Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Am J Bot ; : e16357, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898619

ABSTRACT

PREMISE: Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification. METHODS: Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section Arachis. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators. RESULTS: Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate A. stenosperma. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus. We suggest new species assignments for several accessions. CONCLUSIONS: Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer.

2.
Genetics ; 222(2)2022 09 30.
Article in English | MEDLINE | ID: mdl-35951749

ABSTRACT

Cytonuclear coevolution is a common feature among plants, which coordinates gene expression and protein products between the nucleus and organelles. Consequently, lineage-specific differences may result in incompatibilities between the nucleus and cytoplasm in hybrid taxa. Allopolyploidy is also a common phenomenon in plant evolution. The hybrid nature of allopolyploids may result in cytonuclear incompatibilities, but the massive nuclear redundancy created during polyploidy affords additional avenues for resolving cytonuclear conflict (i.e. cytonuclear accommodation). Here we evaluate expression changes in organelle-targeted nuclear genes for 6 allopolyploid lineages that represent 4 genera (i.e. Arabidopsis, Arachis, Chenopodium, and Gossypium) and encompass a range in polyploid ages. Because incompatibilities between the nucleus and cytoplasm could potentially result in biases toward the maternal homoeolog and/or maternal expression level, we evaluate patterns of homoeolog usage, expression bias, and expression-level dominance in cytonuclear genes relative to the background of noncytonuclear expression changes and to the diploid parents. Although we find subsets of cytonuclear genes in most lineages that match our expectations of maternal preference, these observations are not consistent among either allopolyploids or categories of organelle-targeted genes. Our results indicate that cytonuclear expression evolution may be subtle and variable among genera and genes, likely reflecting a diversity of mechanisms to resolve nuclear-cytoplasmic incompatibilities in allopolyploid species.


Subject(s)
Arabidopsis , Genes, Plant , Arabidopsis/genetics , Cytoplasm/genetics , Cytoplasm/metabolism , Evolution, Molecular , Genome, Plant , Gossypium/genetics , Polyploidy
3.
Proc Natl Acad Sci U S A ; 119(30): e2204187119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858449

ABSTRACT

Mitochondrial and plastid functions depend on coordinated expression of proteins encoded by genomic compartments that have radical differences in copy number of organellar and nuclear genomes. In polyploids, doubling of the nuclear genome may add challenges to maintaining balanced expression of proteins involved in cytonuclear interactions. Here, we use ribo-depleted RNA sequencing (RNA-seq) to analyze transcript abundance for nuclear and organellar genomes in leaf tissue from four different polyploid angiosperms and their close diploid relatives. We find that even though plastid genomes contain <1% of the number of genes in the nuclear genome, they generate the majority (69.9 to 82.3%) of messenger RNA (mRNA) transcripts in the cell. Mitochondrial genes are responsible for a much smaller percentage (1.3 to 3.7%) of the leaf mRNA pool but still produce much higher transcript abundances per gene compared to nuclear genome. Nuclear genes encoding proteins that functionally interact with mitochondrial or plastid gene products exhibit mRNA expression levels that are consistently more than 10-fold lower than their organellar counterparts, indicating an extreme cytonuclear imbalance at the RNA level despite the predominance of equimolar interactions at the protein level. Nevertheless, interacting nuclear and organellar genes show strongly correlated transcript abundances across functional categories, suggesting that the observed mRNA stoichiometric imbalance does not preclude coordination of cytonuclear expression. Finally, we show that nuclear genome doubling does not alter the cytonuclear expression ratios observed in diploid relatives in consistent or systematic ways, indicating that successful polyploid plants are able to compensate for cytonuclear perturbations associated with nuclear genome doubling.


