLM-treated Ge0.89Sn0.11layers are only slightly affected. Additionally, the change of the band structure after PLM is confirmed by low-temperature photoreflectance measurements. The presented results prove that post-growth ns-range PLM is an effective way for band-gap and strain engineering in highly-mismatched alloys.

2.
Sci Rep ; 12(1): 12961, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35902657

ABSTRACT

We present experimental studies on low-temperature ([Formula: see text]) carrier dynamics in (Ga,In)(Sb,Bi)/GaSb quantum wells (QWs) with the nominal In content of 3.7% and the Bi ranging from 6 to 8%. The photoreflectance experiment revealed the QW bandgap evolution with [Formula: see text] % Bi, which resulted in the bandgap tunability roughly between 629 and [Formula: see text], setting up the photon emission wavelength between 1.97 and [Formula: see text]. The photoluminescence experiment showed a relatively small 3-10[Formula: see text] Stokes shift regarding the fundamental QW absorption edge, indicating the exciton localisation beneath the QW mobility edge. The localised state's distribution, being the origin of the PL, determined carrier dynamics in the QWs probed directly by the time-resolved photoluminescence and transient reflectivity. The intraband carrier relaxation time to the QW ground state, following the non-resonant excitation, occurred within 3-25[Formula: see text] and was nearly independent of the Bi content. However, the interband relaxation showed a strong time dispersion across the PL emission band and ranging nearly between 150 and [Formula: see text], indicating the carrier transfer among the localised state's distribution. Furthermore, the estimated linear dispersion variation parameter significantly decreased from [Formula: see text] to [Formula: see text] with increasing the Bi content, manifested the increasing role of the non-radiative recombination processes with Bi in the QWs.

3.
J Phys Chem C Nanomater Interfaces ; 126(12): 5665-5674, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35392435

ABSTRACT

Following the rise of interest in the properties of transition metal dichalcogenides, many experimental techniques were employed to research them. However, the temperature dependencies of optical transitions, especially those related to band nesting, were not analyzed in detail for many of them. Here, we present successful studies utilizing the photoreflectance method, which, due to its derivative and absorption-like character, allows investigating direct optical transitions at the high-symmetry point of the Brillouin zone and band nesting. By studying the mentioned optical transitions with temperature from 20 to 300 K, we tracked changes in the electronic band structure for the common transition metal dichalcogenides (TMDs), namely, MoS2, MoSe2, MoTe2, WS2, and WSe2. Moreover, transmission and photoacoustic spectroscopies were also employed to investigate the indirect gap in these crystals. For all observed optical transitions assigned to specific k-points of the Brillouin zone, their temperature dependencies were analyzed using the Varshni relation and Bose-Einstein expression. It was shown that the temperature energy shift for the transition associated with band nesting is smaller when compared with the one at high-symmetry point, revealing reduced average electron-phonon interaction strength.

4.
Sci Rep ; 10(1): 12099, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32694529

ABSTRACT

Contactless electroreflectance studies coupled with numerical calculations are performed on in-situ SiNx capped N-polar III-nitride high electron mobility transistor (HEMT) structures with a scaled channel thickness in order to analyse the built-in electric field in the GaN channel layer. The experimentally obtained field values are compared with the calculated field versus channel thickness curves. Furthermore, the experimental and theoretical sheet carrier densities, ns, are evaluated. While a gradual decrease in carrier concentration with decreasing channel thickness is expected for N-polar structures, experimentally a sudden drop in the ns values is observed for samples with very thin channels. The additional loss in charge was associated with a change in the SiNx/AlGaN interface Fermi level at very thin channel thicknesses.

5.
Sci Rep ; 8(1): 12757, 2018 Aug 24.
Article in English | MEDLINE | ID: mdl-30143712

ABSTRACT

We report high-pressure Raman-scattering measurements on the transition-metal dichalcogenide (TMDC) compound HfS2. The aim of this work is twofold: (i) to investigate the high-pressure behavior of the zone-center optical phonon modes of HfS2 and experimentally determine the linear pressure coefficients and mode Grüneisen parameters of this material; (ii) to test the validity of different density functional theory (DFT) approaches in order to predict the lattice-dynamical properties of HfS2 under pressure. For this purpose, the experimental results are compared with the results of DFT calculations performed with different functionals, with and without Van der Waals (vdW) interaction. We find that DFT calculations within the generalized gradient approximation (GGA) properly describe the high-pressure lattice dynamics of HfS2 when vdW interactions are taken into account. In contrast, we show that DFT within the local density approximation (LDA), which is widely used to predict structural and vibrational properties at ambient conditions in 2D compounds, fails to reproduce the behavior of HfS2 under compression. Similar conclusions are reached in the case of MoS2. This suggests that large errors may be introduced if the compressibility and Grüneisen parameters of bulk TMDCs are calculated with bare DFT-LDA. Therefore, the validity of different approaches to calculate the structural and vibrational properties of bulk and few-layered vdW materials under compression should be carefully assessed.

