Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters











Publication year range
1.
Front Neurol ; 15: 1439784, 2024.
Article in English | MEDLINE | ID: mdl-39220733

ABSTRACT

In all vertebrates, maintaining trunk posture primarily depends on descending commands originating from brainstem vestibulospinal nuclei. Despite being broadly outlined across species, the detailed anatomical and operational structure of these vestibulospinal networks remains poorly understood. Xenopus frogs have previously served as an excellent model for exploring such anatomical and functional aspects in relation to the animal's behavioral requirements. In this study, we examined the reflex motor reactions induced by vestibular stimulation in pre-metamorphic tadpoles. Our findings indicate that natural vestibular stimulation in the horizontal plane yields greater efficacy compared to stimulation in other planes, a phenomenon replicated in a frequency-dependent manner through specific galvanic stimulation (GVS) of the horizontal semicircular canals. With the exception of a very rostral cluster of neurons that receive vestibular inputs and project to the spinal cord, the overall anatomical segregation of vestibulospinal nuclei in the brainstem mirrors that observed in juvenile frogs. However, our results suggest closer similarities to mammalian organization than previously acknowledged. Moreover, we demonstrated that vestibulospinal cells project not only to spinal motoneurons in rostral segments but also to more distal segments that undergo regression during metamorphosis. Lastly, we illustrated how vestibular-induced spinal reflexes change during larval development, transitioning from tail swim-based activity to rostral trunk bursting responses, likely anticipating postural control in post-metamorphic frogs.

2.
Curr Opin Neurobiol ; 82: 102761, 2023 10.
Article in English | MEDLINE | ID: mdl-37604066

ABSTRACT

Neural replicas of the spinal motor commands that drive locomotion have become increasingly recognized as an intrinsic neural mechanism for producing gaze-stabilizing eye movements that counteract the perturbing effects of self-generated head/body motion. By pre-empting reactive signaling by motion-detecting vestibular sensors, such locomotor efference copies (ECs) provide estimates of the sensory consequences of behavioral action. Initially demonstrated in amphibian larvae during spontaneous fictive swimming in deafferented in vitro preparations, direct evidence for a contribution of locomotor ECs to gaze stabilization now extends to the ancestral lamprey and to tetrapod adult frogs and mice. Supporting behavioral evidence also exists for other mammals, including humans, therefore further indicating the mechanism's conservation during vertebrate evolution. The relationship between feedforward ECs and vestibular sensory feedback in ocular movement control is variable, ranging from additive to the former supplanting the latter, depending on vestibular sensing ability, and the intensity and regularity of rhythmic locomotor movements.


Subject(s)
Eye Movements , Eye , Adult , Humans , Animals , Mice , Feedback, Sensory , Larva , Locomotion , Mammals
3.
Front Neural Circuits ; 16: 1040070, 2022.
Article in English | MEDLINE | ID: mdl-36569798

ABSTRACT

Vertebrate locomotion presents a major challenge for maintaining visual acuity due to head movements resulting from the intimate biomechanical coupling with the propulsive musculoskeletal system. Retinal image stabilization has been traditionally ascribed to the transformation of motion-related sensory feedback into counteracting ocular motor commands. However, extensive exploration of spontaneously active semi-intact and isolated brain/spinal cord preparations of the amphibian Xenopus laevis, have revealed that efference copies (ECs) of the spinal motor program that generates axial- or limb-based propulsion directly drive compensatory eye movements. During fictive locomotion in larvae, ascending ECs from rostral spinal central pattern generating (CPG) circuitry are relayed through a defined ascending pathway to the mid- and hindbrain ocular motor nuclei to produce conjugate eye rotations during tail-based undulatory swimming in the intact animal. In post-metamorphic adult frogs, this spinal rhythmic command switches to a bilaterally-synchronous burst pattern that is appropriate for generating convergent eye movements required for maintaining image stability during limb kick-based rectilinear forward propulsion. The transition between these two fundamentally different coupling patterns is underpinned by the emergence of altered trajectories in spino-ocular motor coupling pathways that occur gradually during metamorphosis, providing a goal-specific, morpho-functional plasticity that ensures retinal image stability irrespective of locomotor mode. Although the functional impact of predictive ECs produced by the locomotory CPG matches the spatio-temporal specificity of reactive sensory-motor responses, rather than contributing additively to image stabilization, horizontal vestibulo-ocular reflexes (VORs) are selectively suppressed during intense locomotor CPG activity. This is achieved at least in part by an EC-mediated attenuation of mechano-electrical encoding at the vestibular sensory periphery. Thus, locomotor ECs and their potential suppressive impact on vestibular sensory-motor processing, both of which have now been reported in other vertebrates including humans, appear to play an important role in the maintenance of stable vision during active body displacements.