Subject(s)
Magnoliopsida , Plastids , Polyploidy , Transcription, Genetic , Cell Nucleus/genetics , Cell Nucleus/metabolism , Genome, Plant , Magnoliopsida/genetics , Plant Leaves/genetics , Plastids/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism
4.
Chromosome Res ; 30(1): 77-90, 2022 03.
Article in English | MEDLINE | ID: mdl-35043294

ABSTRACT

Telomeres are the physical ends of eukaryotic linear chromosomes that play critical roles in cell division, chromosome maintenance, and genome stability. In many plants, telomeres are comprised of TTTAGGG tandem repeat that is widely found in plants. We refer to this repeat as canonical plant telomeric repeat (CPTR). Peanut (Arachis hypogaea L.) is a spontaneously formed allotetraploid and an important food and oil crop worldwide. In this study, we analyzed the peanut genome sequences and identified a new type of tandem repeat with 10-bp basic motif TTTT(C/T)TAGGG named TAndem Repeat (TAR) 30. TAR30 showed significant sequence identity to TTTAGGG repeat in 112 plant genomes suggesting that TAR30 is a homolog of CPTR. It also is nearly identical to the telomeric tandem repeat in Cestrum elegans. Fluorescence in situ hybridization (FISH) analysis revealed interstitial locations of TAR30 in peanut chromosomes but we did not detect visible signals in the terminal ends of chromosomes as expected for telomeric repeats. Interestingly, different TAR30 hybridization patterns were found between the newly induced allotetraploid ValSten and its diploid wild progenitors. The canonical telomeric repeat TTTAGGG is also present in the peanut genomes and some of these repeats are closely adjacent to TAR30 from both cultivated peanut and its wild relatives. Overall, our work identifies a new homolog of CPTR and reveals the unique distributions of TAR30 in cultivated peanuts and wild species. Our results provide new insights into the evolution of tandem repeats during peanut polyploidization and domestication.


Subject(s)
Arachis , Genome, Plant , Arachis/genetics , Hybridization, Genetic , In Situ Hybridization, Fluorescence , Telomere/genetics
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34518223

ABSTRACT

The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii-enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.


Subject(s)
Arachis/genetics , Crops, Agricultural/genetics , Seeds/genetics , Africa , Asia , Chromosome Mapping/methods , DNA, Plant/genetics , Genetic Markers/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Hybridization, Genetic/genetics , Oceania , Plant Breeding/methods , Species Specificity
6.
G3 (Bethesda) ; 11(11)2021 10 19.
Article in English | MEDLINE | ID: mdl-34510200

ABSTRACT

Polyploidy is considered a driving force in plant evolution and domestication. Although in the genus Arachis, several diploid species were traditionally cultivated for their seeds, only the allotetraploid peanut Arachis hypogaea became the successful, widely spread legume crop. This suggests that polyploidy has given selective advantage for domestication of peanut. Here, we study induced allotetraploid (neopolyploid) lineages obtained from crosses between the peanut's progenitor species, Arachis ipaënsis and Arachis duranensis, at earlier and later generations. We observed plant morphology, seed dimensions, and genome structure using cytogenetics (FISH and GISH) and SNP genotyping. The neopolyploid lineages show more variable fertility and seed morphology than their progenitors and cultivated peanut. They also showed sexual and somatic genome instability, evidenced by changes of number of detectable 45S rDNA sites, and extensive homoeologous recombination indicated by mosaic patterns of chromosomes and changes in dosage of SNP alleles derived from the diploid species. Genome instability was not randomly distributed across the genome: the more syntenic chromosomes, the higher homoeologous recombination. Instability levels are higher than observed on peanut lines, therefore it is likely that more unstable lines tend to perish. We conclude that early stages of the origin and domestication of the allotetraploid peanut involved two genetic bottlenecks: the first, common to most allotetraploids, is composed of the rare hybridization and polyploidization events, followed by sexual reproductive isolation from its wild diploid relatives. Here, we suggest a second bottleneck: the survival of the only very few lineages that had stronger mechanisms for limiting genomic instability.


