Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Chem Biol ; 30(11): 1366-1376.e7, 2023 11 16.
Article in English | MEDLINE | ID: mdl-37536341

ABSTRACT

Stimulator of interferon genes (STING) agonists are promising candidates for vaccine adjuvants and antitumor immune stimulants. The most potent natural agonist of STING, 2',3'-cyclic GMP-AMP (2',3'-cGAMP), is subject to nuclease-mediated inherent metabolic instability, thereby placing limits on its clinical efficacy. Here, we report on a new class of chemically synthesized sugar-modified analogs of 2',3'-cGAMP containing arabinose and xylose sugar derivatives that bind mouse and human STING alleles with high affinity. The co-crystal structures demonstrate that such analogs act as 2',3'-cGAMP mimetics that induce the "closed" conformation of human STING. These analogs show significant resistance to hydrolysis mediated by ENPP1 and increased stability in human serum, while retaining similar potency as 2',3'-cGAMP at inducing IFN-ß secretion from human THP1 cells. The arabinose- and xylose-modified 2',3'-cGAMP analogs open a new strategy for overcoming the inherent nuclease-mediated vulnerability of natural ribose cyclic nucleotides, with the additional benefit of high translational potential as cancer therapeutics and vaccine adjuvants.


Subject(s)
Arabinose , Xylose , Humans , Animals , Mice , Arabinose/pharmacology , Adjuvants, Vaccine , Nucleotides, Cyclic/metabolism
2.
Nature ; 590(7847): 624-629, 2021 02.
Article in English | MEDLINE | ID: mdl-33461211

ABSTRACT

In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain1,2. Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction  endonuclease-like domain3,4. However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases5,6, whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.


Subject(s)
Adenine Nucleotides/metabolism , CRISPR-Cas Systems/immunology , DNA, Single-Stranded/metabolism , Deoxyribonucleases/metabolism , Endoribonucleases/metabolism , Oligoribonucleotides/metabolism , RNA/metabolism , Staphylococcus/enzymology , Staphylococcus/immunology , Adenine Nucleotides/immunology , Adenosine Triphosphate/metabolism , Bacteriophages/immunology , Bacteriophages/physiology , Biocatalysis , Catalytic Domain , Deoxyribonucleases/chemistry , Deoxyribonucleases/genetics , Endoribonucleases/chemistry , Endoribonucleases/genetics , Enzyme Activation , Ligands , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oligoribonucleotides/immunology , Plasmids/genetics , Plasmids/metabolism , Protein Multimerization , Rotation , Staphylococcus/growth & development , Staphylococcus/virology , Substrate Specificity
3.
PLoS Genet ; 16(3): e1008422, 2020 03.
Article in English | MEDLINE | ID: mdl-32187176

ABSTRACT

The DNA damage response (DDR) comprises multiple functions that collectively preserve genomic integrity and suppress tumorigenesis. The Mre11 complex and ATM govern a major axis of the DDR and several lines of evidence implicate that axis in tumor suppression. Components of the Mre11 complex are mutated in approximately five percent of human cancers. Inherited mutations of complex members cause severe chromosome instability syndromes, such as Nijmegen Breakage Syndrome, which is associated with strong predisposition to malignancy. And in mice, Mre11 complex mutations are markedly more susceptible to oncogene- induced carcinogenesis. The complex is integral to all modes of DNA double strand break (DSB) repair and is required for the activation of ATM to effect DNA damage signaling. To understand which functions of the Mre11 complex are important for tumor suppression, we undertook mining of cancer genomic data from the clinical sequencing program at Memorial Sloan Kettering Cancer Center, which includes the Mre11 complex among the 468 genes assessed. Twenty five mutations in MRE11 and RAD50 were modeled in S. cerevisiae and in vitro. The mutations were chosen based on recurrence and conservation between human and yeast. We found that a significant fraction of tumor-borne RAD50 and MRE11 mutations exhibited separation of function phenotypes wherein Tel1/ATM activation was severely impaired while DNA repair functions were mildly or not affected. At the molecular level, the gene products of RAD50 mutations exhibited defects in ATP binding and hydrolysis. The data reflect the importance of Rad50 ATPase activity for Tel1/ATM activation and suggest that inactivation of ATM signaling confers an advantage to burgeoning tumor cells.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Carcinogenesis/genetics , Saccharomyces cerevisiae/genetics , Animals , DNA Damage/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , Genomics/methods , MRE11 Homologue Protein/genetics , Mutation/genetics , Sf9 Cells , Signal Transduction/genetics , Tumor Suppressor Proteins/genetics
4.
Nat Commun ; 10(1): 2261, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31113940

