Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 144(27): 12431-12442, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35776907

ABSTRACT

The detailed mechanism of ATP hydrolysis in ATP-binding cassette (ABC) transporters is still not fully understood. Here, we employed 31P solid-state NMR to probe the conformational changes and dynamics during the catalytic cycle by locking the multidrug ABC transporter BmrA in prehydrolytic, transition, and posthydrolytic states, using a combination of mutants and ATP analogues. The 31P spectra reveal that ATP binds strongly in the prehydrolytic state to both ATP-binding sites as inferred from the analysis of the nonhydrolytic E504A mutant. In the transition state of wild-type BmrA, the symmetry of the dimer is broken and only a single site is tightly bound to ADP:Mg2+:vanadate, while the second site is more 'open' allowing exchange with the nucleotides in the solvent. In the posthydrolytic state, weak binding, as characterized by chemical exchange with free ADP and by asymmetric 31P-31P two-dimensional (2D) correlation spectra, is observed for both sites. Revisiting the 13C spectra in light of these findings confirms the conformational nonequivalence of the two nucleotide-binding sites in the transition state. Our results show that following ATP binding, the symmetry of the ATP-binding sites of BmrA is lost in the ATP-hydrolysis step, but is then recovered in the posthydrolytic ADP-bound state.


Subject(s)
ATP-Binding Cassette Transporters , Adenosine Triphosphate , ATP-Binding Cassette Transporters/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Binding Sites , Hydrolysis
2.
Trends Endocrinol Metab ; 33(8): 539-553, 2022 08.
Article in English | MEDLINE | ID: mdl-35725541

ABSTRACT

Citrin deficiency is a pan-ethnic and highly prevalent mitochondrial disease with three different stages: neonatal intrahepatic cholestasis (NICCD), a relatively mild adaptation stage, and type II citrullinemia in adulthood (CTLN2). The cause is the absence or dysfunction of the calcium-regulated mitochondrial aspartate/glutamate carrier 2 (AGC2/SLC25A13), also called citrin, which imports glutamate into the mitochondrial matrix and exports aspartate to the cytosol. In citrin deficiency, these missing transport steps lead to impairment of the malate-aspartate shuttle, gluconeogenesis, amino acid homeostasis, and the urea cycle. In this review, we describe the geological spread and occurrence of citrin deficiency, the metabolic consequences and use our current knowledge of the structure to predict the impact of the known pathogenic mutations on the calcium-regulatory and transport mechanism of citrin.


Subject(s)
Citrullinemia , Adult , Aspartic Acid/genetics , Calcium , Citrullinemia/genetics , Citrullinemia/metabolism , Glutamates/genetics , Humans , Infant, Newborn , Mitochondrial Membrane Transport Proteins/genetics , Mutation
3.
Molecules ; 25(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198135

ABSTRACT

Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/chemistry , Bacillus subtilis/enzymology , DnaB Helicases/metabolism , Helicobacter pylori/enzymology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenylyl Imidodiphosphate/chemistry , Aluminum Compounds/chemistry , Bacterial Proteins/metabolism , Electron Spin Resonance Spectroscopy , Electrons , Fluorides/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Protein Conformation
4.
J Phys Chem B ; 124(49): 11089-11097, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33238710

ABSTRACT

Protein-nucleic acid interactions are essential in a variety of biological events ranging from the replication of genomic DNA to the synthesis of proteins. Noncovalent interactions guide such molecular recognition events, and protons are often at the center of them, particularly due to their capability of forming hydrogen bonds to the nucleic acid phosphate groups. Fast magic-angle spinning experiments (100 kHz) reduce the proton NMR line width in solid-state NMR of fully protonated protein-DNA complexes to such an extent that resolved proton signals from side-chains coordinating the DNA can be detected. We describe a set of NMR experiments focusing on the detection of protein side-chains from lysine, arginine, and aromatic amino acids and discuss the conclusions that can be obtained on their role in DNA coordination. We studied the 39 kDa enzyme of the archaeal pRN1 primase complexed with DNA and characterize protein-DNA contacts in the presence and absence of bound ATP molecules.


