Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Article in English | MEDLINE | ID: mdl-39031344

ABSTRACT

Hepatocellular carcinoma (HCC) is the predominant form of primary liver cancer, accounting for approximately 90% of liver cancer cases. It currently ranks as the fifth most prevalent cancer worldwide and represents the third leading cause of cancer-related mortality. As a malignant disease with surgical resection and ablative therapy being the sole curative options available, it is disheartening that most HCC patients who undergo liver resection experience relapse within five years. Microvascular invasion (MVI), defined as the presence of micrometastatic HCC emboli within liver vessels, serves as an important histopathological feature and indicative factor for both disease-free survival and overall survival in HCC patients. Therefore, achieving accurate preoperative noninvasive prediction of MVI holds vital significance in selecting appropriate clinical treatments and improving patient prognosis. Currently, there are no universally recognized criteria for preoperative diagnosis of MVI in clinical practice. Consequently, extensive research efforts have been directed towards preoperative imaging prediction of MVI to address this problem and the relative research progresses were reviewed in this article to summarize its current limitations and future research prospects.

2.
Article in English | MEDLINE | ID: mdl-39069713

ABSTRACT

BACKGROUND: Lung cancer incidence is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substance and elucidating their mechanism have been the focus of anti-tumor research. OBJECTIVE: In our work, Silibinin (SiL) was chosen as a possible substance that could inhibit lung cancer. and its effects on inducing tumor cell death have been studied. METHODS: CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3 and MLKL were analyzed using the co-immunoprecipitation technique. In vivo, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer. RESULTS: With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. The proteins associated with apoptosis were upregulated and activated. The amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins. The co-IP assay further confirmed necrosome formation induced by SiL. Furthermore, Necrosulfonamide (an MLKL inhibitor) increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth. CONCLUSIONS: This study helped clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in dual induction of apoptosis and necroptosis. In particular, necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL. Our work provided an experimental basis for the research on cell death induced by SiL and revealed its possible applications for improving the management of lung cancer.

.

3.
Heliyon ; 10(11): e32331, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947484

ABSTRACT

The correlation between sports participation and psychological well-being is well-documented, revealing a complex interplay influenced by competition level and cultural context. This is particularly relevant in Korea, where the university sports culture significantly impacts student life. This study evaluates how competitive versus non-competitive sports affect Korean university students' psychological well-being using a quantitative approach with SmartPLS 4 for multi-group analysis. Findings reveal that competitive sports significantly enhance mental toughness and stress management through structured coping mechanisms and robust social support, improving coping strategy effectiveness by 34 % compared to non-competitive sports. Conversely, participants in non-competitive sports experience greater general well-being with a 40 % higher use of informal support. These insights suggest that university sports programs could benefit from targeted interventions incorporating specific coping strategies and social support frameworks tailored to the competitive context. This research underscores the need for precise stress management techniques and resilience-building exercises in sports curricula to optimize psychological well-being across different sports environments in Korean universities.

4.
Cancer Cell ; 42(8): 1352-1369.e13, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39029464

ABSTRACT

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.


Subject(s)
Gene Expression Regulation, Neoplastic , Lung Neoplasms , Small Cell Lung Carcinoma , Transcription Factors , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Mice , Cell Line, Tumor , Cell Proliferation , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/genetics , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/genetics
5.
Article in English | MEDLINE | ID: mdl-38848171

ABSTRACT

OBJECTIVE: This study aimed to investigate the feasibility of using dual-layer spectral CT multi-parameter feature to predict microvascular invasion of hepatocellular carcinoma. METHODS: This retrospective study enrolled 50 HCC patients who underwent multiphase contrast-enhanced spectral CT studies preoperatively. Combined clinical data, radiological features with spectral CT quantitative parameter were constructed to predict MVI. ROC was applied to identify potential predictors of MVI. The CT values obtained by simulating the conventional CT scans with 70 keV images were compared with those obtained with 40 keV images. RESULTS: 50 hepatocellular carcinomas were detected with 30 lesions (Group A) with microvascular invasion and 20 (Group B) without. There were significant differences in AFP,tumer size, IC, NIC,slope and effective atomic number in AP and ICrr in VP between Group A ((1000(10.875,1000),4.360±0.3105, 1.7750 (1.5350,1.8825) mg/ml, 0.1785 (0.1621,0.2124), 2.0362±0.2108,8.0960±0.1043,0.2830±0.0777) and Group B (4.750(3.325,20.425),3.190±0.2979,1.4700 (1.4500,1.5775) mg/ml, 0.1441 (0.1373,0.1490),1.8601±0.1595, 7.8105±0.7830 and 0.2228±0.0612) (all p < 0.05). Using 0.1586 as the threshold for NIC, one could obtain an area-under-curve (AUC) of 0.875 in ROC to differentiate between tumours with and without microvascular invasion. AUC was 0.625 with CT value at 70 keV and improved to 0.843 at 40 keV. CONCLUSION: Dual-layer spectral CT provides additional quantitative parameters than conventional CT to enhance the differentiation between hepatocellular carcinoma with and without microvascular invasion. Especially, the normalized iodine concentration (NIC) in arterial phase has the greatest potential application value in determining whether microvascular invasion exists, and can offer an important reference for clinical treatment plan and prognosis assessment.