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is the primary sensor for aberrant intracellular dsDNA producing the cyclic dinucleotide cGAMP, a second messenger initiating cytokine production in subsets of myeloid lineage cell types. Therefore, inhibition of the enzyme cGAS may act anti-inflammatory. Here we report the discovery of human-cGAS-specific small-molecule inhibitors by high-throughput screening and the targeted medicinal chemistry optimization for two molecular scaffolds. Lead compounds from one scaffold co-crystallize with human cGAS and occupy the ATP- and GTP-binding active site. The specificity and potency of these drug candidates is further documented in human myeloid cells including primary macrophages. These novel cGAS inhibitors with cell-based activity will serve as probes into cGAS-dependent innate immune pathways and warrant future pharmacological studies for treatment of cGAS-dependent inflammatory diseases.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cells, Cultured , Crystallography, X-Ray , DNA/immunology , DNA/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , High-Throughput Screening Assays/methods , Humans , Immunity, Innate/drug effects , Interferons/immunology , Interferons/metabolism , Macrophages , Models, Molecular , Nucleotides, Cyclic/immunology , Nucleotides, Cyclic/metabolism , Nucleotidyltransferases/immunology , Nucleotidyltransferases/isolation & purification , Nucleotidyltransferases/metabolism , Primary Cell Culture , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
5.
Chem Sci ; 10(1): 218-226, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30713633

ABSTRACT

Guanine tracts of human telomeric DNA sequences are known to fold into eight different four-stranded structures that vary by the conformation of guanine nucleotides arranged in the stack of G-tetrads in their core and by different kinds and orders of connecting loops, called G-quadruplexes. Here, we present a novel G-quadruplex structure formed in K+ solution by a human telomeric variant d[(GGGTTA)2GGGTTTGGG], htel21T18. This variant DNA is located in the subtelomeric regions of human chromosomes 8, 11, 17, and 19 as well as in the DNase hypersensitive region and in the subcentromeric region of chromosome 5. Interestingly, single A18T substitution that makes htel21T18 different from the human telomeric sequence results in the formation of a three-layer chair-type G-quadruplex, a fold previously unknown among human telomeric repeats, with two loops interacting through the reverse Watson-Crick A6·T18 base pair. The loops are edgewise; glycosidic conformation of guanines is syn·anti·syn·anti around each tetrad, and each strand of the core has two antiparallel adjacent strands. Our results expand the repertoire of known G-quadruplex folding topologies and may provide a potential target for structure-based anticancer drug design.

6.
Structure ; 20(12): 2090-102, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23085077

ABSTRACT

Neisseria gonorrhoeae is an obligate human pathogen that can escape immune surveillance through antigenic variation of surface structures such as pili. A G-quadruplex-forming (G4) sequence (5'-G(3)TG(3)TTG(3)TG(3)) located upstream of the N. gonorrhoeae pilin expression locus (pilE) is necessary for initiation of pilin antigenic variation, a recombination-based, high-frequency, diversity-generation system. We have determined NMR-based structures of the all parallel-stranded monomeric and 5' end-stacked dimeric pilE G-quadruplexes in monovalent cation-containing solutions. We demonstrate that the three-layered all parallel-stranded monomeric pilE G-quadruplex containing single-residue double-chain reversal loops, which can be modeled without steric clashes into the 3 nt DNA-binding site of RecA, binds and promotes E. coli RecA-mediated strand exchange in vitro. We discuss how interactions between RecA and monomeric pilE G-quadruplex could facilitate the specialized recombination reactions leading to pilin diversification.


