Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Stem Cell Res ; 77: 103398, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38552354

ABSTRACT

Genetic polymorphism of apolipoprotein E (APOE) confers differential susceptibility to Alzheimer's disease (AD), and APOE ɛ4 variants is the most powerful risk factor for this disease. Here, we report the generation of a human induced pluripotent stem cell (iPSC) line carrying the APOE ɛ4/ɛ4 genotype from peripheral blood mononuclear cells (PBMCs) isolated from a male with a family history of AD utilizing non-integrative Sendai virus vector. The iPSC maintains their original genotype, highly express endogenous pluripotency markers, displays a normal karyotype, and retains the ability to differentiate into cells representative of the three germ layers.

2.
Eur J Pediatr ; 183(5): 2353-2363, 2024 May.
Article in English | MEDLINE | ID: mdl-38429545

ABSTRACT

There are increasing reports of neurological manifestation in children with coronavirus disease 2019 (COVID-19). However, the frequency and clinical outcomes of in hospitalized children infected with the Omicron variant are unknown. The aim of this study was to describe the clinical characteristics, neurological manifestations, and risk factor associated with poor prognosis of hospitalized children suffering from COVID-19 due to the Omicron variant. Participants included children older than 28 days and younger than 18 years. Patients were recruited from December 10, 2022 through January 5, 2023. They were followed up for 30 days. A total of 509 pediatric patients hospitalized with the Omicron variant infection were recruited into the study. Among them, 167 (32.81%) patients had neurological manifestations. The most common manifestations were febrile convulsions (n = 90, 53.89%), viral encephalitis (n = 34, 20.36%), epilepsy (n = 23, 13.77%), hypoxic-ischemic encephalopathy (n = 9, 5.39%), and acute necrotizing encephalopathy (n = 6, 3.59%). At discharge, 92.81% of patients had a good prognosis according to the Glasgow Outcome Scale (scores ≥ 4). However, 7.19% had a poor prognosis. Eight patients died during the follow-up period with a cumulative 30-day mortality rate of 4.8% (95% confidence interval (CI) 1.5-8.1). Multivariate analysis revealed that albumin (odds ratio 0.711, 95% CI 0.556-0.910) and creatine kinase MB (CK-MB) levels (odds ratio 1.033, 95% CI 1.004-1.063) were independent risk factors of poor prognosis due to neurological manifestations. The area under the curve for the prediction of poor prognosis with albumin and CK-MB was 0.915 (95%CI 0.799-1.000), indicating that these factors can accurately predict a poor prognosis.          Conclusion: In this study, 32.8% of hospitalized children suffering from COVID-19 due to the Omicron variant infection experienced neurological manifestations. Baseline albumin and CK-MB levels could accurately predict poor prognosis in this patient population. What is Known: • Neurological injury has been reported in SARS-CoV-2 infection; compared with other strains, the Omicron strain is more likely to cause neurological manifestations in adults. • Neurologic injury in adults such as cerebral hemorrhage and epilepsy has been reported in patients with Omicron variant infection. What is New: • One-third hospitalized children with Omicron infection experience neurological manifestations, including central nervous system manifestations and peripheral nervous system manifestations. • Albumin and CK-MB combined can accurately predict poor prognosis (AUC 0.915), and the 30-day mortality rate of children with Omicron variant infection and neurological manifestations was 4.8%.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/mortality , COVID-19/complications , COVID-19/diagnosis , Male , Female , Child , Prognosis , Risk Factors , Child, Preschool , Infant , Adolescent , Nervous System Diseases/etiology , Nervous System Diseases/virology , Hospitalization/statistics & numerical data , Infant, Newborn , China/epidemiology , Child, Hospitalized/statistics & numerical data
3.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38399394