6.
J Agric Food Chem ; 72(23): 13015-13022, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38807413

ABSTRACT

The extensive and repeated application of chemical fungicides results in the rapid development of fungicide resistance. Novel antifungal pesticides are urgently required. Natural products have been considered precious sources of pesticides. It is necessary to discover antifungal pesticides by using natural products. Herein, 42 various griseofulvin derivatives were synthesized. Their antifungal activities were evaluated in vitro. Most of them showed good antifungal activity, especially 3d exhibited a very broad antifungal spectrum and the most significant activities against 7 phytopathogenic fungi. In vivo activity results suggested that 3d protected apples and tomatoes from serious infection by phytopathogenic fungi. These proved that 3d had the potential to be a natural product-derived antiphytopathogenic fungi agent. Furthermore, docking analysis suggested that tubulin might be one of the action sites of 3d. It is reasonable to believe that griseofulvin derivatives are worth further development for the discovery of new pesticides.


Subject(s)
Fungi , Fungicides, Industrial , Griseofulvin , Plant Diseases , Griseofulvin/pharmacology , Griseofulvin/chemistry , Griseofulvin/chemical synthesis , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Plant Diseases/microbiology , Structure-Activity Relationship , Fungi/drug effects , Molecular Docking Simulation , Solanum lycopersicum/microbiology , Microbial Sensitivity Tests , Molecular Structure , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry
7.
J Clin Invest ; 134(14)2024 May 23.
Article in English | MEDLINE | ID: mdl-38781024

ABSTRACT

Inactivation of phosphatase and tensin homolog (PTEN) is prevalent in human prostate cancer and causes high-grade adenocarcinoma with a long latency. Cancer-associated fibroblasts (CAFs) play a pivotal role in tumor progression, but it remains elusive whether and how PTEN-deficient prostate cancers reprogram CAFs to overcome the barriers for tumor progression. Here, we report that PTEN deficiency induced Krüppel-like factor 5 (KLF5) acetylation and that interruption of KLF5 acetylation orchestrated intricate interactions between cancer cells and CAFs that enhance FGF receptor 1 (FGFR1) signaling and promote tumor growth. Deacetylated KLF5 promoted tumor cells to secrete TNF-α, which stimulated inflammatory CAFs to release FGF9. CX3CR1 inhibition blocked FGFR1 activation triggered by FGF9 and sensitized PTEN-deficient prostate cancer to the AKT inhibitor capivasertib. This study reveals the role of KLF5 acetylation in reprogramming CAFs and provides a rationale for combined therapies using inhibitors of AKT and CX3CR1.


Subject(s)
Cancer-Associated Fibroblasts , Kruppel-Like Transcription Factors , PTEN Phosphohydrolase , Prostatic Neoplasms , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , Humans , Acetylation , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Animals , Mice , Cellular Reprogramming , Cell Line, Tumor
8.
Antibiotics (Basel) ; 13(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38667028