Subject(s)
Proteins , Protons , Hydrogen Bonding , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular
5.
Front Mol Biosci ; 7: 17, 2020.
Article in English | MEDLINE | ID: mdl-32154263

ABSTRACT

Today, the sedimentation of proteins into a magic-angle spinning (MAS) rotor gives access to fast and reliable sample preparation for solid-state Nuclear Magnetic Resonance (NMR), and this has allowed for the investigation of a variety of non-crystalline protein samples. High protein concentrations on the order of 400 mg/mL can be achieved, meaning that around 50-60% of the NMR rotor content is protein; the rest is a buffer solution, which includes counter ions to compensate for the charge of the protein. We have demonstrated herein the long-term stability of four sedimented proteins and complexes thereof with nucleotides, comprising a bacterial DnaB helicase, an ABC transporter, an archaeal primase, and an RNA polymerase subunit. Solid-state NMR spectra recorded directly after sample filling and up to 5 years later indicated no spectral differences and no loss in signal intensity, allowing us to conclude that protein sediments in the rotor can be stable over many years. We have illustrated, using an example of an ABC transporter, that not only the structure is maintained, but that the protein is still functional after long-term storage in the sedimented state.

6.
Commun Biol ; 2: 149, 2019.
Article in English | MEDLINE | ID: mdl-31044174

ABSTRACT

ATP-binding-cassette (ABC) transporters are molecular pumps that translocate molecules across the cell membrane by switching between inward-facing and outward-facing states. To obtain a detailed understanding of their mechanism remains a challenge to structural biology, as these proteins are notoriously difficult to study at the molecular level in their active, membrane-inserted form. Here we use solid-state NMR to investigate the multidrug ABC transporter BmrA reconstituted in lipids. We identify the chemical-shift differences between the inward-facing, and outward-facing state induced by ATP:Mg2+:Vi addition. Analysis of an X-loop mutant, for which we show that ATPase and transport activities are uncoupled, reveals an incomplete transition to the outward-facing state upon ATP:Mg2+:Vi addition, notably lacking the decrease in dynamics of a defined set of residues observed in wild-type BmrA. This suggests that this stiffening is required for an efficient transmission of the conformational changes to allow proper transport of substrate by the pump.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Binding Sites , Cell Membrane/metabolism , Drug Resistance, Multiple , Hydrolysis , Magnesium/metabolism , Magnetic Resonance Spectroscopy/methods , Protein Conformation
7.
Prog Nucl Magn Reson Spectrosc ; 110: 20-33, 2019 02.
Article in English | MEDLINE | ID: mdl-30803692

ABSTRACT

Preparation of a protein sample for solid-state NMR is in many aspects similar to solution-state NMR approaches, mainly with respect to the need for stable isotope labeling. But the possibility of using solid-state NMR to investigate membrane proteins in (native) lipids adds the important requirement of adapted membrane-reconstitution schemes. Also, dynamic nuclear polarization and paramagnetic NMR in solids need specific schemes using metal ions and radicals. Sample sedimentation has enabled structural investigations of objects inaccessible to other structural techniques, but rotor filling using sedimentation has become increasingly complex with smaller and smaller rotors, as needed for higher and higher magic-angle spinning (MAS) frequencies. Furthermore, solid-state NMR can investigate very large proteins and their complexes without the concomitant increase in line widths, motivating the use of selective labeling and unlabeling strategies, as well as segmental labeling, to decongest spectra. The possibility of investigating sub-milligram amounts of protein today using advanced fast MAS techniques enables alternative protein synthesis schemes such as cell-free expression. Here we review these specific aspects of solid-state NMR sample preparation.