ABSTRACT

Early stage chemical development presents numerous challenges, and achieving a functional balance is a major hurdle, with many early compounds not meeting the clinical requirements for advancement benchmarks due to issues like poor oral bioavailability. There is a need to develop strategies for achieving the desired systemic concentration for these compounds. This will enable further evaluation of the biological response upon a compound-target interaction, providing deeper insight into the postulated biological pathways. Our study elucidates alternative drug delivery paradigms by comparing formulation strategies across oral (PO), intraperitoneal (IP), subcutaneous (SC), and intravenous (IV) routes. While each modality boasts its own set of merits and constraints, it is the drug's formulation that crucially influences its pharmacokinetic (PK) trajectory and the maintenance of its therapeutic levels. Our examination of model compounds G7883 and G6893 highlighted their distinct physio-chemical attributes. By harnessing varied formulation methods, we sought to fine-tune their PK profiles. PK studies showcased G7883's extended half-life using an SC oil formulation, resulting in a 4.5-fold and 2.5-fold enhancement compared with the IP and PO routes, respectively. In contrast, with G6893, we achieved a prolonged systemic coverage time above the desired target concentration through a different approach using an IV infusion pump. These outcomes underscore the need for tailored formulation strategies, which are dictated by the compound's innate properties, to reach the optimal in vivo systemic concentrations. Prioritizing formulation and delivery optimization early on is pivotal for effective systemic uptake, thereby facilitating a deeper understanding of biological pathways and expediting the overall clinical drug development timeline.

4.
J Med Virol ; 96(2): e29447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38305064

ABSTRACT

With the emergence of the Omicron variant, the number of pediatric Coronavirus Disease 2019 (COVID-19) cases requiring hospitalization and developing severe or critical illness has significantly increased. Machine learning and multivariate logistic regression analysis were used to predict risk factors and develop prognostic models for severe COVID-19 in hospitalized children with the Omicron variant in this study. Of the 544 hospitalized children including 243 and 301 in the mild and severe groups, respectively. Fever (92.3%) was the most common symptom, followed by cough (79.4%), convulsions (36.8%), and vomiting (23.2%). The multivariate logistic regression analysis showed that age (1-3 years old, odds ratio (OR): 3.193, 95% confidence interval (CI): 1.778-5.733], comorbidity (OR: 1.993, 95% CI:1.154-3.443), cough (OR: 0.409, 95% CI:0.236-0.709), and baseline neutrophil-to-lymphocyte ratio (OR: 1.108, 95% CI: 1.023-1.200), lactate dehydrogenase (OR: 1.993, 95% CI: 1.154-3.443), blood urea nitrogen (OR: 1.002, 95% CI: 1.000-1.003) and total bilirubin (OR: 1.178, 95% CI: 1.005-3.381) were independent risk factors for severe COVID-19. The area under the curve (AUC) of the prediction models constructed by multivariate logistic regression analysis and machine learning (RandomForest + TomekLinks) were 0.7770 and 0.8590, respectively. The top 10 most important variables of random forest variables were selected to build a prediction model, with an AUC of 0.8210. Compared with multivariate logistic regression, machine learning models could more accurately predict severe COVID-19 in children with Omicron variant infection.


Subject(s)
COVID-19 , Child, Hospitalized , Humans , Child , Infant , Child, Preschool , COVID-19/diagnosis , Logistic Models , SARS-CoV-2 , Cough , Machine Learning , Retrospective Studies
5.
Toxicol Appl Pharmacol ; 475: 116627, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37453479

ABSTRACT

SMARCA2 and SMARCA4 are the ATPases of the SWI/SNF chromatin remodeling complex, which play a significant role in regulating transcriptional activity and DNA repair in cells. SMARCA2 has become an appealing synthetic-lethal, therapeutic target in oncology, as mutational loss of SMARCA4 in many cancers leads to a functional dependency on residual SMARCA2 activity. Thus, for therapeutic development, an important step is understanding any potential safety target-associated liabilities of SMARCA2 inhibition. To best mimic a SMARCA2 therapeutic, a tamoxifen-inducible (TAMi) conditional knockout (cKO) rat was developed using CRISPR technology to understand the safety profile of Smarca2 genetic ablation in a model system that avoids potential juvenile and developmental phenotypes. As the rat is the prototypical rodent species utilized in toxicology studies, a comprehensive toxicological and pathological assessment was conducted in both heterozygote and homozygous knockout rats at timepoints up to 28 days, alongside relevant corresponding controls. To our knowledge, this represents the first TAMi cKO rat model utilized for safety assessment evaluations. No significant target-associated phenotypes were observed when Smarca2 was ablated in mature (11- to 15-week-old) rats; however subsequent induction of SMARCA4 was evident that could indicate potential compensatory activity. Similar to mouse models, rat CreERT2-transgene and TAMi toxicities were characterized to avoid confounding study interpretation. In summary, a lack of significant safety findings in Smarca2 cKO rats highlights the potential for therapeutics targeting selective SMARCA2 ATPase activity; such therapies are predicted to be tolerated in patients without eliciting significant on-target toxicities.