Subject(s)
Antigens, Bacterial/genetics , DNA, Bacterial/chemistry , Escherichia coli Proteins/chemistry , Fimbriae Proteins/genetics , G-Quadruplexes , Neisseria gonorrhoeae/genetics , Rec A Recombinases/chemistry , Antigens, Bacterial/chemistry , Base Pairing , Base Sequence , Binding Sites , Deuterium Exchange Measurement , Fimbriae Proteins/chemistry , GC Rich Sequence , Immune Evasion , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
7.
Nat Struct Mol Biol ; 18(7): 796-804, 2011 Jun 05.
Article in English | MEDLINE | ID: mdl-21642970

ABSTRACT

We have determined the solution structure of the complex between an arginine-glycine-rich RGG peptide from the human fragile X mental retardation protein (FMRP) and an in vitro-selected guanine-rich (G-rich) sc1 RNA. The bound RNA forms a newly discovered G-quadruplex separated from the flanking duplex stem by a mixed junctional tetrad. The RGG peptide is positioned along the major groove of the RNA duplex, with the G-quadruplex forcing a sharp turn of R(10)GGGGR(15) at the duplex-quadruplex junction. Arg10 and Arg15 form cross-strand specificity-determining intermolecular hydrogen bonds with the major-groove edges of guanines of adjacent Watson-Crick G•C pairs. Filter-binding assays on RNA and peptide mutations identify and validate contributions of peptide-RNA intermolecular contacts and shape complementarity to molecular recognition. These findings on FMRP RGG domain recognition by a combination of G-quadruplex and surrounding RNA sequences have implications for the recognition of other genomic G-rich RNAs.


Subject(s)
Fragile X Mental Retardation Protein/chemistry , G-Quadruplexes , RNA/chemistry , Binding Sites , Fragile X Mental Retardation Protein/physiology , Guanine/chemistry , Humans , Hydrogen Bonding , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Protein Structure, Tertiary , Structure-Activity Relationship
8.
Nucleic Acids Res ; 39(6): 2458-69, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21030439

ABSTRACT

Long-term survival still eludes most patients with leukemia and non-Hodgkin's lymphoma. No approved therapies target the hallmark of the B cell, its mIgM, also known as the B-cell receptor (BCR). Aptamers are small oligonucleotides that can specifically bind to a wide range of target molecules and offer some advantages over antibodies as therapeutic agents. Here, we report the rational engineering of aptamer TD05 into multimeric forms reactive with the BCR that may be useful in biomedical applications. Systematic truncation of TD05 coupled with modification with locked nucleic acids (LNA) increased conformational stability and nuclease resistance. Trimeric and tetrameric versions with optimized polyethyleneglycol (PEG) linker lengths exhibited high avidity at physiological temperatures both in vitro and in vivo. Competition and protease studies showed that the multimeric, optimized aptamer bound to membrane-associated human mIgM, but not with soluble IgM in plasma, allowing the possibility of targeting leukemias and lymphomas in vivo. The B-cell specificity of the multivalent aptamer was confirmed on lymphoma cell lines and fresh clinical leukemia samples. The chemically engineered aptamers, with significantly improved kinetic and biochemical features, unique specificity and desirable pharmacological properties, may be useful in biomedical applications.