8.
Nat Commun ; 10(1): 31, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30604765

ABSTRACT

DnaB helicases are motor proteins that couple ATP-hydrolysis to the loading of the protein onto DNA at the replication fork and to translocation along DNA to separate double-stranded DNA into single strands during replication. Using a network of conformational states, arrested by nucleotide mimics, we herein characterize the reaction coordinates for ATP hydrolysis, DNA loading and DNA translocation using solid-state NMR spectroscopy. AMP-PCP is used as pre-hydrolytic, ADP:AlF4- as transition state, and ADP as post-hydrolytic ATP mimic. 31P and 13C NMR spectra reveal conformational and dynamic responses to ATP hydrolysis and the resulting DNA loading and translocation with single amino-acid resolution. This allows us to identify residues guiding the DNA translocation process and to explain the high binding affinities for DNA observed for ADP:AlF4-, which turns out to be optimally preconfigured to bind DNA.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , DNA, Single-Stranded/metabolism , DnaB Helicases/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/analogs & derivatives , Bacterial Physiological Phenomena , Bacterial Proteins/metabolism , DNA Replication/physiology , DnaB Helicases/metabolism , Hydrolysis , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
9.
J Biomol NMR ; 71(3): 141-150, 2018 07.
Article in English | MEDLINE | ID: mdl-29197975

ABSTRACT

Selective isotope labeling is central in NMR experiments and often allows to push the limits on the systems investigated. It has the advantage to supply additional resolution by diminishing the number of signals in the spectra. This is particularly interesting when dealing with the large protein systems which are currently becoming accessible to solid-state NMR studies. Isotope labeled proteins for NMR experiments are most often expressed in E. coli systems, where bacteria are grown in minimal media supplemented with 15NH4Cl and 13C-glucose as sole source of nitrogen and carbon. For amino acids selective labeling or unlabeling, specific amino acids are supplemented in the minimal medium. The aim is that they will be incorporated in the protein by the bacteria. However, E. coli amino-acid anabolism and catabolism tend to interconnect different pathways, remnant of a subway system. These connections lead to inter conversion between amino acids, called scrambling. A thorough understanding of the involved pathways is thus important to obtain the desired labeling schemes, as not all combinations of amino acids are adapted. We present here a detailed overview of amino-acid metabolism in this context. Each amino-acid pathway is described in order to define accessible combinations for 13C or 15N specific labeling or unlabeling. Using as example the ABC transporter BmrA, a membrane protein of 600 residues, we demonstrate how these strategies can be applied. Indeed, even though there is no size limit in solid-state NMR, large (membrane) proteins are still a challenge due to heavy signal overlap. To initiate resonance assignment in these large systems, we describe how selectively labeled samples can be obtained with the addition of labeled or unlabeled amino acids in the medium. The reduced spectral overlap enabled us to identify typical spectral fingerprints and to initiate sequential assignment using the more sensitive 2D DARR experiments with long mixing time showing inter-residue correlations.


Subject(s)
Isotope Labeling/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , ATP-Binding Cassette Transporters/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Carbon Isotopes , Nitrogen Isotopes
10.
J Biomol NMR ; 69(2): 81-91, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28900789

ABSTRACT

We here adapted the GRecon method used in electron microscopy studies for membrane protein reconstitution to the needs of solid-state NMR sample preparation. We followed in detail the reconstitution of the ABC transporter BmrA by dialysis as a reference, and established optimal reconstitution conditions using the combined sucrose/cyclodextrin/lipid gradient characterizing GRecon. We established conditions under which quantitative reconstitution of active protein at low lipid-to-protein ratios can be obtained, and also how to upscale these conditions in order to produce adequate amounts for NMR. NMR spectra recorded on a sample produced by GRecon showed a highly similar fingerprint as those recorded previously on samples reconstituted by dialysis. GRecon sample preparation presents a gain in time of nearly an order of magnitude for reconstitution, and shall represent a valuable alternative in solid-state NMR membrane protein sample preparation.


Subject(s)
Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Bacterial Proteins/chemistry , Lipids/chemistry , Mass Spectrometry , Membrane Transport Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular/methods
11.
Methods Mol Biol ; 1635: 345-358, 2017.
Article in English | MEDLINE | ID: mdl-28755379

ABSTRACT

Conformational studies of membrane proteins remain a challenge in the field of structural biology, and in particular the investigation of the proteins in a native-like lipid environment. Solid-state NMR presents a valuable opportunity for this, and we present here three critical steps in the solid-state NMR sample preparation, i.e., membrane reconstitution of the protein in native lipids, rotor filling, and sample quality assessment, at the example of the Bacillus subtilis ATP-binding cassette transporter BmrA.