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium), a foodborne pathogen that poses significant public health risks to humans and animals, presents a formidable challenge due to its antibiotic resistance. This study explores the potential of Lactobacillus acidophilus (L. acidophilus 1.3251) probiotics as an alternative strategy to combat antibiotic resistance associated with S. Typhimurium infection. In this investigation, twenty-four BALB/c mice were assigned to four groups: a non-infected, non-treated group (CNG); an infected, non-treated group (CPG); a group fed with L. acidophilus but not infected (LAG); and a group fed with L. acidophilus and challenged with Salmonella (LAST). The results revealed a reduction in Salmonella levels in the feces of mice, along with restored weight and improved overall health in the LAST compared to the CPG. The feeding of L. acidophilus was found to downregulate pro-inflammatory cytokine mRNA induced by Salmonella while upregulating anti-inflammatory cytokines. Additionally, it influenced the expression of mRNA transcript, encoding tight junction protein, oxidative stress-induced enzymes, and apoptosis-related mRNA expression. Furthermore, the LEfSe analysis demonstrated a significant shift in the abundance of critical commensal genera in the LAST, essential for maintaining gut homeostasis, metabolic reactions, anti-inflammatory responses, and butyrate production. Transcriptomic analysis revealed 2173 upregulated and 506 downregulated differentially expressed genes (DEGs) in the LAST vs. the CPG. Functional analysis of these DEGs highlighted their involvement in immunity, metabolism, and cellular development. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis indicated their role in tumor necrosis factor (TNF), mitogen-activated protein kinase (MAPK), chemokine, Forkhead box O (FOXO), and transforming growth factor (TGF-ß) signaling pathway. Moreover, the fecal metabolomic analysis identified 929 differential metabolites, with enrichment observed in valine, leucine, isoleucine, taurine, glycine, and other metabolites. These findings suggest that supplementation with L. acidophilus promotes the growth of beneficial commensal genera while mitigating Salmonella-induced intestinal disruption by modulating immunity, gut homeostasis, gut barrier integrity, and metabolism.

9.
J Proteome Res ; 23(5): 1713-1724, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38648079

ABSTRACT

Non-small-cell lung cancer (NSCLC), a common malignant tumor, requires deeper pathogenesis investigation. Autophagy is an evolutionarily conserved lysosomal degradation process that is frequently blocked during cancer progression. It is an urgent need to determine the novel autophagy-associated regulators in NSCLC. Here, we found that pirin was upregulated in NSCLC, and its expression was positively correlated with poor prognosis. Overexpression of pirin inhibited autophagy and promoted NSCLC proliferation. We then performed data-independent acquisition-based quantitative proteomics to identify the differentially expressed proteins (DEPs) in pirin-overexpression (OE) or pirin-knockdown (KD) cells. Among the pirin-regulated DEPs, ornithine decarboxylase 1 (ODC1) was downregulated in pirin-KD cells while upregulated along with pirin overexpression. ODC1 depletion reversed the pirin-induced autophagy inhibition and pro-proliferation effect in A549 and H460 cells. Immunohistochemistry showed that ODC1 was highly expressed in NSCLC cancer tissues and positively related with pirin. Notably, NSCLC patients with pirinhigh/ODC1high had a higher risk in terms of overall survival. In summary, we identified pirin and ODC1 as a novel cluster of prognostic biomarkers for NSCLC and highlighted the potential oncogenic role of the pirin/ODC1/autophagy axis in this cancer type. Targeting this pathway represents a possible therapeutic approach to treat NSCLC.


Subject(s)
Autophagy , Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Disease Progression , Lung Neoplasms , Ornithine Decarboxylase , Female , Humans , Male , A549 Cells , Autophagy/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase/genetics , Prognosis , Up-Regulation
10.
Eur J Radiol ; 175: 111452, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604092

