Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Biophys J ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38824390

ABSTRACT

Reactions that occur within the lipid membrane involve, at minimum, ternary complexes among the enzyme, substrate, and lipid. For many systems, the impact of the lipid in regulating activity or oligomerization state is poorly understood. Here we used small angle neutron scattering (SANS) to structurally characterize an intramembrane aspartyl protease (IAP), a class of membrane-bound enzymes that use membrane-embedded aspartate residues to hydrolyze transmembrane segments of biologically relevant substrates. We focused on an IAP ortholog from the halophilic archaeon Haloferax volcanii (HvoIAP). HvoIAP purified in n-dodecyl-ß-D-maltoside (DDM) fractionates on size exclusion chromatography (SEC) as two fractions. We show that in DDM, the smaller SEC fraction is consistent with a compact HvoIAP monomer. Molecular dynamics flexible fitting conducted on an Alphafold2-generated monomer produces a model in which loops are compact alongside the membrane-embedded helices. In contrast, SANS data collected on the second SEC fraction indicates an oligomer consistent with an elongated assembly of discrete HvoIAP monomers. Analysis of in-line SEC-SANS data of the HvoIAP oligomer, the first such experiment to be conducted on a membrane protein at Oak Ridge National Lab (ORNL), shows a diversity of elongated and spherical species, including one consistent with the tetrameric assembly reported for the MmIAP crystal structure not observed previously in solution. Reconstitution of monomeric HvoIAP into bicelles increases enzyme activity and results in the assembly of HvoIAP to a species with similar dimensions as the ensemble of oligomers isolated from DDM. Our study reveals lipid-mediated HvoIAP self-assembly and demonstrates the utility of in-line SEC-SANS in elucidating oligomerization states of small membrane proteins.

2.
Nat Commun ; 15(1): 155, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168102

ABSTRACT

Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.


Subject(s)
Amyloid , Glaucoma , Humans , Amyloid/metabolism , Glaucoma/genetics , Mutation , Amyloid beta-Peptides/genetics , Amyloidogenic Proteins/genetics , Protein Folding
3.
PNAS Nexus ; 2(8): pgad268, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37644917

ABSTRACT

Methane clathrates on continental margins contain the largest stores of hydrocarbons on Earth, yet the role of biomolecules in clathrate formation and stability remains almost completely unknown. Here, we report new methane clathrate-binding proteins (CbpAs) of bacterial origin discovered in metagenomes from gas clathrate-bearing ocean sediments. CbpAs show similar suppression of methane clathrate growth as the commercial gas clathrate inhibitor polyvinylpyrrolidone and inhibit clathrate growth at lower concentrations than antifreeze proteins (AFPs) previously tested. Unlike AFPs, CbpAs are selective for clathrate over ice. CbpA3 adopts a nonglobular, extended structure with an exposed hydrophobic surface, and, unexpectedly, its TxxxAxxxAxx motif common to AFPs is buried and not involved in clathrate binding. Instead, simulations and mutagenesis suggest a bipartite interaction of CbpAs with methane clathrate, with the pyrrolidine ring of a highly conserved proline residue mediating binding by filling empty clathrate cages. The discovery that CbpAs exert such potent control on methane clathrate properties implies that biomolecules from native sediment bacteria may be important for clathrate stability and habitability.

4.
Prog Retin Eye Res ; 95: 101188, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37217093

ABSTRACT

Mutations in the gene MYOC account for approximately 5% of cases of primary open angle glaucoma (POAG). MYOC encodes for the protein myocilin, a multimeric secreted glycoprotein composed of N-terminal coiled-coil (CC) and leucine zipper (LZ) domains that are connected via a disordered linker to a 30 kDa olfactomedin (OLF) domain. More than 90% of glaucoma-causing mutations are localized to the OLF domain. While myocilin is expressed in numerous tissues, mutant myocilin is only associated with disease in the anterior segment of the eye, in the trabecular meshwork. The prevailing pathogenic mechanism involves a gain of toxic function whereby mutant myocilin aggregates intracellularly instead of being secreted, which causes cell stress and an early timeline for TM cell death, elevated intraocular pressure, and subsequent glaucoma-associated retinal degeneration. In this review, we focus on the work our lab has conducted over the past ∼15 years to enhance our molecular understanding of myocilin-associated glaucoma, which includes details of the molecular structure and the nature of the aggregates formed by mutant myocilin. We conclude by discussing open questions, such as predicting phenotype from genotype alone, the elusive native function of myocilin, and translational directions enabled by our work.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/pathology , Glaucoma/metabolism , Glycoproteins/chemistry , Eye Proteins/genetics , Eye Proteins/metabolism , Trabecular Meshwork
5.
Biophys J ; 122(14): 2921-2937, 2023 07 25.
Article in English | MEDLINE | ID: mdl-36461639