Subject(s)
Arachis , Fabaceae , Arachis/genetics , Fabaceae/genetics , Genome, Plant , Humans , Polyploidy , Synteny
7.
Viruses ; 13(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-34372510

ABSTRACT

Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased downregulation of genes associated with defense and photosynthesis in the susceptible cultivar rather than in the resistant cultivar. These results suggest that essential physiological functions were less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.


Subject(s)
Arachis/genetics , Arachis/virology , Disease Resistance/genetics , Gene Expression , Plant Diseases/virology , Tospovirus/pathogenicity , Gene Expression Profiling , Solanum lycopersicum/virology , Tospovirus/genetics
8.
Front Plant Sci ; 12: 785358, 2021.
Article in English | MEDLINE | ID: mdl-35111175

ABSTRACT

Crop wild species are increasingly important for crop improvement. Peanut (Arachis hypogaea L.) wild relatives comprise a diverse genetic pool that is being used to broaden its narrow genetic base. Peanut is an allotetraploid species extremely susceptible to peanut root-knot nematode (PRKN) Meloidogyne arenaria. Current resistant cultivars rely on a single introgression for PRKN resistance incorporated from the wild relative Arachis cardenasii, which could be overcome as a result of the emergence of virulent nematode populations. Therefore, new sources of resistance may be needed. Near-immunity has been found in the peanut wild relative Arachis stenosperma. The two loci controlling the resistance, present on chromosomes A02 and A09, have been validated in tetraploid lines and have been shown to reduce nematode reproduction by up to 98%. To incorporate these new resistance QTL into cultivated peanut, we used a marker-assisted backcrossing approach, using PRKN A. stenosperma-derived resistant lines as donor parents. Four cycles of backcrossing were completed, and SNP assays linked to the QTL were used for foreground selection. In each backcross generation seed weight, length, and width were measured, and based on a statistical analysis we observed that only one generation of backcrossing was required to recover the elite peanut's seed size. A populating of 271 BC3F1 lines was genome-wide genotyped to characterize the introgressions across the genome. Phenotypic information for leaf spot incidence and domestication traits (seed size, fertility, plant architecture, and flower color) were recorded. Correlations between the wild introgressions in different chromosomes and the phenotypic data allowed us to identify candidate regions controlling these domestication traits. Finally, PRKN resistance was validated in BC3F3 lines. We observed that the QTL in A02 and/or large introgression in A09 are needed for resistance. This present work represents an important step toward the development of new high-yielding and nematode-resistant peanut cultivars.

9.
Sci Rep ; 9(1): 17702, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776412

ABSTRACT

Root-knot nematode is a very destructive pathogen, to which most peanut cultivars are highly susceptible. Strong resistance is present in the wild diploid peanut relatives. Previously, QTLs controlling nematode resistance were identified on chromosomes A02, A04 and A09 of Arachis stenosperma. Here, to study the inheritance of these resistance alleles within the genetic background of tetraploid peanut, an F2 population was developed from a cross between peanut and an induced allotetraploid that incorporated A. stenosperma, [Arachis batizocoi x A. stenosperma]4×. This population was genotyped using a SNP array and phenotyped for nematode resistance. QTL analysis allowed us to verify the major-effect QTL on chromosome A02 and a secondary QTL on A09, each contributing to a percentage reduction in nematode multiplication up to 98.2%. These were validated in selected F2:3 lines. The genome location of the large-effect QTL on A02 is rich in genes encoding TIR-NBS-LRR protein domains that are involved in plant defenses. We conclude that the strong resistance to RKN, derived from the diploid A. stenosperma, is transferrable and expressed in tetraploid peanut. Currently it is being used in breeding programs for introgressing a new source of nematode resistance and to widen the genetic basis of agronomically adapted peanut lines.