ABSTRACT

OBJECTIVE: To investigate the potential value of quantitative parameters derived from synthetic magnetic resonance imaging (syMRI) for discriminating axillary lymph nodes metastasis (ALNM) in breast cancer patients. MATERIALS AND METHODS: A total of 56 females with histopathologically proven invasive breast cancer who underwent both conventional breast MRI and additional syMRI examinations were enrolled in this study, including 30 patients with ALNM and 26 with non-ALNM. SyMRI has enabled quantification of T1 relaxation time (T1), T2 relaxation time (T2) and proton density (PD). The syMRI quantitative parameters of breast primary tumors before (T1tumor, T2tumor, PDtumor) and after (T1+tumor, T2+tumor, PD+tumor) contrast agent injection were obtained. Similarly, measurements were taken for axillary lymph nodes before (T1LN, T2LN, PDLN) and after (T1+LN, T2+LN, PD+LN) the injection, then theΔT1 (T1-T1+), ΔT2 (T2-T2+), ΔPD (PD-PD+), T1/T2 and T1+/T2+ were calculated. All parameters were compared between ANLM and non-ALNM group. Intraclass correlation coefficient for assessing interobserver agreement. The independent Student's t test or Mann-Whitney U test to determine the relationship between the mean quantitative values and the ALNM. Multivariate logistic regression analyses followed by receiver operating characteristics (ROC) analysis for discriminating ALN status. A P value < 0.05 was considered statistically significant. RESULTS: The short-diameter of lymph nodes (DLN) in ALNM group was significantly longer than that in the non-ALNM group (10.22 ± 3.58 mm vs. 5.28 ± 1.39 mm, P < 0.001). The optimal cutoff value was determined to be 5.78 mm, with an AUC of 0.894 (95 % CI: 0.838-0.939), a sensitivity of 86.7 %, and a specificity of 90.2 %. In syMRI quantitative parameters of breast tumors, T2tumor, ΔT2tumor and ΔPDtumor values showed statistically significant differences between the two groups (P < 0.05). T2tumor value had the best performance in discriminating ALN status (AUC = 0.712), and the optimal cutoff was 90.12 ms, the sensitivity and specificity were 65.0 % and 83.6 % respectively. In terms of syMRI quantitative parameters of lymph nodes, T1LN, T2LN, T1LN/T2LN, T2+LN and ΔT1LN values were significantly different between the two groups (P < 0.05), and their AUCs were 0.785, 0.840, 0.886, 0.702 and 0.754, respectively. Multivariate analyses indicated that the T1LN value was the only independent predictor of ALNM (OR=1.426, 95 % CI: 1.130-1.798, P = 0.039). The diagnostic sensitivity and specificity of T1LN was 86.7 % and 69.4 % respectively at the best cutoff point of 1371.00 ms. The combination of T1LN, T2LN, T1LN/T2LN, ΔT1LN and DLN had better performance for differentiating ALNM and non-ALNM, with AUCs of 0.905, 0.957, 0.964 and 0.897, respectively. CONCLUSION: The quantitative parameters derived from syMRI have certain value for discriminating ALN status in invasive breast cancer, with T2tumor showing the highest diagnostic efficiency among breast lesions parameters. Moreover, T1LN acted as an independent predictor of ALNM.


Subject(s)
Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Magnetic Resonance Imaging , Sensitivity and Specificity , Humans , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Axilla/diagnostic imaging , Middle Aged , Lymphatic Metastasis/diagnostic imaging , Magnetic Resonance Imaging/methods , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Adult , Aged , Reproducibility of Results , Neoplasm Invasiveness/diagnostic imaging , Contrast Media , Image Interpretation, Computer-Assisted/methods , Image Enhancement/methods
11.
Genes (Basel) ; 15(4)2024 03 29.
Article in English | MEDLINE | ID: mdl-38674370

ABSTRACT

Salmonella typhimurium (S. typhimurium), a prevalent cause of foodborne infection, induces significant changes in the host transcriptome and metabolome. The lack of therapeutics with minimal or no side effects prompts the scientific community to explore alternative therapies. This study investigates the therapeutic potential of a probiotic mixture comprising Lactobacillus acidophilus (L. acidophilus 1.3251) and Lactobacillus plantarum (L. plantarum 9513) against S. typhimurium, utilizing transcriptome and metabolomic analyses, a novel approach that has not been previously documented. Twenty-four SPF-BALB/c mice were divided into four groups: control negative group (CNG); positive control group (CPG); probiotic-supplemented non-challenged group (LAPG); and probiotic-supplemented Salmonella-challenged group (LAPST). An RNA-sequencing analysis of small intestinal (ileum) tissue revealed 2907 upregulated and 394 downregulated DEGs in the LAPST vs. CPG group. A functional analysis of DEGs highlighted their significantly altered gene ontology (GO) terms related to metabolism, gut integrity, cellular development, and immunity (p ≤ 0.05). The KEGG analysis showed that differentially expressed genes (DEGs) in the LAPST group were primarily involved in pathways related to gut integrity, immunity, and metabolism, such as MAPK, PI3K-Akt, AMPK, the tryptophan metabolism, the glycine, serine, and threonine metabolism, ECM-receptor interaction, and others. Additionally, the fecal metabolic analysis identified 1215 upregulated and 305 downregulated metabolites in the LAPST vs. CPG group, implying their involvement in KEGG pathways including bile secretion, propanoate metabolism, arginine and proline metabolism, amino acid biosynthesis, and protein digestion and absorption, which are vital for maintaining barrier integrity, immunity, and metabolism. In conclusion, these findings suggest that the administration of a probiotic mixture improves immunity, maintains gut homeostasis and barrier integrity, and enhances metabolism in Salmonella infection.