Subject(s)
Aptamers, Nucleotide/chemistry , Leukemia, B-Cell/metabolism , Lymphoma, B-Cell/metabolism , Receptors, Antigen, B-Cell/metabolism , Animals , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , Female , Humans , Immunoglobulin M/metabolism , Mice , Mice, Nude , Oligonucleotides/chemistry
9.
Nucleic Acids Res ; 38(19): 6757-73, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20566478

ABSTRACT

Previous studies have demonstrated that nuclease hypersensitivity regions of several proto-oncogenic DNA promoters, situated upstream of transcription start sites, contain guanine-rich tracts that form intramolecular G-quadruplexes stabilized by stacked G•G•G•G tetrads in monovalent cation solution. The human c-kit oncogenic promoter, an important target in the treatment of gastrointestinal tumors, contains two such stretches of guanine-rich tracts, designated c-kit1 and c-kit2. Our previous nuclear magnetic resonance (NMR)-based studies reported on the novel G-quadruplex scaffold of the c-kit1 promoter in K(+)-containing solution, where we showed for the first time that even an isolated guanine was involved in G-tetrad formation. These NMR-based studies are now extended to the c-kit2 promoter, which adopts two distinct all-parallel-stranded conformations in slow exchange, one of which forms a monomeric G-quadruplex (form-I) in 20 mM K(+)-containing solution and the other a novel dimeric G-quadruplex (form-II) in 100 mM K(+)-containing solution. The c-kit2 promoter dimeric form-II G-quadruplex adopts an unprecedented all-parallel-stranded topology where individual c-kit2 promoter strands span a pair of three-G-tetrad-layer-containing all-parallel-stranded G-quadruplexes aligned in a 3' to 5'-end orientation, with stacking continuity between G-quadruplexes mediated by a sandwiched A•A non-canonical pair. We propose that strand exchange during recombination events within guanine-rich segments, could potentially be mediated by a synapsis intermediate involving an intergenic parallel-stranded dimeric G-quadruplex.


Subject(s)
G-Quadruplexes , Promoter Regions, Genetic , Proto-Oncogene Proteins c-kit/genetics , Dimerization , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protons
10.
Structure ; 18(1): 73-82, 2010 Jan 13.
Article in English | MEDLINE | ID: mdl-20152154

ABSTRACT

We report on the solution structure of an unprecedented intramolecular G-quadruplex formed by the guanosine-rich human chl1 intronic d(G(3)-N-G(4)-N(2)-G(4)-N-G(3)-N) 19-mer sequence in K(+)-containing solution. This G-quadruplex, composed of three stacked G-tetrads containing four syn guanines, represents a new folding topology with two unique conformational features. The first guanosine is positioned within the central G-tetrad, in contrast to all previous structures of unimolecular G-quadruplexes, where the first guanosine is part of an outermost G-tetrad. In addition, a V-shaped loop, spanning three G-tetrad planes, contains no bridging nucleotides. The G-quadruplex scaffold is stabilized by a T*G*A triple stacked over the G-tetrad at one end and an unpaired guanosine stacked over the G-tetrad at the other end. Finally, the chl1 intronic DNA G-quadruplex scaffold contains a guanosine base intercalated between an extended G-G step, a feature observed in common with the catalytic site of group I introns. This unique structural scaffold provides a highly specific platform for the future design of ligands specifically targeted to intronic G-quadruplex platforms.


Subject(s)
G-Quadruplexes , Guanosine/chemistry , Introns , Nuclear Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Base Sequence , Catalytic Domain , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/genetics , Tumor Suppressor Proteins/genetics
11.
Nucleic Acids Res ; 35(22): 7429-55, 2007.
Article in English | MEDLINE | ID: mdl-17913750

ABSTRACT

Guanine-rich DNA sequences can form G-quadruplexes stabilized by stacked G-G-G-G tetrads in monovalent cation-containing solution. The length and number of individual G-tracts and the length and sequence context of linker residues define the diverse topologies adopted by G-quadruplexes. The review highlights recent solution NMR-based G-quadruplex structures formed by the four-repeat human telomere in K(+) solution and the guanine-rich strands of c-myc, c-kit and variant bcl-2 oncogenic promoters, as well as a bimolecular G-quadruplex that targets HIV-1 integrase. Such structure determinations have helped to identify unanticipated scaffolds such as interlocked G-quadruplexes, as well as novel topologies represented by double-chain-reversal and V-shaped loops, triads, mixed tetrads, adenine-mediated pentads and hexads and snap-back G-tetrad alignments. The review also highlights the recent identification of guanine-rich sequences positioned adjacent to translation start sites in 5'-untranslated regions (5'-UTRs) of RNA oncogenic sequences. The activity of the enzyme telomerase, which maintains telomere length, can be negatively regulated through G-quadruplex formation at telomeric ends. The review evaluates progress related to ongoing efforts to identify small molecule drugs that bind and stabilize distinct G-quadruplex scaffolds associated with telomeric and oncogenic sequences, and outlines progress towards identifying recognition principles based on several X-ray-based structures of ligand-G-quadruplex complexes.