Subject(s)
Arachis/genetics , Disease Resistance/genetics , Tetraploidy , Tylenchoidea/pathogenicity , Animals , Arachis/parasitology , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci
10.
Nat Biotechnol ; 37(7): 744-754, 2019 07.
Article in English | MEDLINE | ID: mdl-31209375

ABSTRACT

Crop improvements can help us to meet the challenge of feeding a population of 10 billion, but can we breed better varieties fast enough? Technologies such as genotyping, marker-assisted selection, high-throughput phenotyping, genome editing, genomic selection and de novo domestication could be galvanized by using speed breeding to enable plant breeders to keep pace with a changing environment and ever-increasing human population.


Subject(s)
Crops, Agricultural/genetics , Food Supply , Genetic Engineering/methods , Humans , Plant Breeding , Population Growth
11.
Nat Genet ; 51(5): 877-884, 2019 05.
Article in English | MEDLINE | ID: mdl-31043755

ABSTRACT

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination has created diversity. Using new polyploid hybrids made from the ancestral species, we show how this can generate phenotypic changes such as spontaneous changes in the color of the flowers. We suggest that diversity generated by these genetic mechanisms helped to favor the domestication of the polyploid A. hypogaea over other diploid Arachis species cultivated by humans.


Subject(s)
Arachis/genetics , Arachis/classification , Argentina , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , DNA Methylation , DNA, Plant/genetics , Domestication , Evolution, Molecular , Gene Expression Regulation, Plant , Genetic Variation , Genome, Plant , Hybridization, Genetic , Phenotype , Polyploidy , Recombination, Genetic , Species Specificity , Tetraploidy
12.
Front Plant Sci ; 9: 1604, 2018.
Article in English | MEDLINE | ID: mdl-30459792

ABSTRACT

Thrips are major pests of peanut (Arachis hypogaea L.) worldwide, and they serve as vectors of devastating orthotospoviruses such as Tomato spotted wilt virus (TSWV) and Groundnut bud necrosis virus (GBNV). A tremendous effort has been devoted to developing peanut cultivars with resistance to orthotospoviruses. Consequently, cultivars with moderate field resistance to viruses exist, but not much is known about host resistance to thrips. Integrating host plant resistance to thrips in peanut could suppress thrips feeding damage and reduce virus transmission, will decrease insecticide usage, and enhance sustainability in the production system. This review focuses on details of thrips resistance in peanut and identifies future directions for incorporating thrips resistance in peanut cultivars. Research on thrips-host interactions in peanut is predominantly limited to field evaluations of feeding damage, though, laboratory studies have revealed that peanut cultivars could differentially affect thrips feeding and thrips biology. Many runner type cultivars, field resistant to TSWV, representing diverse pedigrees evaluated against thrips in the greenhouse revealed that thrips preferred some cultivars over others, suggesting that antixenosis "non-preference" could contribute to thrips resistance in peanut. In other crops, morphological traits such as leaf architecture and waxiness and spectral reflectance have been associated with thrips non-preference. It is not clear if foliar morphological traits in peanut are associated with reduced preference or non-preference of thrips and need to be evaluated. Besides thrips non-preference, thrips larval survival to adulthood and median developmental time were negatively affected in some peanut cultivars and in a diploid peanut species Arachis diogoi (Hoehne) and its hybrids with a Virginia type cultivar, indicating that antibiosis (negative effects on biology) could also be a factor influencing thrips resistance in peanut. Available field resistance to orthotospoviruses in peanut is not complete, and cultivars can suffer substantial yield loss under high thrips and virus pressure. Integrating thrips resistance with available virus resistance would be ideal to limit losses. A discussion of modern technologies such as transgenic resistance, marker assisted selection and RNA interference, and future directions that could be undertaken to integrate resistance to thrips and to orthotospoviruses in peanut cultivars is included in this article.