Subject(s)
Eye Movements , Reflex, Vestibulo-Ocular , Animals , Humans , Adult , Reflex, Vestibulo-Ocular/physiology , Locomotion/physiology , Swimming/physiology , Xenopus laevis/physiology , Spinal Cord/physiology
4.
Front Neurosci ; 16: 935166, 2022.
Article in English | MEDLINE | ID: mdl-36117641

ABSTRACT

Central circuitry of the vestibular nuclei integrates sensory inputs in the adaptive control of motor behaviors such as posture, locomotion, and gaze stabilization. Thus far, such circuits have been mostly examined at mature stages, whereas their emergence and early development have remained poorly described. Here, we focused on the perinatal period of murine development, from embryonic day E14.5 to post-natal day P5, to investigate the ontogeny of two functionally distinct vestibular neuronal groups, neurons projecting to the spinal cord via the lateral vestibulospinal tract (LVST) and commissural neurons of the medial vestibular nucleus that cross the midline to the contralateral nucleus. Using transgenic mice and retrograde labeling, we found that network-constitutive GABAergic and glycinergic neurons are already established in the two vestibular groups at embryonic stages. Although incapable of repetitive firing at E14.5, neurons of both groups can generate spike trains from E15.5 onward and diverge into previously established A or B subtypes according to the absence (A) or presence (B) of a two-stage spike after hyperpolarization. Investigation of several voltage-dependent membrane properties indicated that solely LVST neurons undergo significant maturational changes in their electrophysiological characteristics during perinatal development. The proportions of A vs B subtypes also evolve in both groups, with type A neurons remaining predominant at all stages, and type B commissural neurons appearing only post-natally. Together, our results indicate that vestibular neurons acquire their distinct morpho-functional identities after E14.5 and that the early maturation of membrane properties does not emerge uniformly in the different functional subpopulations of vestibulo-motor pathways.

5.
Nat Commun ; 13(1): 2957, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618719

ABSTRACT

Locomotion in vertebrates is accompanied by retinal image-stabilizing eye movements that derive from sensory-motor transformations and predictive locomotor efference copies. During development, concurrent maturation of locomotor and ocular motor proficiency depends on the structural and neuronal capacity of the motion detection systems, the propulsive elements and the computational capability for signal integration. In developing Xenopus larvae, we demonstrate an interactive plasticity of predictive locomotor efference copies and multi-sensory motion signals to constantly elicit dynamically adequate eye movements during swimming. During ontogeny, the neuronal integration of vestibulo- and spino-ocular reflex components progressively alters as locomotion parameters change. In young larvae, spino-ocular motor coupling attenuates concurrent angular vestibulo-ocular reflexes, while older larvae express eye movements that derive from a combination of the two components. This integrative switch depends on the locomotor pattern generator frequency, represents a stage-independent gating mechanism, and appears during ontogeny when the swim frequency naturally declines with larval age.


Subject(s)
Locomotion , Reflex, Vestibulo-Ocular , Animals , Eye Movements , Larva , Locomotion/physiology , Reflex, Vestibulo-Ocular/physiology , Xenopus laevis/physiology
6.
Curr Biol ; 32(2): 453-461.e4, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34856124