Subject(s)
5' Untranslated Regions/chemistry , G-Quadruplexes , Neoplasms/drug therapy , Oncogenes , Promoter Regions, Genetic , Telomere/chemistry , DNA/chemistry , DNA/drug effects , DNA Repeat Expansion , G-Quadruplexes/drug effects , Humans , RNA/chemistry , RNA/drug effects
12.
Nucleic Acids Res ; 35(19): 6517-25, 2007.
Article in English | MEDLINE | ID: mdl-17895279

ABSTRACT

Intramolecular G-quadruplexes formed by human telomere sequences are attractive anticancer targets. Recently, four-repeat human telomere sequences have been shown to form two different intramolecular (3 + 1) G-quadruplexes in K(+) solution (Form 1 and Form 2). Here we report on the solution structures of both Form 1 and Form 2 adopted by natural human telomere sequences. Both structures contain the (3 + 1) G-tetrad core with one double-chain-reversal and two edgewise loops, but differ in the successive order of loop arrangements within the G-quadruplex scaffold. Our results provide the structural details at the two ends of the G-tetrad core in the context of natural sequences and information on different loop conformations. This structural information might be important for our understanding of telomere G-quadruplex structures and for anticancer drug design targeted to such scaffolds.


Subject(s)
G-Quadruplexes , Models, Molecular , Telomere/chemistry , Base Sequence , Cations , DNA/chemistry , Humans , Nuclear Magnetic Resonance, Biomolecular , Potassium/chemistry , Repetitive Sequences, Nucleic Acid , Solutions
13.
J Am Chem Soc ; 129(14): 4386-92, 2007 Apr 11.
Article in English | MEDLINE | ID: mdl-17362008

ABSTRACT

The c-kit oncogene is an important target in the treatment of gastrointestinal tumors. A potential approach to inhibition of the expression of this gene involves selective stabilization of G-quadruplex structures that may be induced to form in the c-kit promoter region. Here we report on the structure of an unprecedented intramolecular G-quadruplex formed by a G-rich sequence in the c-kit promoter in K+ solution. The structure represents a new folding topology with several unique features. Most strikingly, an isolated guanine is involved in G-tetrad core formation, despite the presence of four three-guanine tracts. There are four loops: two single-residue double-chain-reversal loops, a two-residue loop, and a five-residue stem-loop, which contain base-pairing alignments. This unique structural scaffold provides a highly specific platform for the future design of ligands specifically targeted to the promoter DNA of c-kit.


Subject(s)
DNA/chemistry , Nucleic Acid Conformation , Promoter Regions, Genetic , Proto-Oncogene Proteins c-kit/genetics , DNA/genetics , G-Quadruplexes , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Promoter Regions, Genetic/genetics , Solutions
14.
J Am Chem Soc ; 128(30): 9963-70, 2006 Aug 02.
Article in English | MEDLINE | ID: mdl-16866556

ABSTRACT

We present the intramolecular G-quadruplex structure of human telomeric DNA in physiologically relevant K(+) solution. This G-quadruplex, whose (3 + 1) topology differs from folds reported previously in Na(+) solution and in a K(+)-containing crystal, involves the following: one anti.syn.syn.syn and two syn.anti.anti.anti G-tetrads; one double-chain reversal and two edgewise loops; three G-tracts oriented in one direction and the fourth in the opposite direction. The topological characteristics of this (3 + 1) G-quadruplex scaffold should provide a unique platform for structure-based anticancer drug design targeted to human telomeric DNA.