Subject(s)
Neoplasms , Tamoxifen , Mice , Rats , Animals , Tamoxifen/toxicity , Adenosine Triphosphatases , Mutation
6.
J Transl Med ; 21(1): 393, 2023 06 17.
Article in English | MEDLINE | ID: mdl-37330547

ABSTRACT

OBJECTIVE: Sarcopenia has been recognized as a third category of complications in people with diabetes. However, few studies focus on the reduction of skeletal muscle mass in young people with diabetes. The aim of this study was to investigate risk factors of pre-sarcopenia in young patients with diabetes and establish a practical tool to diagnose pre-sarcopenia in those people. METHODS: Patients (n = 1246) enrolled from the National Health and Nutrition Examination Survey (NHANES) cycle year of 2011 to 2018 were randomly divided into the training set and validation set. The all-subsets regression analysis was used to select the risk factors of pre-sarcopenia. A nomogram model for the prediction of pre-sarcopenia in the diabetic population was established based on the risk factors. The model was evaluated by the area under the receiver operating characteristic curve for discrimination, calibration curves for calibration, and decision curve analysis curves for clinical utility. RESULTS: In this study, gender, height, and waist circumference were elected as predictive factors for pre-sarcopenia. The nomogram model presented excellent discrimination in training and validation sets with areas under the curve of 0.907 and 0.912, respectively. The calibration curve illustrated excellent calibration, and the decision curve analysis showed a wide range of good clinical utility. CONCLUSIONS: This study develops a novel nomogram that integrates gender, height, and waist circumference and can be used to easily predict pre-sarcopenia in diabetics. The novel screen tool is accurate, specific, and low-cost, highlighting its potential value in clinical application.


Subject(s)
Diabetes Mellitus , Sarcopenia , Humans , Adolescent , Nutrition Surveys , Sarcopenia/complications , Sarcopenia/diagnosis , Sarcopenia/epidemiology , Diabetes Mellitus/epidemiology , Risk Factors , Calibration , Retrospective Studies
7.
Stem Cell Res ; 71: 103149, 2023 09.
Article in English | MEDLINE | ID: mdl-37356183

ABSTRACT

The ß-amyloid precursor protein (APP) is a crucial pathogenic gene linked to Alzheimer's disease (AD). A human induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells (PBMCs) isolated from a female with APP gene mutation utilizing non-integrative Sendai virus. The iPSC line exhibits high expression of pluripotency markers, retains the APP mutation, displays a normal karyotype, and has the ability to differentiate into normal teratoma tissue. This iPSC line represents a valuable cell model for investigating the pathological mechanisms and therapeutic strategies of AD.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Humans , Female , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Alzheimer Disease/pathology , Mutation/genetics , Cell Differentiation
8.
Heliyon ; 9(3): e14143, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950593

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a biological process that transforms epithelial cells into a mesenchymal phenotype, conferring cell migration and invasion capabilities. EMT is involved in the progression and metastasis of colorectal cancer (CRC). Recently, emerging evidence has shown dysregulation of non-coding RNA (ncRNA) was linked to EMT. ncRNAs, including long non-coding RNA (lncRNA), regulate the transcription of downstream target genes (mRNA) through interaction with microRNAs (miRNAs); these are termed competitive endogenous RNA (ceRNA) networks. CeRNA dysregulation-induced EMT, which is linked to the progression and prognosis of CRC, has attracted wide attention. However, understanding the role of the regulation of the ceRNA network in the EMT of CRC remains limited. We discuss the molecular functions of lncRNA, the ceRNA networks related to miRNAs and mRNAs in EMT, as well as EMT transcription factors, such as the zinc finger E-box binding homeobox 1/2 (ZEB1/2), SNAIL, SLUG, and TWIST1/2. In addition, miRNAs and lncRNAs that directly target genes, thereby initiating different signaling pathways to promote EMT in CRC, were summarized. Clarifying the role of these molecules in EMT is critical for understanding molecular mechanisms and exploring the potential therapeutic targets of CRC.