Subject(s)
Lactobacillus plantarum , Mice, Inbred BALB C , Probiotics , Salmonella typhimurium , Transcriptome , Animals , Probiotics/pharmacology , Probiotics/administration & dosage , Mice , Lactobacillus acidophilus , Metabolome , Metabolomics/methods , Salmonella Infections/immunology , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella Infections/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/metabolism , Female , Gastrointestinal Microbiome/drug effects
12.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38328215

ABSTRACT

Small cell lung cancers (SCLC) are comprised of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLC, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes, including non-canonical BAF (ncBAF) complexes, as top dependencies specific to POU2F3-positive SCLC. Notably, clinical-grade pharmacologic mSWI/SNF inhibition attenuates proliferation of all POU2F3-positive SCLCs, while disruption of ncBAF via BRD9 degradation is uniquely effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, chemical targeting of SMARCA4/2 mSWI/SNF ATPases and BRD9 decrease POU2F3-SCLC tumor growth and increase survival in vivo . Taken together, these results characterize mSWI/SNF-mediated global governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for SCLC.

13.
J Sci Food Agric ; 104(3): 1723-1731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37851602

ABSTRACT

BACKGROUND: In the present work, acute gastric ulcer models were constructed by administering hydrochloric acid/ethanol. The mice ingested white jade snail secretion (WJSS) through gastric infusion. Ulcer areas in gastric tissue were recorded, and malondialdehyde (MDA) and superoxide dismutase (SOD) were also measured. Notably, high-throughput 16S rDNA analysis of intestinal flora and determination of amino acid composition in feces were performed to understand the effect of WJSS on model mice. RESULTS: Compared with the control group, the ulcer area in the WJSS low-, medium- and high-concentration groups declined by 28.02%, 39.57% and 77.85%, respectively. MDA content decreased by 24.71%, 49.58% and 64.25%, and SOD relative enzyme activity fell by 28.19%, 43.37% and 9.60%, respectively. The amounts of amino acids in the low-, medium- and high-concentration groups were slightly lower, and probiotic bacteria such as Bacteroidetes and Lactobacillales increased in different-concentration WJSS groups. Adding WJSS contributes to the establishment of beneficial intestinal flora and the absorption of amino acids. CONCLUSION: Our results showed that WJSS has a beneficial effect on inhibiting hydrochloric acid-ethanolic gastric ulcers, suggesting that WJSS has excellent potential as a novel anti-ulcer agent. Combined with ulcer area, MDA content, SOD content, gut probiotics and other indicators, a high concentration of WJSS had the best protective effect on acute gastric ulcer. © 2023 Society of Chemical Industry.


Subject(s)
Anti-Ulcer Agents , Stomach Ulcer , Mice , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Antioxidants/metabolism , Hydrochloric Acid , Ulcer/drug therapy , Ulcer/metabolism , Anti-Ulcer Agents/metabolism , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Ethanol/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Plant Extracts/metabolism , Amino Acids/metabolism , Gastric Mucosa/metabolism
14.
Nanoscale Adv ; 5(23): 6318-6348, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045530

ABSTRACT

Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.

15.
Cell Rep Med ; 4(11): 101282, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37992688

ABSTRACT

Despite small cell lung cancers (SCLCs) having a high mutational burden, programmed death-ligand 1 (PD-L1) immunotherapy only modestly increases survival. A subset of SCLCs that lose their ASCL1 neuroendocrine phenotype and restore innate immune signaling (termed the "inflammatory" subtype) have durable responses to PD-L1. Some SCLCs are highly sensitive to Aurora kinase inhibitors, but early-phase trials show short-lived responses, suggesting effective therapeutic combinations are needed to increase their durability. Using immunocompetent SCLC genetically engineered mouse models (GEMMs) and syngeneic xenografts, we show durable efficacy with the combination of a highly specific Aurora A kinase inhibitor (LSN3321213) and PD-L1. LSN3321213 causes accumulation of tumor cells in mitosis with lower ASCL1 expression and higher expression of interferon target genes and antigen-presentation genes mimicking the inflammatory subtype in a cell-cycle-dependent manner. These data demonstrate that inflammatory gene expression is restored in mitosis in SCLC, which can be exploited by Aurora A kinase inhibition.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Mice , Animals , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , B7-H1 Antigen/genetics , Aurora Kinase A/genetics , Aurora Kinase A/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Mitosis , Interferons/genetics
16.
Heliyon ; 9(9): e19163, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809901

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.