ABSTRACT

The actin filament network is in part remodeled by the action of a family of filament severing proteins that are responsible for modulating the ratio between monomeric and filamentous actin. Recent work on the protein actophorin from the amoeba Acanthamoeba castellani identified a series of site-directed mutations that increase the thermal stability of the protein by 22°C. Here, we expand this observation by showing that the mutant protein is also significantly stable to both equilibrium and kinetic chemical denaturation, and employ computer simulations to account for the increase in thermal or chemical stability through an accounting of atomic-level interactions. Specifically, the potential of mean force (PMF) can be obtained from steered molecular dynamics (SMD) simulations in which a protein is unfolded. However, SMD can be inefficient for large proteins as they require large solvent boxes, and computationally expensive as they require increasingly many SMD trajectories to converge the PMF. Adaptive steered molecular dynamics (ASMD) overcomes the second of these limitations by steering the particle in stages, which allows for convergence of the PMF using fewer trajectories compared with SMD. Use of the telescoping water scheme within ASMD partially overcomes the first of these limitations by reducing the number of waters at each stage to only those needed to solvate the structure within a given stage. In the PMFs obtained from ASMD, the work of unfolding Acto-2 was found to be higher than the Acto-WT by approximately 120 kCal/mol and reflects the increased stability seen in the chemical denaturation experiments. The evolution of the average number of hydrogen bonds and number of salt bridges during the pulling process provides a mechanistic view of the structural changes of the actophorin protein as it is unfolded, and how it is affected by the mutation in concert with the energetics reported through the PMF.


Subject(s)
Acanthamoeba , Amoeba , Acanthamoeba/metabolism , Actins/metabolism , Molecular Dynamics Simulation , Solvents/metabolism , Protein Denaturation
6.
Dis Model Mech ; 16(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36579626

ABSTRACT

Accurate predictions of the pathogenicity of mutations associated with genetic diseases are key to the success of precision medicine. Inherited missense mutations in the myocilin (MYOC) gene, within its olfactomedin (OLF) domain, constitute the strongest genetic link to primary open-angle glaucoma via a toxic gain of function, and thus MYOC is an attractive precision-medicine target. However, not all mutations in MYOC cause glaucoma, and common variants are expected to be neutral polymorphisms. The Genome Aggregation Database (gnomAD) lists ∼100 missense variants documented within OLF, all of which are relatively rare (allele frequency <0.001%) and nearly all are of unknown pathogenicity. To distinguish disease-causing OLF variants from benign OLF variants, we first characterized the most prevalent population-based variants using a suite of cellular and biophysical assays, and identified two variants with features of aggregation-prone familial disease variants. Next, we considered all available biochemical and clinical data to demonstrate that pathogenic and benign variants can be differentiated statistically based on a single metric: the thermal stability of OLF. Our results motivate genotyping MYOC in patients for clinical monitoring of this widespread, painless and irreversible ocular disease.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Humans , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Glaucoma/genetics , Glaucoma/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Mutation/genetics
7.
J Biol Chem ; 299(12): 105401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38270390