9.
Int Arch Allergy Immunol ; 184(5): 447-459, 2023.
Article in English | MEDLINE | ID: mdl-36657406

ABSTRACT

INTRODUCTION: Influenza A virus (IAV) infection causes severe lung inflammation and injury, particularly in children. Sirtuin3 (Sirt3) was confirmed to be effective in protecting the lung against injury. This study aims to explore the function and mechanism of Sirt3 on influenza development in children. METHODS: The Sirt3 level in serum samples from IAV-infected children and lung epithelial cells were detected using RT-qPCR, ELISA, and Western blot assays. Cell viability and apoptosis were determined by MTT and flow cytometry assays. Virus titration was conducted by determining TCID50. Cell inflammatory response was detected by a battery of inflammatory cytokines. The contents of ROS and ATP, mitochondrial membrane potential level, and oxygen-consumption rate were examined to reflect on oxidative stress and mitochondrial dysfunction. The activity of poly (ADP-ribose) polymerase 1 (PARP-1) was measured by colorimetry. RESULTS: Sirt3 was downregulated in IAV-infected children's serum samples and BEAS-2B cells. Overexpression of Sirt3 alleviated IAV replication and IAV-induced inflammatory injury, oxidative stress, and mitochondrial dysfunction in lung epithelial cells. Moreover, upregulation of Sirt3 deacetylated SOD2 and PARP-1 and inhibited the PARP-1 activity. Notably, the Sirt3 inhibitor (3-TYP) and PARP-1 activity agonist (nicotinamide) reversed the effects of Sirt3 overexpression on IAV replication and IAV-induced injury. CONCLUSION: Overexpression of Sirt3 attenuated IAV-evoked inflammatory injury and mitochondrial oxidative stress through the inhibition of PARP-1 activity in lung epithelial cells.


Subject(s)
Influenza A virus , Influenza, Human , Sirtuin 3 , Child , Humans , Epithelial Cells/metabolism , Inflammation/metabolism , Influenza A virus/metabolism , Lung/metabolism , Oxidative Stress , Sirtuin 3/genetics , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Influenza, Human/immunology , Influenza, Human/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism
10.
J Med Virol ; 95(1): e28339, 2023 01.
Article in English | MEDLINE | ID: mdl-36418181

ABSTRACT

The clinical features and factors associated with disease severity in children with hemorrhagic fever with renal syndrome (HFRS) have not been well characterized. This study analyzed the clinical and laboratory factors associated with disease severity in children with HFRS caused by Hantaan virus. Data in pediatric patients with HFRS were retrospectively collected from Xi'an Children's Hospital over a 9-year period. Independent factors associated with disease severity were identified. Nomogram predicting disease severity was constructed based on variables filtered by feature selection. In total, 206 children with HFRS were studied. Fever, digestive tract symptoms, headache, backache, bleeding, and renal injury signs were the common symptoms. Elevated white blood cell, reduced platelet, hematuria, proteinuria, coagulation abnormalities, increased blood urea nitrogen (BUN) and procalcitonin (PCT), decreased estimated glomerular filtration rate and low serum Na+ , Cl- , and Ca2+ were the common laboratory findings. In the 206 patients, 21 patients had critical type disease and 4 patients (1.9%) died. Hydrothorax, hypotension and cerebral edema/cerebral herniation at hospital admission were independent clinical characteristics, and neutrophil %, prothrombin activity, PCT, BUN, and Ca2+ at hospital admission were independent laboratory factors associated with critical disease. Feature selection identified BUN, PCT and prothrombin time as independent factors related to critical disease. A nomogram integrating BUN and PCT at admission was constructed and calibration showed high accuracy for the probability prediction of critical disease. In conclusion, this study characterized the clinical and laboratory features and constructed a nomogram predicting disease severity in pediatric HFRS, providing references for disease severity evaluation in managing children HFRS.