Subject(s)
DNA/chemistry , Potassium/chemistry , Telomere/chemistry , G-Quadruplexes , Guanine/chemistry , Humans , Models, Molecular , Nucleic Acid Conformation , Solutions/chemistry
15.
Curr Opin Struct Biol ; 16(3): 288-98, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16714104

ABSTRACT

G-quadruplexes and Z-DNA are two important non-B forms of DNA architecture. Results on novel structural elements, folding and unfolding kinetics, and interactions with small molecules and proteins have been reported recently for these forms. These results will enhance our understanding of the biology of these structures and provide a platform for drug design.


Subject(s)
DNA/chemistry , Models, Molecular , DNA/metabolism , DNA, Z-Form/chemistry , Nucleic Acid Conformation , Nucleic Acid Heteroduplexes
16.
PLoS Biol ; 4(1): e11, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16379496

ABSTRACT

7,8-dihydro-8-oxoguanine (oxoG), the predominant lesion formed following oxidative damage of DNA by reactive oxygen species, is processed differently by replicative and bypass polymerases. Our kinetic primer extension studies demonstrate that the bypass polymerase Dpo4 preferentially inserts C opposite oxoG, and also preferentially extends from the oxoG*C base pair, thus achieving error-free bypass of this lesion. We have determined the crystal structures of preinsertion binary, insertion ternary, and postinsertion binary complexes of oxoG-modified template-primer DNA and Dpo4. These structures provide insights into the translocation mechanics of the bypass polymerase during a complete cycle of nucleotide incorporation. Specifically, during noncovalent dCTP insertion opposite oxoG (or G), the little-finger domain-DNA phosphate contacts translocate by one nucleotide step, while the thumb domain-DNA phosphate contacts remain fixed. By contrast, during the nucleotidyl transfer reaction that covalently incorporates C opposite oxoG, the thumb-domain-phosphate contacts are translocated by one nucleotide step, while the little-finger contacts with phosphate groups remain fixed. These stepwise conformational transitions accompanying nucleoside triphosphate binding and covalent nucleobase incorporation during a full replication cycle of Dpo4-catalyzed bypass of the oxoG lesion are distinct from the translocation events in replicative polymerases.


Subject(s)
Archaeal Proteins/genetics , DNA Polymerase beta/genetics , DNA-Directed DNA Polymerase/genetics , Archaeal Proteins/physiology , Base Sequence , Crystallization , Crystallography, X-Ray , DNA Polymerase beta/physiology , DNA-Directed DNA Polymerase/physiology , Deoxycytosine Nucleotides/metabolism , Guanine/analogs & derivatives , Guanine/physiology , Nucleic Acid Conformation , Protein Conformation , Sulfolobus solfataricus/enzymology , Templates, Genetic , Translocation, Genetic
17.
Mol Cell ; 19(3): 405-19, 2005 Aug 05.
Article in English | MEDLINE | ID: mdl-16061186

ABSTRACT

Argonaute (Ago) proteins constitute a key component of the RNA-induced silencing complex (RISC). We report the crystal structure of Aquifex aeolicus Ago (Aa-Ago) together with binding and cleavage studies, which establish this eubacterial Ago as a bona fide guide DNA strand-mediated site-specific RNA endonuclease. We have generated a stereochemically robust model of the complex, where the guide DNA-mRNA duplex is positioned within a basic channel spanning the bilobal interface, such that the 5' phosphate of the guide strand can be anchored in a basic pocket, and the mRNA can be positioned for site-specific cleavage by RNase H-type divalent cation-coordinated catalytic Asp residues of the PIWI domain. Domain swap experiments involving chimeras of human Ago (hAgo1) and cleavage-competent hAgo2 reinforce the role of the PIWI domain in "slicer" activity. We propose a four-step Ago-mediated catalytic cleavage cycle model, which provides distinct perspectives into the mechanism of guide strand-mediated mRNA cleavage within the RISC.