Subject(s)
Bacillus subtilis/metabolism , Membrane Proteins/chemistry , Bacterial Proteins/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation
12.
Angew Chem Int Ed Engl ; 56(12): 3369-3373, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28191714

ABSTRACT

Paramagnetic metal ions deliver structural information both in EPR and solid-state NMR experiments, offering a profitable synergetic approach to study bio-macromolecules. We demonstrate the spectral consequences of Mg2+ / Mn2+ substitution and the resulting information contents for two different ATP:Mg2+ -fueled protein engines, a DnaB helicase from Helicobacter pylori active in the bacterial replisome, and the ABC transporter BmrA, a bacterial efflux pump. We show that, while EPR spectra report on metal binding and provide information on the geometry of the metal centers in the proteins, paramagnetic relaxation enhancements identified in the NMR spectra can be used to localize residues at the binding site. Protein engines are ubiquitous and the methods described herein should be applicable in a broad context.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Adenosine Triphosphate/chemistry , DnaB Helicases/chemistry , Magnesium/chemistry , Manganese/chemistry , Nuclear Magnetic Resonance, Biomolecular , Electron Spin Resonance Spectroscopy , Helicobacter pylori/chemistry , Models, Molecular
13.
J Biomol NMR ; 65(2): 79-86, 2016 06.
Article in English | MEDLINE | ID: mdl-27240588

ABSTRACT

The use of protein building blocks for the structure determination of multidomain proteins and protein-protein complexes, also known as the "divide and conquer" approach, is an important strategy for obtaining protein structures. Atomic-resolution X-ray or NMR data of the individual domains are combined with lower-resolution electron microscopy maps or X-ray data of the full-length protein or the protein complex. Doing so, it is often assumed that the individual domain structures remain invariant in the context of the superstructure. In this work, we show the potentials and limitations of NMR to validate this approach at the example of the dodecameric DnaB helicase from Helicobacter pylori. We investigate how sequentially assigned spectra, as well as unassigned spectral fingerprints can be used to indicate the conservation of individual domains, and also to highlight conformational differences.


Subject(s)
Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Proteins/chemistry , DnaB Helicases/chemistry , Evolution, Molecular , Genetic Variation , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Conformation , Protein Domains/genetics , Proteins/genetics
14.
J Biomol NMR ; 65(2): 87-98, 2016 06.
Article in English | MEDLINE | ID: mdl-27233794

ABSTRACT

We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [(2)H,(13)C,(15)N]-labeled protein are shown to yield narrow (13)C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.


Subject(s)
Gene Expression , Magnetic Resonance Spectroscopy , Membrane Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification , Amino Acid Sequence , Carbon-13 Magnetic Resonance Spectroscopy , Circular Dichroism , Humans , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Domains , Proteolipids/chemistry
15.
J Biomol NMR ; 64(3): 189-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26961129

ABSTRACT

We here investigate the interactions between the DnaB helicase and the C-terminal domain of the corresponding DnaG primase of Helicobacter pylori using solid-state NMR. The difficult crystallization of this 387 kDa complex, where the two proteins interact in a six to three ratio, is circumvented by simple co-sedimentation of the two proteins directly into the MAS-NMR rotor. While the amount of information that can be extracted from such a large protein is still limited, we can assign a number of amino-acid residues experiencing significant chemical-shift perturbations upon helicase-primase complex formation. The location of these residues is used as a guide to model the interaction interface between the two proteins in the complex. Chemical-shift perturbations also reveal changes at the interaction interfaces of the hexameric HpDnaB assembly on HpDnaG binding. A structural model of the complex that explains the experimental findings is obtained.