ABSTRACT

Efference copies are neural replicas of motor outputs used to anticipate the sensory consequences of a self-generated motor action or to coordinate neural networks involved in distinct motor behaviors.1 An established example of this motor-to-motor coupling is the efference copy of the propulsive motor command, which supplements classical visuo-vestibular reflexes to ensure gaze stabilization during amphibian larval locomotion.2 Such feedforward replica of spinal pattern-generating circuits produces a spino-extraocular motor coupled activity that evokes eye movements, spatiotemporally coordinated to tail undulation independently of any sensory signal.3,4 Exploiting the developmental stages of the frog,1 studies in metamorphing Xenopus demonstrated the persistence of this spino-extraocular motor command in adults and its developmental adaptation to tetrapodal locomotion.5,6 Here, we demonstrate for the first time the existence of a comparable locomotor-to-ocular motor coupling in the mouse. In neonates, ex vivo nerve recordings of brainstem-spinal cord preparations reveal a spino-extraocular motor coupled activity similar to the one described in Xenopus. In adult mice, trans-synaptic rabies virus injections in lateral rectus eye muscle label cervical spinal cord neurons closely connected to abducens motor neurons. Finally, treadmill-elicited locomotion in decerebrated preparations7 evokes rhythmic eye movements in synchrony with the limb gait pattern. Overall, our data are evidence for the conservation of locomotor-induced eye movements in vertebrate lineages. Thus, in mammals as in amphibians, CPG-efference copy feedforward signals might interact with sensory feedback to ensure efficient gaze control during locomotion.


Subject(s)
Eye Movements , Locomotion , Animals , Locomotion/physiology , Mammals , Mice , Motor Neurons/physiology , Reflex, Vestibulo-Ocular/physiology , Spinal Cord/physiology , Xenopus laevis/physiology
7.
Chem Sci ; 12(14): 5123-5133, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-34168771

ABSTRACT

We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes. The level anti-crossing, or magnetic "clock transition", associated with this gap has been directly monitored by heat capacity experiments. The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions. In addition, we show that the quantum tunnelling splitting admits a chemical tuning via the modification of the ligand shell that determines the crystal field and the magnetic anisotropy. These properties are crucial to realize model spin qubits that combine the necessary resilience against decoherence, a proper interfacing with other qubits and with the control circuitry and the ability to initialize them by cooling.

8.
Curr Biol ; 30(4): 746-753.e4, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31956031

ABSTRACT

Locomotor maturation requires concurrent gaze stabilization improvement for maintaining visual acuity [1, 2]. The capacity to stabilize gaze, in particular in small aquatic vertebrates where coordinated locomotor activity appears very early, is determined by assembly and functional maturation of inner ear structures and associated sensory-motor circuitries [3-7]. Whereas utriculo-ocular reflexes become functional immediately after hatching [8, 9], semicircular canal-dependent vestibulo-ocular reflexes (VORs) appear later [10]. Thus, small semicircular canals are unable to detect swimming-related head oscillations, despite the fact that corresponding acceleration components are well-suited to trigger an angular VOR [11]. This leaves the utricle as the sole vestibular origin for swimming-related compensatory eye movements [12, 13]. We report a remarkable ontogenetic plasticity of swimming-related head kinematics and vestibular end organ recruitment in Xenopus tadpoles with beneficial consequences for gaze-stabilization. Swimming of older larvae generates sinusoidal head undulations with small, similar curvature angles on the left and right side that optimally activate horizontal semicircular canals. Young larvae swimming causes left-right head undulations with narrow curvatures and strong, bilaterally dissimilar centripetal acceleration components well suited to activate utricular hair cells and to substitute the absent semicircular canal function at this stage. The capacity of utricular signals to supplant semicircular canal function was confirmed by recordings of eye movements and extraocular motoneurons during off-center rotations in control and semicircular canal-deficient tadpoles. Strong alternating curvature angles and thus linear acceleration profiles during swimming in young larvae therefore represents a technically elegant solution to compensate for the incapacity of small semicircular canals to detect angular acceleration components.