Subject(s)
Hantaan virus , Hemorrhagic Fever with Renal Syndrome , Humans , Child , Hemorrhagic Fever with Renal Syndrome/complications , Hemorrhagic Fever with Renal Syndrome/diagnosis , Retrospective Studies , Patient Acuity , Severity of Illness Index
12.
Environ Toxicol ; 37(7): 1618-1628, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35243748

ABSTRACT

It's known that APAP overdose often leads to hepatotoxicity and nephrotoxicity. In the present study, we investigated the preventative effect of Tan IIA on APAP-induced nephrotoxicity. Mice were orally administrated with Tan IIA (10 or 30 mg/kg/day) for 1 week and subsequently gavaged with 200 mg/kg of APAP. Tan IIA reduced APAP-induced nephrotoxicity as evidenced by histopathological evaluation and serum creatinine levels. Tan IIA pretreatment promoted the efflux of the toxic intermediate metabolite N-acetyl-p-benzoquinone imine (NAPQI), thus reduced its injury to mouse kidney. After Tan IIA pretreatment, a remarkable increase in mRNA and protein expression of Nrf2 and its target genes Mrp2 and Mrp4 was observed in Nrf2+/+ mice kidneys, however, no obvious change of Mrp2 and Mrp4 mRNA and protein expression was detected in Nrf2-/- mice kidneys. HK-2 cells were used for exploring the roles of Tan IIA in the Nrf2-MRPs pathway in vitro. Consistently, Tan IIA up-regulated the Nrf2-MRPs pathway and promoted the nuclear Nrf2 accumulation in HK-2 cells. Collectively, our findings suggested that Tan IIA facilitated the clearance of toxic intermediate metabolite NAPQI from the kidney through upregulation of the Nrf2-MRP2/4 pathway, thereby, performing preventive effects against APAP-induced nephrotoxicity.


Subject(s)
Abietanes , Acetaminophen , Kidney Diseases , Animals , Mice , Abietanes/pharmacology , Acetaminophen/pharmacology , Acetaminophen/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/prevention & control , Mice, Inbred C57BL , Multidrug Resistance-Associated Protein 2/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Multidrug Resistance-Associated Proteins/pharmacology , NF-E2-Related Factor 2/metabolism , RNA, Messenger/metabolism , Signal Transduction/drug effects
13.
J Hazard Mater ; 427: 128124, 2022 04 05.
Article in English | MEDLINE | ID: mdl-34973575

ABSTRACT

The addition of barium-based additives is one of the main methods used to suppress smoke emissions in non-road diesel engines. Herein, a commercial barium-based additive was added to diesel fuel at the manufacturer's recommended concentration and used in a non-road four-cylinder supercharged diesel engine, without an after-treatment system, in bench experiments. Regulated emissions of the diesel engine were measured, volatile organic compounds (VOCs) and particulate matter (PM) were sampled. The carbonaceous fraction, water-soluble ions and inorganic elements in the PM were analyzed. Results indicated that the additive effectively reduced carbon monoxide (CO), hydrocarbon (HC) and smoke emissions from the engine. A 71% reduction in smoke was observed at the rated working condition, which was the maximum reduction of the three tested conditions. The additive produced a 36% reduction of VOCs at the rated working condition. The proportion of high carbon number hydrocarbons in the VOCs increased while the atmospheric reactivity of the VOCs decreased. The additive suppressed the concentration of organic carbon (OC) and elemental carbon (EC) emissions with a maximum reduction (40%) of total carbon achieved under the rated working condition. After the application of the additive, the concentration of water-soluble ions (Cl-, SO42-, NO3-, Na+, K+, Ca2+, NH4+) and elements (Fe, Mn, S, Ca, Ba) in the PM increased. A trend of increasing Barium content in the PM matched a similar trend of decreasing smoke.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Barium , Gases , Gasoline/analysis , Particulate Matter/analysis , Vehicle Emissions/analysis
14.
Front Nutr ; 9: 1051351, 2022.
Article in English | MEDLINE | ID: mdl-36606230