Subject(s)
DNA Primase/chemistry , Helicobacter pylori/enzymology , Nuclear Magnetic Resonance, Biomolecular , Protein Domains
16.
Biomol NMR Assign ; 10(1): 13-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26280528

ABSTRACT

We present solid-state NMR assignments of the N-terminal domain of the DnaB helicase from Helicobacter pylori (153 residues) in its microcrystalline form. We use a sequential resonance assignment strategy based on three-dimensional NMR experiments. The resonance assignments obtained are compared with automated resonance assignments computed with the ssFLYA algorithm. An analysis of the (13)C secondary chemical shifts determines the position of the secondary structure elements in this α-helical protein.


Subject(s)
DnaB Helicases/chemistry , Helicobacter pylori/enzymology , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Protein Domains , Protein Structure, Secondary , Software
17.
Protein Expr Purif ; 116: 1-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26325423

ABSTRACT

Non-structural protein 2 (NS2) of the hepatitis C virus (HCV) is an integral membrane protein that contains a cysteine protease and that plays a central organizing role in assembly of infectious progeny virions. While the crystal structure of the protease domain has been solved, the NS2 full-length form remains biochemically and structurally uncharacterized because recombinant NS2 could not be prepared in sufficient quantities from cell-based systems. We show here that functional NS2 in the context of the NS2-NS3pro precursor protein, ensuring NS2-NS3 cleavage, can be efficiently expressed by using a wheat germ cell-free expression system. In this same system, we subsequently successfully produce and purify milligram amounts of a detergent-solubilized form of full-length NS2 exhibiting the expected secondary structure content. Furthermore, immuno-electron microscopy analyses of reconstituted proteoliposomes demonstrate NS2 association with model membranes.


Subject(s)
Hepacivirus/chemistry , Hepacivirus/genetics , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Amino Acid Sequence , Cell-Free System/metabolism , Chromatography, Gel , Cloning, Molecular , Detergents/chemistry , Gene Expression , Hepatitis C/virology , Liposomes/chemistry , Membrane Lipids/chemistry , Molecular Sequence Data , Plasmids/genetics , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility , Triticum/genetics , Viral Nonstructural Proteins/isolation & purification
18.
Front Mol Biosci ; 1: 5, 2014.
Article in English | MEDLINE | ID: mdl-25988146

ABSTRACT

We present solid-state NMR sample preparation and first 2D spectra of the Bacillus subtilis ATP-binding cassette (ABC) transporter BmrA, a membrane protein involved in multidrug resistance. The homodimeric 130-kDa protein is a challenge for structural characterization due to its membrane-bound nature, size, inherent flexibility and insolubility. We show that reconstitution of this protein in lipids from Bacillus subtilis at a lipid-protein ratio of 0.5 w/w allows for optimal protein insertion in lipid membranes with respect to two central NMR requirements, high signal-to-noise in the spectra and sample stability over a time period of months. The obtained spectra point to a well-folded protein and a highly homogenous preparation, as witnessed by the narrow resonance lines and the signal dispersion typical for the expected secondary structure distribution of BmrA. This opens the way for studies of the different conformational states of the transporter in the export cycle, as well as on interactions with substrates, via chemical-shift fingerprints and sequential resonance assignments.

19.
FEBS Lett ; 586(19): 3379-84, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22841719

ABSTRACT

To date, the signal transducing adaptor molecule 2 (STAM2) was shown to harbour two ubiquitin binding domains (UBDs) known as the VHS and UIM domains, while the SH3 domain of STAM2 was reported to interact with deubiquitinating enzymes (DUBs) like UBPY and AMSH. In the present study, NMR evidences the interaction of the STAM2 SH3 domain with ubiquitin, demonstrating that SH3 constitutes the third UBD of STAM2. Furthermore, we show that a UBPY-derived peptide can outcompete ubiquitin for SH3 binding and vice versa. These results suggest that the SH3 domain of STAM2 plays versatile roles in the context of ubiquitin mediated receptor sorting.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Endopeptidases/metabolism , Endosomal Sorting Complexes Required for Transport/chemistry , Endosomal Sorting Complexes Required for Transport/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitin/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Sequence , Amino Acid Substitution , Binding, Competitive , Endopeptidases/chemistry , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Models, Molecular , Molecular Dynamics Simulation , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Ubiquitin/chemistry , Ubiquitin Thiolesterase/chemistry , src Homology Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...