Subject(s)
Fixation, Ocular , Reflex, Vestibulo-Ocular , Saccule and Utricle/physiology , Swimming , Xenopus laevis/physiology , Age Factors , Animals , Biomechanical Phenomena , Head/physiology , Larva/growth & development , Larva/physiology , Xenopus laevis/growth & development
9.
J Physiol ; 598(4): 817-838, 2020 02.
Article in English | MEDLINE | ID: mdl-31834949

ABSTRACT

KEY POINTS: Vestibulospinal reflexes participate in postural control. How this is achieved has not been investigated fully. We combined electrophysiological, neuroanatomical and imaging techniques to decipher the vestibulospinal network controlling the activation of back and limb muscles responsible for postural adjustments. We describe two distinct pathways activating either thoracic postural motoneurons alone or thoracic and lumbar motoneurons together, with the latter co-ordinating specifically hindlimb extensors and postural back muscles. ABSTRACT: In vertebrates, trunk postural stabilization is known to rely mainly on direct vestibulospinal inputs on spinal axial motoneurons. However, a substantial role of central spinal commands ascending from lumbar segments is not excluded during active locomotion. In the adult Xenopus, a lumbar drive dramatically overwhelms the descending inputs onto thoracic postural motoneurons during swimming. Given that vestibulospinal fibres also project onto the lumbar segments that shelter the locomotor generators, we investigated whether such a lumbo-thoracic pathway may relay vestibular information and consequently, also be involved in the control of posture at rest. We show that thoracic postural motoneurons exhibit particular dendritic spatial organization allowing them to gather information from both sides of the cord. In response to passive head motion, these motoneurons display both early and delayed discharges, with the latter occurring in phase with ipsilateral hindlimb extensor bursts. We demonstrate that both vestibulospinal and lumbar ascending fibres converge onto postural motoneurons, and that thoracic motoneurons monosynaptically respond to the electrical stimulation of either pathway. Finally, we show that vestibulospinal fibres project to and activate lumbar interneurons with thoracic projections. Taken together, our results complete the scheme of the vestibulospinal control of posture by illustrating the existence of a novel, indirect pathway, which implicates lumbar interneurons relaying vestibular inputs to thoracic motoneurons, and participating in global body postural stabilization in the absence of active locomotion.


Subject(s)
Motor Neurons/physiology , Postural Balance , Spinal Cord/physiology , Torso/physiology , Animals , Interneurons/physiology , Xenopus laevis
10.
Neuropharmacology ; 170: 107815, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31634501

ABSTRACT

Descending neuromodulators from the brainstem play a major role in the development and regulation of spinal sensorimotor functions. Here, the contribution of serotonergic signaling in the lumbar spinal cord was investigated in the context of the generation of locomotor activity. Experiments were performed on in vitro spinal cord preparations from newborn rats (0-5 days). Rhythmic locomotor episodes (fictive locomotion) triggered by tonic electrical stimulations (2Hz, 30s) of a single sacral dorsal root were recorded from bilateral flexor-dominated (L2) and extensor-dominated (L5) ventral roots. We found that the activity pattern induced by sacral stimulation evolves over the 5 post-natal (P) day period. Although alternating rhythmic flexor-like motor bursts were expressed at all ages, the locomotor pattern of extensor-like bursting was progressively lost from P1 to P5. At later stages, serotonin (5-HT) and quipazine (5-HT2A receptor agonist) at concentrations sub-threshold for direct locomotor network activation promoted sacral stimulation-induced fictive locomotion. The 5-HT2A receptor antagonist ketanserin could reverse the agonist's action but was ineffective when fictive locomotion was already expressed in the absence of 5-HT (mainly before P2). Although inhibiting 5-HT7 receptors with SB266990 did not affect locomotor pattern organization, activating 5-HT1A receptors with 8-OH-DPAT specifically deteriorated extensor phase motor burst activity. We conclude that during the first 5 post-natal days in rat, serotonergic signaling in the lumbar cord becomes increasingly critical for the expression of fictive locomotion. Our findings therefore further underline the importance of both descending serotonergic and sensory afferent pathways in shaping locomotor activity during postnatal development. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Subject(s)
Locomotion/drug effects , Sacrum/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Serotonin/pharmacology , Spinal Nerve Roots/drug effects , Animals , Animals, Newborn , Electric Stimulation/methods , Female , Locomotion/physiology , Male , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Sacrum/innervation , Sacrum/physiology , Spinal Nerve Roots/physiology
11.
Chem Commun (Camb) ; 55(82): 12336-12339, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31556434