6.
Sci Rep ; 7(1): 15703, 2017 Nov 16.
Article in English | MEDLINE | ID: mdl-29147023

ABSTRACT

The electronic band structure of phosphorus-rich GaNxPyAs1-x-y alloys (x ~ 0.025 and y ≥ 0.6) is studied experimentally using optical absorption, photomodulated transmission, contactless electroreflectance, and photoluminescence. It is shown that incorporation of a few percent of N atoms has a drastic effect on the electronic structure of the alloys. The change of the electronic band structure is very well described by the band anticrossing (BAC) model in which localized nitrogen states interact with the extended states of the conduction band of GaAsP host. The BAC interaction results in the formation of a narrow intermediate band (E- band in BAC model) with the minimum at the Γ point of the Brillouin zone resulting in a change of the nature of the fundamental band gap from indirect to direct. The splitting of the conduction band by the BAC interaction is further confirmed by a direct observation of the optical transitions to the E+ band using contactless electroreflectance spectroscopy.

7.
Sci Rep ; 7: 44214, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28287140

ABSTRACT

Photoluminescence and photomodulated reflectivity measurements of ZnOSe alloys are used to demonstrate a splitting of the valence band due to the band anticrossing interaction between localized Se states and the extended valence band states of the host ZnO matrix. A strong multiband emission associated with optical transitions from the conduction band to lower E- and upper E+ valence subbands has been observed at room temperature. The composition dependence of the optical transition energies is well explained by the electronic band structure calculated using the kp method combined with the band anticrossing model. The observation of the multiband emission is possible because of relatively long recombination lifetimes. Longer than 1 ns lifetimes for holes photoexcited to the lower valence subband offer a potential of using the alloy as an intermediate band semiconductor for solar power conversion applications.

8.
Sci Rep ; 7: 41877, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28150798

ABSTRACT

The Fermi level position in (Ga,Mn)N has been determined from the period-analysis of GaN-related Franz-Keldysh oscillation obtained by contactless electroreflectance in a series of carefully prepared by molecular beam epitaxy GaN/Ga1-xMnxN/GaN(template) bilayers of various Mn concentration x. It is shown that the Fermi level in (Ga,Mn)N is strongly pinned in the middle of the band gap and the thickness of the depletion layer is negligibly small. For x > 0.1% the Fermi level is located about 1.25-1.55 eV above the valence band, that is very close to, but visibly below the Mn-related Mn2+/Mn3+ impurity band. The accumulated data allows us to estimate the Mn-related band offsets at the (Ga,Mn)N/GaN interface. It is found that most of the band gap change in (Ga,Mn)N takes place in the valence band on the absolute scale and amounts to -0.028 ± 0.008 eV/% Mn. The strong Fermi level pinning in the middle of the band gap, no carrier conductivity within the Mn-related impurity band, and a good homogeneity enable a novel functionality of (Ga,Mn)N as a semi-insulating buffer layers for applications in GaN-based heterostuctures.

9.
Sci Rep ; 6: 34082, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27686056

ABSTRACT

It is shown that compressively strained Ge1-xSnx/Ge quantum wells (QWs) grown on a Ge substrate with 0.1 ≤ x ≤ 0.2 and width of 8 nm ≤ d ≤ 14 nm are a very promising gain medium for lasers integrated with an Si platform. Such QWs are type-I QWs with a direct bandgap and positive transverse electric mode of material gain, i.e. the modal gain. The electronic band structure near the center of Brillouin zone has been calculated for various Ge1-xSnx/Ge QWs with use of the 8-band kp Hamiltonian. To calculate the material gain for these QWs, occupation of the L valley in Ge barriers has been taken into account. It is clearly shown that this occupation has a lot of influence on the material gain in the QWs with low Sn concentrations (Sn < 15%) and is less important for QWs with larger Sn concentration (Sn > 15%). However, for QWs with Sn > 20% the critical thickness of a GeSn layer deposited on a Ge substrate starts to play an important role. Reduction in the QW width shifts up the ground electron subband in the QW and increases occupation of the L valley in the barriers instead of the Γ valley in the QW region.