ABSTRACT

Background: Sunburn is a common problem for outdoor workers and casual outdoor walkers. Carotenoids are important elements in normal function of skin tissue and skin metabolism and are critical in the development of some cancers. However, the possible relationships between sunburn sensitivity, carotenoids and the risk of cancers remain unknown. Objectives: To explore the associations of serum carotenoids with sunburn severity and the risk of cancers. Methods: A cross-sectional study from the National Health and Nutrition Examination Survey from 1999 to 2018 were conducted. The relationship between sunburn and serum carotenoids, cancers were investigated by unconditional or ordinal logistic regression. Mediation analysis was used to explore the effect of carotenoids on the relationship between sunburn and cancers. Results: A total of 25,440 US adults from 1999 to 2018 were enrolled in this study. There were significant differences in sex, race and natural hair color between the sunburn and non-sunburn people. The severity of sunburn was significantly associated with serum trans-ß-carotene, cis-ß-carotene, combined lutein, and vitamin A. The odds ratios of severe reactions were 5.065 (95% CI: 2.266-11.318) in melanoma patients, 5.776 (95% CI: 3.362-9.922) in non-melanoma patients, and 1.880 (95% CI: 1.484-2.380) in non-skin cancers patients. Additionally, serum carotenoids were partially attributable to the effect of sunburn on skin and non-skin cancers. Conclusion: Sunburn severity was associated with cancers, and severer sunburn was related with higher risk of cancers. Serum carotenoids were also associated with sunburn severity. Moreover, the relationship between sunburn and cancers was mediated by some serum carotenoids.

15.
Lab Invest ; 102(3): 272-280, 2022 03.
Article in English | MEDLINE | ID: mdl-34799662

ABSTRACT

Patients with chronic obstructive pulmonary disease (COPD) are characterized by an imbalance between oxidant enzymes and antioxidant enzymes. In the present study, we explored the protective effect of vitamin E on COPD and the underlying mechanisms. Targets of vitamin E were predicted by bioinformatics analysis. After establishing cigarette smoke (CS)-induced COPD rats, the expression levels of epidermal growth factor receptor (EGFR), cyclooxygenase 2 (COX2), and transcriptional activity of signal transducer and activator of transcription 3 (STAT3) were measured. Additionally, the effects of vitamin E on CS-induced COPD were explored by assessing inflammation, the reactive oxygen species (ROS), the activity of superoxide dismutase (SOD) and the content of malondialdehyde (MDA), viability of human bronchial epithelioid (HBE) cells, and the expression of EGFR/MAPK pathway-related factors after loss- and gain- function assays. Vitamin E alleviated COPD. Vitamin E inhibited MAPK signaling pathway through decreasing EGFR expression. Additionally, vitamin E suppressed CS-induced HBE cell damage. Functionally, vitamin E attenuated CS-induced inflammation, apoptosis, and ROS by inhibiting the EGFR/MAPK axis, thereby inhibiting COX2-mediated p-STAT3 nuclear translocation. Moreover, overexpression of COX2 attenuated the protective effect of vitamin E on COPD rats. The present study shows that vitamin E inhibits the expression of COX2 by negatively regulating the EGFR/MAPK pathway, thereby inhibiting the translocation of phosphorylated STAT3 to the nucleus and relieving COPD.


Subject(s)
Cyclooxygenase 2/metabolism , ErbB Receptors/metabolism , MAP Kinase Signaling System/drug effects , Pulmonary Disease, Chronic Obstructive/prevention & control , STAT3 Transcription Factor/metabolism , Vitamin E/pharmacology , Active Transport, Cell Nucleus/drug effects , Animals , Bronchi/cytology , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Malondialdehyde/metabolism , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Rats , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Vitamins/pharmacology
16.
Chem Commun (Camb) ; 57(78): 10067-10070, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34514489

ABSTRACT

We report the first visible light photocatalytic oxidation of NO on CdS nanorods (CdS-NRs), one of the typical reduction type semiconductor photocatalysts. The NO removal rate in a continuous reactor sharply increases from 44% to 58% after in situ deposition of Bi nanoplates on CdS-NRs. The LSPR effect of metallic Bi causes the dramatic production of superoxide radicals (˙O2-) and singlet oxygen (1O2) that are responsible for the oxidation of NO.