ABSTRACT

A trinuclear triphenylene trisemiquinone complex containing paramagnetic NiII is obtained under ambient conditions from the reaction of deprotonated tricatecholate hexahydroxytriphenylene (H6HHTP) with NiII capped with a trispyrazolyl borate tridentate ligand. The magnetic and EPR data are consistent with delocalization of the electronic spin over the three NiII species. The two-electron reduced complex shows an EPR spectrum corresponding to a S = 1/2 species due to a large antiferromagnetic coupling between the radical and only one of the NiII ions highlighting the localization of the electronic spin. No EPR signal is observed for the one- and three-electron reduced species consistent with the closed shell of the bridging ligand.

12.
Front Neural Circuits ; 12: 95, 2018.
Article in English | MEDLINE | ID: mdl-30420798

ABSTRACT

In larval xenopus, locomotor-induced oculomotor behavior produces gaze-stabilizing eye movements to counteract the disruptive effects of tail undulation during swimming. While neuronal circuitries responsible for feed-forward intrinsic spino-extraocular signaling have recently been described, the resulting oculomotor behavior remains poorly understood. Conveying locomotor CPG efference copy, the spino-extraocular motor command coordinates the multi-segmental rostrocaudal spinal rhythmic activity with the extraocular motor activity. By recording sequences of xenopus tadpole free swimming, we quantified the temporal calibration of conjugate eye movements originating from spino-extraocular motor coupled activity during pre-metamorphic tail-based undulatory swimming. Our results show that eye movements are produced only during robust propulsive forward swimming activity and increase with the amplitude of tail movements. The use of larval isolated in vitro and semi-intact fixed head preparations revealed that spinal locomotor networks driving the rostral portion of the tail set the precise timing of the spino-extraocular motor coupling by adjusting the phase relationship between spinal segment and extraocular rhythmic activity with the swimming frequency. The resulting spinal-evoked oculomotor behavior produced conjugated eye movements that were in phase opposition with the mid-caudal part of the tail. This time adjustment is independent of locomotor activity in the more caudal spinal parts of the tail. Altogether our findings demonstrate that locomotor feed-forward spino-extraocular signaling produce conjugate eye movements that compensate specifically the undulation of the mid-caudal tail during active swimming. Finally, this study constitutes the first extensive behavioral quantification of spino-extraocular motor coupling, which sets the basis for understanding the mechanisms of locomotor-induced oculomotor behavior in larval frog.


Subject(s)
Fixation, Ocular/physiology , Larva/physiology , Locomotion/physiology , Oculomotor Muscles/physiology , Swimming/physiology , Tail/physiology , Animals , Eye Movements/physiology , Time Factors , Xenopus laevis
13.
Dalton Trans ; 47(29): 9824-9833, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-29993046

ABSTRACT

Antiproliferative activities of several members of the ferrocifen family, both in vitro and in vivo, are well documented although their precise location in cancer cells has not yet been elucidated. However, two different infrared imaging techniques have been used to map the non-cytotoxic cyrhetrenyl analogue of ferrociphenol in a single cell. This observation prompted us to tag two ferrocifens with a cyrhetrenyl unit [CpRe(CO)3; Cp = η5-cyclopentadienyl] by grafting it, via an ester bond, either to one of the phenols (4, 5) or to the hydroxypropyl chain (6). Complexes 4-6 retained a high cytotoxicity on breast cancer cells (MDA-MB-231) with IC50 values in the range 0.32-2.5 µM. Transmission IR spectroscopy was used to quantify the amount of cyrhetrenyl tag present in cells incubated with 5 or 6. The results show that after a 1-hour incubation of cells at 37 °C, complexes 5 and 6 are mainly present within cells while only a limited percentage, quantified by ICP-OES, remained in the incubation medium. AFM-IR spectroscopy, a technique coupling infrared irradiation with near-field AFM detection, was used to map the cyrhetrenyl unit in a single MDA-MB-231 cell, incubated at 37 °C for 1 hour with 10 µM of 6. The results show that signal distribution of the characteristic band of the Re(CO)3 entity at 1950 cm-1 matched those of amide and phosphate, thus indicating a location of the complex mainly in the cell nucleus.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Ferrous Compounds/chemistry , Organometallic Compounds/chemistry , Antineoplastic Agents/chemistry , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Nucleus/drug effects , Endocytosis , Humans , Inhibitory Concentration 50 , Spectroscopy, Fourier Transform Infrared
14.
Elife ; 72018 05 30.
Article in English | MEDLINE | ID: mdl-29845935