ABSTRACT

Intramembrane proteases (IPs) hydrolyze peptides in the lipid membrane. IPs participate in a number of cellular pathways including immune response and surveillance, and cholesterol biosynthesis, and they are exploited by viruses for replication. Despite their broad importance across biology, how activity is regulated in the cell to control protein maturation and release of specific bioactive peptides at the right place and right time remains largely unanswered, particularly for the intramembrane aspartyl protease (IAP) subtype. At a molecular biochemical level, different IAP homologs can cleave non-biological substrates, and there is no sequence recognition motif among the nearly 150 substrates identified for just one IAP, presenilin-1, the catalytic component of γ-secretase known for its involvement in the production of amyloid-ß plaques associated with Alzheimer disease. Here we used gel-based assays combined with quantitative mass spectrometry and FRET-based kinetics assays to probe the cleavage profile of the presenilin homolog from the methanogen Methanoculleus marisnigri JR1 as a function of the surrounding lipid-mimicking environment, either detergent micelles or bicelles. We selected four biological IAP substrates that have not undergone extensive cleavage profiling previously, namely, the viral core protein of Hepatitis C virus, the viral core protein of Classical Swine Fever virus, the transmembrane segment of Notch-1, and the tyrosine receptor kinase ErbB4. Our study demonstrates a proclivity toward cleavage of substrates at positions of low average hydrophobicity and a consistent role for the lipid environment in modulating kinetic properties.


Subject(s)
Aspartic Acid Proteases , Bacterial Proteins , Lipids , Methanomicrobiaceae , Presenilins , Aspartic Acid Proteases/chemistry , Lipids/chemistry , Presenilins/chemistry , Methanomicrobiaceae/chemistry , Bacterial Proteins/chemistry , Viral Core Proteins/chemistry , Kinetics
8.
J Phys Chem Lett ; 13(48): 11317-11322, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36453924

ABSTRACT

When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.


Subject(s)
DNA
9.
J Phys Chem Lett ; 13(42): 9834-9840, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36250687

ABSTRACT

Bicelles, composed of a mixture of long and short chain lipids, form nanostructured molecular assemblies that are attractive lipid-membrane mimics for in vitro studies of integral membrane proteins. Here we study the effect of a third component, the single chain detergent n-dodecyl-ß-d-maltoside (DDM) on the morphology of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) below (10 °C) and above (38 °C) the phase transition. In the absence of DDM, bicelles convert from ellipsoidal disks at 10 °C to extended ribbon-like structures at 38 °C. The addition of DDM reshapes the ellipsoidal disc to a circular one and the flattened ribbon to a circular-cylinder worm-like micelle. Knowledge of the influence of the single chain detergent DDM on bicelle nanoscale morphology contributes toward comprehending lipid membrane self-organization and to the goal of optimizing lipid mimics for membrane biology research.


Subject(s)
Dimyristoylphosphatidylcholine , Micelles , Dimyristoylphosphatidylcholine/chemistry , Detergents , Bile Acids and Salts , Phosphorylcholine , Membrane Proteins/chemistry , Lipid Bilayers/chemistry
10.
Protein Sci ; 31(11): e4470, 2022 11.
Article in English | MEDLINE | ID: mdl-36222314

ABSTRACT

As the epidemic of single-use plastic worsens, it has become critical to identify fully renewable plastics such as those that can be degraded using enzymes. Here we describe the structure and biochemistry of an alkaline poly[(R)-3-hydroxybutyric acid] (PHB) depolymerase from the soil thermophile Lihuaxuella thermophila. Like other PHB depolymerases or PHBases, the Lihuaxuella enzyme is active against several different polyhydroxyalkanoates, including homo- and heteropolymers, but L. thermophila PHB depolymerase (LtPHBase) is unique in that it also hydrolyzes polylactic acid and polycaprolactone. LtPHBase exhibits optimal activity at 70°C, and retains 88% of activity upon incubation at 65°C for 3 days. The 1.2 Å resolution crystal structure reveals an α/ß-hydrolase fold typical of PHBases, but with a shallow active site containing the catalytic Ser-His-Asp-triad that appears poised for broad substrate specificity. LtPHBase holds promise for the depolymerization of PHB and related bioplastics at high temperature, as would be required in bioindustrial operations like recycling or landfill management.