13.
BMC Plant Biol ; 18(1): 159, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30081841

ABSTRACT

BACKGROUND: The Root-Knot Nematode (RKN), Meloidogyne arenaria, significantly reduces peanut grain quality and yield worldwide. Whilst the cultivated species has low levels of resistance to RKN and other pests and diseases, peanut wild relatives (Arachis spp.) show rich genetic diversity and harbor high levels of resistance to many pathogens and environmental constraints. Comparative transcriptome analysis can be applied to identify candidate resistance genes. RESULTS: Transcriptome analysis during the early stages of RKN infection of two peanut wild relatives, the highly RKN resistant Arachis stenosperma and the moderately susceptible A. duranensis, revealed genes related to plant immunity with contrasting expression profiles. These included genes involved in hormone signaling and secondary metabolites production and also members of the NBS-LRR class of plant disease resistance (R) genes. From 345 NBS-LRRs identified in A.duranensis reference genome, 52 were differentially expressed between inoculated and control samples, with the majority occurring in physical clusters unevenly distributed on eight chromosomes with preferential tandem duplication. The majority of these NBS-LRR genes showed contrasting expression behaviour between A. duranensis and A. stenosperma, particularly at 6 days after nematode inoculation, coinciding with the onset of the Hypersensitive Response in the resistant species. The physical clustering of some of these NBS-LRR genes correlated with their expression patterns in the contrasting genotypes. Four NBS-LRR genes exclusively expressed in A. stenosperma are located within clusters on chromosome Aradu. A09, which harbors a QTL for RKN resistance, suggesting a functional role for their physical arrangement and their potential involvement in this defense response. CONCLUSION: The identification of functional novel R genes in wild Arachis species responsible for triggering effective defense cascades can contribute to the crop genetic improvement and enhance peanut resilience to RKN.


Subject(s)
Arachis/metabolism , Disease Resistance/genetics , Genes, Plant/genetics , Plant Roots/metabolism , Tylenchoidea , Animals , Arachis/genetics , Arachis/parasitology , Gene Expression Profiling , Genes, Plant/physiology , Phylogeny , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Roots/genetics , Plant Roots/parasitology , Real-Time Polymerase Chain Reaction , Transcriptome
14.
Am J Bot ; 105(6): 1053-1066, 2018 06.
Article in English | MEDLINE | ID: mdl-29985538

ABSTRACT

PREMISE OF THE STUDY: The genetic bottleneck of polyploid formation can be mitigated by multiple origins, gene flow, and recombination among different lineages. In crop plants with limited origins, efforts to increase genetic diversity have limitations. Here we used lineage recombination to increase genetic diversity in peanut, an allotetraploid likely of single origin, by crossing with a novel allopolyploid genotype and selecting improved lines. METHODS: Single backcross progeny from cultivated peanut × wild species-derived allotetraploid cross were studied over successive generations. Using genetic assumptions that encompass segmental allotetraploidy, we used single nucleotide polymorphisms and whole-genome sequence data to infer genome structures. KEY RESULTS: Selected lines, despite a high proportion of wild alleles, are agronomically adapted, productive, and with improved disease resistances. Wild alleles mostly substituted homologous segments of the peanut genome. Regions of dispersed wild alleles, characteristic of gene conversion, also occurred. However, wild chromosome segments sometimes replaced cultivated peanut's homeologous subgenome; A. ipaënsis B sometimes replaced A. hypogaea A subgenome (~0.6%), and A. duranensis replaced A. hypogaea B subgenome segments (~2%). Furthermore, some subgenome regions historically lost in cultivated peanut were "recovered" by wild chromosome segments (effectively reversing the "polyploid ratchet"). These processes resulted in lines with new genome structure variations. CONCLUSIONS: Genetic diversity was introduced by wild allele introgression, and by introducing new genome structure variations. These results highlight the special possibilities of segmental allotetraploidy and of using lineage recombination to increase genetic diversity in peanut, likely mirroring what occurs in natural segmental allopolyploids with multiple origins.