ABSTRACT

In vertebrates, functional motoneurons are defined as differentiated neurons that are connected to a central premotor network and activate peripheral muscle using acetylcholine. Generally, motoneurons and muscles develop simultaneously during embryogenesis. However, during Xenopus metamorphosis, developing limb motoneurons must reach their target muscles through the already established larval cholinergic axial neuromuscular system. Here, we demonstrate that at metamorphosis onset, spinal neurons retrogradely labeled from the emerging hindlimbs initially express neither choline acetyltransferase nor vesicular acetylcholine transporter. Nevertheless, they are positive for the motoneuronal transcription factor Islet1/2 and exhibit intrinsic and axial locomotor-driven electrophysiological activity. Moreover, the early appendicular motoneurons activate developing limb muscles via nicotinic antagonist-resistant, glutamate antagonist-sensitive, neuromuscular synapses. Coincidently, the hindlimb muscles transiently express glutamate, but not nicotinic receptors. Subsequently, both pre- and postsynaptic neuromuscular partners switch definitively to typical cholinergic transmitter signaling. Thus, our results demonstrate a novel context-dependent re-specification of neurotransmitter phenotype during neuromuscular system development.


Subject(s)
Acetylcholine/metabolism , Extremities/innervation , Metamorphosis, Biological , Muscle, Skeletal/innervation , Neurotransmitter Agents/metabolism , Xenopus laevis/growth & development , Xenopus laevis/metabolism , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Gene Expression Regulation, Developmental , Motor Activity , Motor Neurons/metabolism , Muscle, Skeletal/growth & development , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spinal Cord/metabolism , Synaptic Transmission , Xenopus Proteins/metabolism , Xenopus laevis/genetics
15.
Bioconjug Chem ; 29(4): 987-991, 2018 04 18.
Article in English | MEDLINE | ID: mdl-29360339

ABSTRACT

Hyaluronic acids were labeled with a rhenium-tricarbonyl used as single core multimodal probe for imaging and their penetration into human skin biopsies was studied using IR microscopy and fluorescence imaging (labeled SCoMPI). The penetration was shown to be dependent on the molecular weight of the molecule and limited to the upper layer of the skin.


Subject(s)
Fluorescent Dyes/chemistry , Hyaluronic Acid/pharmacokinetics , Optical Imaging/methods , Rhenium/chemistry , Skin/metabolism , Humans , Hyaluronic Acid/analysis , Infrared Rays , Microscopy/methods , Microscopy, Fluorescence/methods , Multimodal Imaging/methods , Skin Absorption , Spectroscopy, Fourier Transform Infrared/methods
16.
Evolution ; 72(2): 244-260, 2018 02.
Article in English | MEDLINE | ID: mdl-29235117

ABSTRACT

Flowers show important structural variation as reproductive organs but the evolutionary forces underlying this diversity are still poorly understood. In animal-pollinated species, flower shape is strongly fashioned by selection imposed by pollinators, which is expected to vary according to guilds of effective pollinators. Using the Antillean subtribe Gesneriinae (Gesneriaceae), we tested the hypothesis that pollination specialists pollinated by one functional type of pollinator have maintained more similar corolla shapes through time due to more constant and stronger selection constraints compared to species with more generalist pollination strategies. Using geometric morphometrics and evolutionary models, we showed that the corolla of hummingbird specialists, bat specialists, and species with a mixed-pollination strategy (pollinated by hummingbirds and bats; thus a more generalist strategy) have distinct shapes and that these shapes have evolved under evolutionary constraints. However, we did not find support for greater disparity in corolla shape of more generalist species. This could be because the corolla shape of more generalist species in subtribe Gesneriinae, which has evolved multiple times, is finely adapted to be effectively pollinated by both bats and hummingbirds. These results suggest that ecological generalization is not necessarily associated with relaxed selection constraints.