17.
Bioelectrochemistry ; 154: 108541, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37579553

ABSTRACT

MiRNA-155 is a typical biomarker for breast cancer. Since its low concentration in the physiological environment and the limitations of conventional miRNA detection methods like Northern imprinting and RT-qPCR, convenient, real-time, and rapid detection methods are urgently needed. In this work, an electrochemical biosensor was constructed based on the flower-like MoSe2@1T-MoS2 heterojunction electrode material and specific RNA recognition probes, which can realize the rapid determination of miRNA-155 content with a wide detection range from 1 fM to 1 nM and a limit of detection (LOD) as low as 0.34 fM. Furthermore, the contents of miRNA-155 in blood samples of tumor-bearing mice and normal mice were measured as 724.93 pM and 21.42 pM, respectively by this biosensor, demonstrating its strong identification ability and miRNA-155 can be regarded as an ideal diagnostic marker. On this basis, a portable sensor platform was designed for on-site detection simulation and showed good recovery efficiency from 95.80% to 98.69%. Meanwhile, compared with the standard detection method RT-qPCR, the accuracy and reliability of the biosensor were verified, indicating that the biosensor has the potential to provide point-of-care testing (POCT) for the early diagnosis of breast cancer.


Subject(s)
Biosensing Techniques , MicroRNAs , Neoplasms , Animals , Mice , Molybdenum/chemistry , Reproducibility of Results , Electrochemical Techniques/methods , MicroRNAs/genetics , Limit of Detection , Biomarkers, Tumor/analysis , Biosensing Techniques/methods
18.
Nat Cell Biol ; 25(9): 1346-1358, 2023 09.
Article in English | MEDLINE | ID: mdl-37591951

ABSTRACT

Small cell lung cancer (SCLC) exists broadly in four molecular subtypes: ASCL1, NEUROD1, POU2F3 and Inflammatory. Initially, SCLC subtypes were thought to be mutually exclusive, but recent evidence shows intra-tumoural subtype heterogeneity and plasticity between subtypes. Here, using a CRISPR-based autochthonous SCLC genetically engineered mouse model to study the consequences of KDM6A/UTX inactivation, we show that KDM6A inactivation induced plasticity from ASCL1 to NEUROD1 resulting in SCLC tumours that express both ASCL1 and NEUROD1. Mechanistically, KDM6A normally maintains an active chromatin state that favours the ASCL1 subtype with its loss decreasing H3K4me1 and increasing H3K27me3 at enhancers of neuroendocrine genes leading to a cell state that is primed for ASCL1-to-NEUROD1 subtype switching. This work identifies KDM6A as an epigenetic regulator that controls ASCL1 to NEUROD1 subtype plasticity and provides an autochthonous SCLC genetically engineered mouse model to model ASCL1 and NEUROD1 subtype heterogeneity and plasticity, which is found in 35-40% of human SCLCs.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Animals , Mice , Small Cell Lung Carcinoma/genetics , Histone Demethylases/genetics , Chromatin , Epigenomics , Lung Neoplasms/genetics
19.
J Nat Prod ; 86(7): 1793-1800, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37358590

ABSTRACT

Six new ursane-type triterpenes with a phenylpropanoid unit and five known oleanane-type triterpenes were isolated from the leaves of Camellia ptilosperma. The undescribed compounds were identified by analysis of 1D and 2D NMR and HRESIMS spectroscopic data as ptilospermanols A-F. The cytotoxicity of new compounds against six human cancer cell lines and three mouse tumor cell lines was evaluated by MTT assay.


Subject(s)
Antineoplastic Agents, Phytogenic , Antineoplastic Agents , Camellia , Triterpenes , Humans , Animals , Mice , Triterpenes/pharmacology , Triterpenes/chemistry , Camellia/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Molecular Structure , Cell Line, Tumor
20.
Environ Sci Pollut Res Int ; 30(32): 79149-79160, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37280501

ABSTRACT

As China's digital transformation accelerates, there is growing interest in whether the digital economy can effectively boost green innovation in industrial enterprises and enable China's development to break through the constraints of resources and environment. Therefore, this study analyzes the data of A-share industrial listed enterprises (2011-2020). Results indicate that the digital economy promotes green innovation. The impact of the digital economy on green innovation varies significantly among different types of enterprises, with stronger effects on state-owned enterprises. Digital economy enhances green innovation via boosting public attention and optimizing energy structure. Therefore, playing the role of monitoring public attention, and optimizing energy use are key strategies to promote corporate green innovation.


Subject(s)
Industry , Organizations , China
SELECTION OF CITATIONS
SEARCH DETAIL