17.
ACS Omega ; 6(28): 17848-17860, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34308020

ABSTRACT

The secondary atomization of droplets is one of the means to improve the efficiency of diesel fuel injection atomization. As a promising biomass fuel, emulsified biodiesel showed a good prospect in improving the atomization effect of diesel engines. In this study, a high-temperature and pressure-resistant evaporator was designed to simulate diesel-like conditions, and the evaporation and combustion experiments of emulsified biodiesel droplets were carried out. The morphological changes in the droplets were dynamically captured using a high-speed camera. According to the collected images, the evaporation characteristic parameters, the dynamic parameters of droplet motion, and the correlation between the original and secondary droplets were quantitatively analyzed. The gain effect of secondary atomization for droplets on the diesel engine spray was evaluated. The results showed that the emulsified biodiesel underwent nucleation, agglomeration, puffing, and explosion during the evaporation process, while the classic d 2 law only meets a few cases of this fuel. The effect of high temperature was reflected in reducing the normalization time of droplet agglomeration and explosion, while the higher pressure inhibited the expansion of the droplets, thus slowing down the expansion rate and restricting the droplet volume. Driven by the water content, the time of droplet explosion was closer to the droplet lifetime. The evaporation process of the secondary droplet was similar to that of the original droplet over a reduced scale of 1-2 orders of magnitude. (Dd /D d 0)2 ≈ 1 was a necessary condition for the secondary droplets to be produced in large quantities. The average equivalent diameter of the droplets was distributed in the range of 80-140 µm, and the secondary atomization caused expansion of the spray range by 20-40%. Expansion of the range of secondary droplets was beneficial to shortening the ignition delay and increasing the combustion rate.

18.
Environ Sci Pollut Res Int ; 28(46): 66242-66252, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34331224

ABSTRACT

In the exhaust pipe, the adsorption process of diesel exhaust particulate matter (PM) is affected by the combination of its adsorption capacity and the environment. A diesel exhaust particle collection system was established to collect samples with different environmental conditions. The adsorption capacity of the samples was characterized by an isothermal adsorption test. Changes in sample characteristics were investigated by scanning electron microscope and thermogravimetric analyzer. The correlation analysis of the factors influencing the adsorption process was performed. The results showed that the diesel exhaust particulate matter has adsorption capacity, the pore diameter is distributed continuously in the range of 8 to 80 nm, and the specific surface area and pore structure parameters are similar to carbon black and belong to the category of mesopores and macropores. As the engine speed increased from 1500 to 3600 r·min-1, the specific surface area of samples increased from 65.408 to 101.885 m2·g-1, and the pore volume expanded from 0.093 to 0.152 mL·g-1, with a more complex pore structure and enhanced adsorption capacity. The samples at the outlet of the exhaust pipe had increased box dimension (DB), moisture, and soluble organic fraction (SOF) content compared to the samples at the inlet of the exhaust pipe. The activation energies (E) of the three samples were reduced by 34.77 kJ∙mol-1, 38.88 kJ∙mol-1, and 47.43 kJ∙mol-1, respectively. Among the influencing factors, the increase of hydrocarbon concentration contributes to the increase of adsorption volume and the reduction of E. The increase of the average temperature inhibits the increase of the DB, and the increase of the temperature difference between the inlet and outlet facilitates the adsorption of water and SOF by samples. The reduction of adsorption time is one of the main reasons for delaying the increase of DB. Average pore diameter has the largest positive correlation with the variation amount of DB, and the growth of the specific surface area and pore volume is the dominant reason for the improvement of adsorption capacity and oxidation activity.