Subject(s)
Bacteria/enzymology , Endoribonucleases/chemistry , RNA, Messenger/metabolism , RNA-Induced Silencing Complex/metabolism , Amino Acid Sequence , Argonaute Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites/genetics , Catalytic Domain/genetics , Cations, Divalent/chemistry , Crystallography, X-Ray , DNA, Single-Stranded/metabolism , Endoribonucleases/genetics , Endoribonucleases/metabolism , Eukaryotic Initiation Factor-2 , Eukaryotic Initiation Factors/genetics , Eukaryotic Initiation Factors/metabolism , Humans , Models, Chemical , Models, Molecular , Molecular Sequence Data , Oligonucleotides/metabolism , Peptide Initiation Factors/genetics , Peptide Initiation Factors/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , RNA, Double-Stranded/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Static Electricity
18.
Proc Natl Acad Sci U S A ; 102(3): 634-9, 2005 Jan 18.
Article in English | MEDLINE | ID: mdl-15637158

ABSTRACT

We report on the NMR-based solution structure of the 93del d(GGGGTGGGAGGAGGGT) aptamer, a potent nanomolar inhibitor of HIV-1 integrase. This guanine-rich DNA sequence adopts an unusually stable dimeric quadruplex architecture in K+ solution. Within each 16-nt monomer subunit, which contains one A.(G.G.G.G) pentad sandwiched between two G.G.G.G tetrads, all G-stretches are parallel, and all guanines are anti with the exception of G1, which is syn. Dimer formation is achieved through mutual pairing of G1 of one monomer, with G2, G6, and G13 of the other monomer, to complete G.G.G.G tetrad formation. There are three single-nucleotide double-chain-reversal loops within each monomer fold, such that the first (T5) and third (A12) loops bridge three G-tetrad layers, whereas the second (A9) loop bridges two G-tetrad layers and participates in A.(G.G.G.G) pentad formation. Results of NMR and of integrase inhibition assays on loop-modified sequences allowed us to propose a strategy toward the potential design of improved HIV-1 integrase inhibitors. Finally, we propose a model, based on molecular docking approaches, for positioning the 93del dimeric DNA quadruplex within a basic channel/canyon formed between subunits of a dimer of dimers of HIV-1 integrase.


Subject(s)
DNA/chemistry , HIV Integrase/chemistry , Integrase Inhibitors/chemistry , Anti-HIV Agents/chemistry , Base Sequence , Binding Sites , Drug Design , G-Quadruplexes , Humans , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Potassium
19.
Nat Chem Biol ; 1(3): 167-73, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16408022

ABSTRACT

It has been widely accepted that DNA can adopt other biologically relevant structures beside the Watson-Crick double helix. One recent important example is the guanine-quadruplex (G-quadruplex) structure formed by guanine tracts found in the MYC (or c-myc) promoter region, which regulates the transcription of the MYC oncogene. Stabilization of this G-quadruplex by ligands, such as the cationic porphyrin TMPyP4, decreases the transcriptional level of MYC. Here, we report the first structure of a DNA fragment containing five guanine tracts from this region. An unusual G-quadruplex fold, which was derived from NMR restraints using unambiguous model-independent resonance assignment approaches, involves a core of three stacked guanine tetrads formed by four parallel guanine tracts with all anti guanines and a snapback 3'-end syn guanine. We have determined the structure of the complex formed between this G-quadruplex and TMPyP4. This structural information, combined with details of small-molecule interaction, provides a platform for the design of anticancer drugs targeting multi-guanine-tract sequences that are found in the MYC and other oncogenic promoters, as well as in telomeres.


Subject(s)
Biomarkers, Tumor/genetics , DNA-Binding Proteins/genetics , DNA/chemistry , Genes, myc/physiology , Guanine/chemistry , Phosphopyruvate Hydratase/genetics , Porphyrins/chemistry , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics , Biomarkers, Tumor/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism , G-Quadruplexes , Guanine/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Phosphopyruvate Hydratase/metabolism , Porphyrins/metabolism , Protein Folding , Regulatory Elements, Transcriptional , Tumor Suppressor Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...