10.
Sci Rep ; 6: 26663, 2016 05 24.
Article in English | MEDLINE | ID: mdl-27215469

ABSTRACT

The electronic band structure of MoS2, MoSe2, WS2, and WSe2, crystals has been studied at various hydrostatic pressures experimentally by photoreflectance (PR) spectroscopy and theoretically within the density functional theory (DFT). In the PR spectra direct optical transitions (A and B) have been clearly observed and pressure coefficients have been determined for these transitions to be: αA = 2.0 ± 0.1 and αB = 3.6 ± 0.1 meV/kbar for MoS2, αA = 2.3 ± 0.1 and αB = 4.0 ± 0.1 meV/kbar for MoSe2, αA = 2.6 ± 0.1 and αB = 4.1 ± 0.1 meV/kbar for WS2, αA = 3.4 ± 0.1 and αB = 5.0 ± 0.5 meV/kbar for WSe2. It has been found that these coefficients are in an excellent agreement with theoretical predictions. In addition, a comparative study of different computational DFT approaches has been performed and analyzed. For indirect gap the pressure coefficient have been determined theoretically to be -7.9, -5.51, -6.11, and -3.79, meV/kbar for MoS2, MoSe2, WS2, and WSe2, respectively. The negative values of this coefficients imply a narrowing of the fundamental band gap with the increase in hydrostatic pressure and a semiconductor to metal transition for MoS2, MoSe2, WS2, and WSe2, crystals at around 140, 180, 190, and 240 kbar, respectively.

11.
J Phys Condens Matter ; 25(6): 065801, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23306016

ABSTRACT

In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ~700 °C and ~760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ~720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing.


Subject(s)
Arsenic/chemistry , Arsenicals/chemistry , Gallium/chemistry , Indium/chemistry , Luminescent Measurements , Photochemistry , Quantum Theory , Computer Simulation , Energy Transfer , Materials Testing , Models, Chemical
12.
J Phys Condens Matter ; 24(18): 185801, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22481185

ABSTRACT

Time-resolved photoluminescence (PL) characteristics of type-II GaAsSb/GaAs quantum wells are presented. The PL kinetics are determined by the dynamic band bending effect and the distribution of localized centers below the quantum well band gap. The dynamic band bending results from the spatially separated electron and hole distribution functions evolving in time. It strongly depends on the optical pump power density and causes temporal renormalization of the quantum well ground-state energy occurring a few nanoseconds after the optical pulse excitation. Moreover, it alters the optical transition oscillator strength. The measured PL lifetime is 4.5 ns. We point out the critical role of the charge transfer processes between the quantum well and localized centers, which accelerate the quantum well photoluminescence decay at low temperature. However, at elevated temperatures the thermally activated back transfer process slows down the quantum well photoluminescence kinetics. A three-level rate equation model is proposed to explain these observations.

13.
J Phys Condens Matter ; 23(20): 205804, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21540495

ABSTRACT

The model of hopping excitons in semiconductors proposed by Baranovskii et al (1998 Phys. Rev. B 58 13081) has been modified and applied to explain sharp lines observed in micro-photoluminescence (µ-PL) spectra of GaInNAs alloys and their changes with excitation power and temperature. Instead of two types of recombination centres (radiative and nonradiative centres) introduced by Baranovskii et alwe have proposed one kind of localization centre with radiative and nonradiative rates. Such a modification is justifiable due to our recent experimental observations for GaInNAs alloys and allows us to explain the fast thermal quenching of localized emission from this alloy. Our simulations clearly show that the individual sharp PL lines observed at low temperatures appear for this material due to exciton hopping between localization centres. Taking into account saturation effects and the exciton dissociation phenomenon, it has been shown that the observed changes in power- and temperature dependent µ-PL spectra can be excellently reproduced by the modified model.

14.
Rev Sci Instrum ; 80(9): 096103, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19791974

ABSTRACT

Experimental setup for measurements of photoreflectance (PR) and contactless electroreflectance (CER) spectra in bright and dark configurations is described in this work and applied to study various semiconductor structures. The innovative solution in this setup is the possibility to measure PR and CER spectra in both experimental configurations with the same halogen lamp, monochromator, detector, and only very small modification in the optical path. In this setup the measurement conditions for the two experimental configurations are very similar, and the obtained PR and CER spectra can be compared and discussed in the context of the unwanted constant photovoltaic (PV) effect, which appears in the bright configuration when the sample is illuminated by the spectrum of white light instead of the monochromatic light. It has been clearly shown that for (i) epitaxial layers, (ii) quantum wells, and (iii) quantum dots, exactly the same spectral features are observed in both configurations at room temperature. It means that from the viewpoint of the detection of optical transitions, it is not important what configuration is used since the white light-induced PV effect does not influence the energy of optical transitions in these structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...