Subject(s)
Biological Evolution , Flowers/genetics , Magnoliopsida/genetics , Pollination , Selection, Genetic , Animals , Bees , Birds , Chiroptera , Flowers/anatomy & histology , Magnoliopsida/anatomy & histology , Moths , West Indies
17.
Dev Neurobiol ; 77(8): 928-946, 2017 09.
Article in English | MEDLINE | ID: mdl-28033684

ABSTRACT

Following incomplete spinal cord injuries, neonatal mammals display a remarkable degree of behavioral recovery. Previously, we have demonstrated in neonatal mice a wholesale re-establishment and reorganization of synaptic connections from some descending axon tracts (Boulland et al.: PLoS One 8 (2013)). To assess the potential cellular mechanisms contributing to this recovery, we have here characterized a variety of cellular sequelae following thoracic compression injuries, focusing particularly on cell loss and proliferation, inflammation and reactive gliosis, and the dynamics of specific types of synaptic terminals. Early during the period of recovery, regressive events dominated. Tissue loss near the injury was severe, with about 80% loss of neurons and a similar loss of axons that later make up the white matter. There was no sign of neurogenesis, no substantial astroglial or microglial proliferation, no change in the ratio of M1 and M2 microglia and no appreciable generation of the terminal complement peptide C5a. One day after injury the number of synaptic terminals on lumbar motoneurons had dropped by a factor of 2, but normalized by 6 days. The ratio of VGLUT1/2+ to VGAT+ terminals remained similar in injured and uninjured spinal cords during this period. By 24 days after injury, when functional recovery is nearly complete, the density of 5-HT+ fibers below the injury site had increased by a factor of 2.5. Altogether this study shows that cellular reactions are diverse and dynamic. Pronounced recovery of both excitatory and inhibitory terminals and an increase in serotonergic innervation below the injury, coupled with a general lack of inflammation and reactive gliosis, are likely to contribute to the recovery. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 928-946, 2017.


Subject(s)
Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord Regeneration/physiology , Spinal Cord/physiopathology , Animals , Animals, Newborn , Cell Proliferation/physiology , Disease Models, Animal , Female , Gliosis/pathology , Gliosis/physiopathology , Lipopolysaccharides , Male , Mice, Inbred ICR , Microglia/pathology , Microglia/physiology , Neurons/pathology , Neurons/physiology , Serotonin/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/pathology , Synapses/pathology , Synapses/physiology , White Matter/pathology , White Matter/physiopathology
18.
J Exp Biol ; 219(Pt 8): 1110-21, 2016 04 15.
Article in English | MEDLINE | ID: mdl-27103674

ABSTRACT

During swimming in the amphibian ITALIC! Xenopus laevis, efference copies of rhythmic locomotor commands produced by the spinal central pattern generator (CPG) can drive extraocular motor output appropriate for producing image-stabilizing eye movements to offset the disruptive effects of self-motion. During metamorphosis, ITALIC! X. laevisremodels its locomotor strategy from larval tail-based undulatory movements to bilaterally synchronous hindlimb kicking in the adult. This change in propulsive mode results in head/body motion with entirely different dynamics, necessitating a concomitant switch in compensatory ocular movements from conjugate left-right rotations to non-conjugate convergence during the linear forward acceleration produced during each kick cycle. Here, using semi-intact or isolated brainstem/spinal cord preparations at intermediate metamorphic stages, we monitored bilateral eye motion along with extraocular, spinal axial and limb motor nerve activity during episodes of spontaneous fictive swimming. Our results show a progressive transition in spinal efference copy control of extraocular motor output that remains adapted to offsetting visual disturbances during the combinatorial expression of bimodal propulsion when functional larval and adult locomotor systems co-exist within the same animal. In stages at metamorphic climax, spino-extraocular motor coupling, which previously derived from axial locomotor circuitry alone, can originate from both axial and ITALIC! de novohindlimb CPGs, although the latter's influence becomes progressively more dominant and eventually exclusive as metamorphosis terminates with tail resorption. Thus, adaptive interactions between locomotor and extraocular motor circuitry allows CPG-driven efference copy signaling to continuously match the changing spatio-temporal requirements for visual image stabilization throughout the transitional period when one propulsive mechanism emerges and replaces another.