Subject(s)
Arachis/genetics , Hybridization, Genetic , Polyploidy , Alleles , Genetic Variation , Homologous Recombination
15.
PLoS One ; 13(6): e0198776, 2018.
Article in English | MEDLINE | ID: mdl-29889864

ABSTRACT

The introduction of genes from wild species is a practice little adopted by breeders for the improvement of commercial crops, although it represents an excellent opportunity to enrich the genetic basis and create new cultivars. In peanut, this practice is being increasingly adopted. In this study we present results of introgression of wild alleles from the wild species Arachis duranensis and A. batizocoi improving photosynthetic traits and yield in a set of lines derived from the cross of an induced allotetraploid and cultivated peanut with selection under water stress. The assays were carried out in greenhouse and field focusing on physiological and agronomic traits. A multivariate model (UPGMA) was adopted in order to classify drought tolerant lines. Several lines showed improved levels of tolerance, with values similar to or greater than the tolerant control. Two BC1F6 lines (53 P4 and 96 P9) were highlighted for good drought-related traits, earliness and pod yield, having better phenotypic profile to the drought tolerant elite commercial cultivar BR1. These lines are good candidates for the creation of peanut cultivars suitable for production in semiarid environments.


Subject(s)
Arachis/growth & development , Tetraploidy , Water/metabolism , Alleles , Arachis/genetics , Chromosomes, Plant , Cluster Analysis , Crop Production , Droughts , Genotype , Photosynthesis
16.
Comp Cytogenet ; 12(1): 111-140, 2018.
Article in English | MEDLINE | ID: mdl-29675140

ABSTRACT

Peanut, Arachis hypogaea (Linnaeus, 1753) is an allotetraploid cultivated plant with two subgenomes derived from the hybridization between two diploid wild species, A. duranensis (Krapovickas & W. C. Gregory, 1994) and A. ipaensis (Krapovickas & W. C. Gregory, 1994), followed by spontaneous chromosomal duplication. To understand genome changes following polyploidy, the chromosomes of A. hypogaea, IpaDur1, an induced allotetraploid (A. ipaensis × A. duranensis)4x and the diploid progenitor species were cytogenetically compared. The karyotypes of the allotetraploids share the number and general morphology of chromosomes; DAPI+ bands pattern and number of 5S rDNA loci. However, one 5S rDNA locus presents a heteromorphic FISH signal in both allotetraploids, relative to corresponding progenitor. Whilst for A. hypogaea the number of 45S rDNA loci was equivalent to the sum of those present in the diploid species, in IpaDur1, two loci have not been detected. Overall distribution of repetitive DNA sequences was similar in both allotetraploids, although A. hypogaea had additional CMA3+ bands and few slight differences in the LTR-retrotransposons distribution compared to IpaDur1. GISH showed that the chromosomes of both allotetraploids had preferential hybridization to their corresponding diploid genomes. Nevertheless, at least one pair of IpaDur1 chromosomes had a clear mosaic hybridization pattern indicating recombination between the subgenomes, clear evidence that the genome of IpaDur1 shows some instability comparing to the genome of A. hypogaea that shows no mosaic of subgenomes, although both allotetraploids derive from the same progenitor species. For some reasons, the chromosome structure of A. hypogaea is inherently more stable, or, it has been at least, partially stabilized through genetic changes and selection.

18.
Am J Bot ; 104(3): 379-388, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28341626

ABSTRACT

PREMISE OF THE STUDY: Several species of Arachis have been cultivated for their edible seeds, historically and to the present day. The diploid species that have a history of cultivation show relatively small signatures of domestication. In contrast, the tetraploid species A. hypogaea evolved into highly domesticated forms and became a major world crop, the cultivated peanut. It seems likely that allotetraploidization (hybridity and/or tetraploidization) in some way enhanced attractiveness for cultivation. Here we investigate this using six different hybridization and tetraploidization events, from distinct Arachis diploid species, including one event derived from the same wild species that originated peanut. METHODS: Twenty-six anatomical, morphological, and physiological traits were examined in the induced allotetraploid plants and compared with their wild diploid parents. KEY RESULTS: Nineteen traits were transgressive (showed strong response to hybridization and chromosome duplication): allotetraploids had larger leaves, stomata and epidermal cells than did their diploid parents. In addition, allotetraploids produced more photosynthetic pigments. These traits have the same trend across the different hybrid combinations, suggesting that the changes are more likely due to ploidy rather than hybridity. In contrast, seed dimensions and seed mass did not significantly change in response to hybridization or tetraploidization. CONCLUSIONS: We suggest that the original allotetraploid that gave rise to cultivated peanut may have been attractive because of an increase in plant size, different transpiration characteristics, higher photosynthetic capacity, or other characteristics, but contrary to accepted knowledge, increased seed size was unlikely to have been important in the initial domestication.