Subject(s)
Air Pollutants , Particulate Matter , Adsorption , Air Pollutants/analysis , Particulate Matter/analysis , Soot , Vehicle Emissions/analysis
19.
Drug Metab Dispos ; 49(7): 540-547, 2021 07.
Article in English | MEDLINE | ID: mdl-33863817

ABSTRACT

Clinical induction liability is assessed with human hepatocytes. However, underpredictions in the magnitude of clinical induction have been reported. Unfortunately, in vivo studies in animals do not provide additional insight because of species differences in drug metabolizing enzymes and their regulatory pathways. To circumvent this limitation, transgenic animals expressing human orthologs were developed. The aim of this work was to investigate the utility of mouse models expressing human orthologs of pregnane X receptor, constitutive androstane receptor, and CYP3A4/7 (Tg-Composite) in evaluating clinical induction. Rifampin, efavirenz, and pioglitazone, which were employed to represent strong, moderate, and weak inducers, were administered at multiple doses to Tg-Composite animals. In vivo CYP3A activity was monitored by measuring changes in the exposure of the CYP3A probe substrate triazolam. After the in vivo studies, microsomes were prepared from their livers to measure changes of in vitro CYP3A4 activity. In both in vivo and in vitro, distinction of clinic induction was recapitulated as rifampin yielded the greatest inductive effect followed by efavirenz and pioglitazone. Interestingly, with rifampin, in vivo CYP3A activity was approximately 4-fold higher than in vitro activity. Conversely, there was no difference between in vivo and in vitro CYP3A activity with efavirenz. These findings are consistent with the report that, although rifampin exhibits differential inductive effects between the intestines and liver, efavirenz does not. These data highlight the promise of transgenic models, such as Tg-Composite, to complement human hepatocytes to enhance the translatability of clinical induction as well as become a powerful tool to further study mechanisms of drug disposition. SIGNIFICANCE STATEMENT: Underprediction of the magnitude of clinical induction when using human hepatocytes has been reported, and transgenic models may improve clinical translatability. The work presented here showcases the human orthologs of pregnane X receptor, constitutive androstane receptor, and CYP3A4/7 model, which was able to recapitulate the magnitude of clinical induction and to differentiate tissue-dependent induction observed with rifampin but not with efavirenz. These results not only foreshadow the potential application of such transgenic models in assessing clinical induction but also in further investigation of the mechanism of drug disposition.


Subject(s)
Cytochrome P-450 CYP3A Inducers/pharmacokinetics , Alkynes/administration & dosage , Alkynes/pharmacokinetics , Animals , Benzoxazines/administration & dosage , Benzoxazines/pharmacokinetics , Constitutive Androstane Receptor/genetics , Constitutive Androstane Receptor/metabolism , Cyclopropanes/administration & dosage , Cyclopropanes/pharmacokinetics , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 CYP3A Inducers/administration & dosage , Drug Evaluation, Preclinical/methods , Drug Interactions , Feasibility Studies , Female , Humans , Mice , Mice, Transgenic , Microsomes, Liver , Pioglitazone/administration & dosage , Pioglitazone/pharmacokinetics , Pregnane X Receptor/genetics , Pregnane X Receptor/metabolism , Rifampin/administration & dosage , Rifampin/pharmacokinetics , Species Specificity , Triazolam/administration & dosage , Triazolam/pharmacokinetics
20.
ACS Omega ; 6(9): 6081-6087, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33718699

ABSTRACT

Methanol and biodiesel are both alternative fuels of diesel engines. In order to study the effects of methanol on the microstructure of particulates produced from the diesel engine fueled with a methanol/biodiesel blend, the methanol/biodiesel blend fuels with 0, 10, and 20% methanol were prepared (named B100, BM10, and BM20, respectively). SEM and TG experiments have been carried out, and the structural and oxidative characteristics of particulates for the methanol/biodiesel blend were investigated. The results showed that the average diameters of B100, BM10, and BM20 particulates were 35, 32.6, and 31.2 nm, respectively. With the increase of methanol blending ratio, the H2O and SOF (soluble organic fraction) contents were increased and the soot content in particulates was reduced slightly. In addition, the activation energy of the particulate pyrolysis reaction was reduced with the increase of methanol mixing ratio, and the oxidative reaction of particulates was easier to carry out.

SELECTION OF CITATIONS
SEARCH DETAIL
...