Subject(s)
Adaptation, Physiological , Eye Movements/physiology , Locomotion/physiology , Metamorphosis, Biological/physiology , Motor Activity/physiology , Spinal Cord/physiology , Xenopus laevis/physiology , Animals , Models, Biological , Swimming/physiology
19.
Chembiochem ; 17(11): 1004-7, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26991635

ABSTRACT

An organometallic derivative of praziquantel was studied directly in worms by using inductively coupled plasma-mass spectrometry (ICP-MS) for quantification and synchrotron-based imaging. X-ray fluorescence (XRF) and IR absorption spectromicroscopy were used for the first time in combination to directly locate this organometallic drug candidate in schistosomes. The detection of both CO (IR) and Cr (XRF) signatures proved that the Cr(CO)3 core remained intact in the worms. Images showed a preferential accumulation at the worm's tegument, consistent with a possible targeting of the calcium channel but not excluding other biological targets inside the worm.


Subject(s)
Praziquantel/chemistry , Schistosoma mansoni/chemistry , Animals , Chromium/chemistry , Mass Spectrometry , Microscopy , Optical Imaging , Praziquantel/chemical synthesis , Praziquantel/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/metabolism , Spectrophotometry, Infrared , Stereoisomerism , X-Ray Absorption Spectroscopy
20.
Dev Neurobiol ; 76(10): 1061-77, 2016 10.
Article in English | MEDLINE | ID: mdl-26724676

ABSTRACT

To assess the organization and functional development of vestibulospinal inputs to cervical motoneurons (MNs), we have used electrophysiology (ventral root and electromyographic [EMG] recording), calcium imaging, trans-synaptic rabies virus (RV) and conventional retrograde tracing and immunohistochemistry in the neonatal mouse. By stimulating the VIIIth nerve electrically while recording synaptically mediated calcium responses in MNs, we characterized the inputs from the three vestibulospinal tracts, the separate ipsilateral and contralateral medial vestibulospinal tracts (iMVST/cMVST) and the lateral vestibulospinal tract (LVST), to MNs in the medial and lateral motor columns (MMC and LMC) of cervical segments. We found that ipsilateral inputs from the iMVST and LVST were differentially distributed to the MMC and LMC in the different segments, and that all contralateral inputs to MMC and LMC MNs in each segment derive from the cMVST. Using trans-synaptic RV retrograde tracing as well as pharmacological manipulation of VIIIth nerve-elicited synaptic responses, we found that a substantial proportion of inputs to both neck and forelimb extensor MNs was mediated monosynaptically, but that polysynaptic inputs were also significant. By recording EMG responses evoked by natural stimulation of the vestibular apparatus, we found that vestibular-mediated motor output to the neck and forelimb musculature became more robust during the first 10 postnatal days, concurrently with a decrease in the latency of MN discharge evoked by VIIIth nerve electrical stimulation. Together, these results provide insight into the complexity of vestibulospinal connectivity in the cervical spinal cord and a cogent demonstration of the functional maturation that vestibulospinal connections undergo postnatally. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1061-1077, 2016.


Subject(s)
Forelimb/growth & development , Motor Activity/physiology , Neck/growth & development , Spinal Cord/growth & development , Vestibular Nuclei/growth & development , Animals , Animals, Newborn , Calcium/metabolism , Forelimb/innervation , Forelimb/physiology , Mice, Inbred C57BL , Mice, Inbred ICR , Motor Neurons/cytology , Motor Neurons/physiology , Muscle, Skeletal/growth & development , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Neck/innervation , Neck/physiology , Neural Pathways/cytology , Neural Pathways/growth & development , Neural Pathways/physiology , Spinal Cord/cytology , Spinal Cord/physiology , Vestibular Nerve/cytology , Vestibular Nerve/growth & development , Vestibular Nerve/physiology , Vestibular Nuclei/cytology , Vestibular Nuclei/physiology
SELECTION OF CITATIONS
SEARCH DETAIL