Subject(s)
Arachis/genetics , Domestication , Genome, Plant/genetics , Photosynthesis , Arachis/anatomy & histology , Arachis/growth & development , Arachis/physiology , Crops, Agricultural , Diploidy , Genotype , Hybridization, Genetic , Phenotype , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Polyploidy , Seeds/anatomy & histology , Seeds/genetics , Seeds/growth & development , Seeds/physiology , Tetraploidy
19.
Mol Plant ; 10(2): 309-322, 2017 02 13.
Article in English | MEDLINE | ID: mdl-27993622

ABSTRACT

Peanut (Arachis hypogaea; 2n = 4x = 40) is a nutritious food and a good source of vitamins, minerals, and healthy fats. Expansion of genetic and genomic resources for genetic enhancement of cultivated peanut has gained momentum from the sequenced genomes of the diploid ancestors of cultivated peanut. To facilitate high-throughput genotyping of Arachis species, 20 genotypes were re-sequenced and genome-wide single nucleotide polymorphisms (SNPs) were selected to develop a large-scale SNP genotyping array. For flexibility in genotyping applications, SNPs polymorphic between tetraploid and diploid species were included for use in cultivated and interspecific populations. A set of 384 accessions was used to test the array resulting in 54 564 markers that produced high-quality polymorphic clusters between diploid species, 47 116 polymorphic markers between cultivated and interspecific hybrids, and 15 897 polymorphic markers within A. hypogaea germplasm. An additional 1193 markers were identified that illuminated genomic regions exhibiting tetrasomic recombination. Furthermore, a set of elite cultivars that make up the pedigree of US runner germplasm were genotyped and used to identify genomic regions that have undergone positive selection. These observations provide key insights on the inclusion of new genetic diversity in cultivated peanut and will inform the development of high-resolution mapping populations. Due to its efficiency, scope, and flexibility, the newly developed SNP array will be very useful for further genetic and breeding applications in Arachis.


Subject(s)
Arachis/genetics , Genotyping Techniques , Polymorphism, Single Nucleotide , Recombination, Genetic , Tetrasomy , Genetic Markers , Genetic Variation , Genotype , Haplotypes , Selection, Genetic
20.
Nat Genet ; 48(4): 438-46, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26901068

ABSTRACT

Cultivated peanut (Arachis hypogaea) is an allotetraploid with closely related subgenomes of a total size of ∼2.7 Gb. This makes the assembly of chromosomal pseudomolecules very challenging. As a foundation to understanding the genome of cultivated peanut, we report the genome sequences of its diploid ancestors (Arachis duranensis and Arachis ipaensis). We show that these genomes are similar to cultivated peanut's A and B subgenomes and use them to identify candidate disease resistance genes, to guide tetraploid transcript assemblies and to detect genetic exchange between cultivated peanut's subgenomes. On the basis of remarkably high DNA identity of the A. ipaensis genome and the B subgenome of cultivated peanut and biogeographic evidence, we conclude that A. ipaensis may be a direct descendant of the same population that contributed the B subgenome to cultivated peanut.


Subject(s)
Arachis/genetics , Genome, Plant , Chromosomes, Plant/genetics , DNA Methylation , DNA Transposable Elements , Evolution, Molecular , Genetic Linkage , Molecular Sequence Annotation , Ploidies , Sequence Analysis, DNA , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...