Subject(s)
Hydroxybutyrates , Soil , Hydroxybutyrates/metabolism , Carboxylic Ester Hydrolases/chemistry , Catalytic Domain , Substrate Specificity
11.
J Biol Inorg Chem ; 27(6): 553-564, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35831671

ABSTRACT

Myocilin is secreted from trabecular meshwork cells to an eponymous extracellular matrix that is critical for maintaining intraocular pressure. Missense mutations found in the myocilin olfactomedin domain (OLF) lead to intracellular myocilin misfolding and are causative for the heritable form of early-onset glaucoma. The OLF domain contains a unique internal, hetero-dinuclear calcium site. Here, we tested the hypothesis that calcium dysregulation causes wild-type (WT) myocilin misfolding reminiscent of that observed for disease variants. Using two cellular models expressing WT myocilin, we show that the Ca2+ ATPase channel blocker thapsigargin inhibits WT myocilin secretion. Intracellular WT myocilin is at least partly insoluble and aggregated in the endoplasmic reticulum (ER), and stains positively with an amyloid dye. By comparing the effect of thapsigargin on WT myocilin to that on a de novo secretion-competent Ca2+-free variant D478S, we discern that non-secretion of WT myocilin is due initially to calcium dysregulation, and is potentiated further by resultant ER stress. In E. coli, depletion of calcium leads to recombinant expression of misfolded isolated WT OLF but the D478S variant is still produced as a folded monomer. Treatment of cells expressing a double mutant composed of D478S and either disease variants P370L or Y437H with thapsigargin promotes its misfolding and aggregation, demonstrating the limits of D478S to correct secretion defects. Taken together, the heterodinuclear calcium site is a liability for proper folding of myocilin. Our study suggests a molecular mechanism by which WT myocilin misfolding may contribute broadly to glaucoma-associated ER stress. This study explores the effect of calcium depletion on myocilin olfactomedin domain folding.


Subject(s)
Calcium , Glaucoma , Cytoskeletal Proteins , Escherichia coli/metabolism , Eye Proteins/chemistry , Eye Proteins/genetics , Eye Proteins/metabolism , Glaucoma/genetics , Glaucoma/metabolism , Glycoproteins , Humans , Mutation , Thapsigargin/pharmacology
12.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 4): 150-160, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35400667

ABSTRACT

Actophorin, which was recently tested for crystallization under microgravity on the International Space Station, was subjected to mutagenesis to identify a construct with improved biophysical properties that were expected to improve the extent of diffraction. First, 20 mutations, including one C-terminal deletion of three residues, were introduced individually into actophorin, resulting in modest increases in thermal stability of between +0.5°C and +2.2°C. All but two of the stabilizing mutants increased both the rates of severing F-actin filaments and of spontaneous polymerization of pyrenyl G-actin in vitro. When the individual mutations were combined into a single actophorin variant, Acto-2, the overall thermal stability was 22°C higher than that of wild-type actophorin. When an inactivating S2P mutation in Acto-2 was restored, Acto-2/P2S was more stable by 20°C but was notably more active than the wild-type protein. The inactivating S2P mutation reaffirms the importance that Ser2 plays in the F-actin-severing reaction. The crystal structure of Acto-2 was solved to 1.7 Šresolution in a monoclinic space group, a first for actophorin. Surprisingly, despite the increase in thermal stability, the extended ß-turn region, which is intimately involved in interactions with F-actin, is disordered in one copy of Acto-2 in the asymmetric unit. These observations emphasize the complex interplay among protein thermal stability, function and dynamics.


Subject(s)
Acanthamoeba , Weightlessness , Acanthamoeba/chemistry , Acanthamoeba/metabolism , Actins/metabolism , Crystallization , Crystallography, X-Ray
13.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35129590

ABSTRACT

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Subject(s)
Aqueous Humor/physiology , Consensus , Glaucoma/metabolism , Intraocular Pressure/physiology , Ocular Hypertension/metabolism , Trabecular Meshwork/metabolism , Animals , Disease Models, Animal , Glaucoma/physiopathology , Mice , Ocular Hypertension/physiopathology , Tonometry, Ocular
14.
Acta Crystallogr D Struct Biol ; 78(Pt 1): 91-103, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34981765

ABSTRACT

Homo sapiens adenosine deaminase 1 (HsADA1; UniProt P00813) is an immunologically relevant enzyme with roles in T-cell activation and modulation of adenosine metabolism and signaling. Patients with genetic deficiency in HsADA1 suffer from severe combined immunodeficiency, and HsADA1 is a therapeutic target in hairy cell leukemias. Historically, insights into the catalytic mechanism and the structural attributes of HsADA1 have been derived from studies of its homologs from Bos taurus (BtADA) and Mus musculus (MmADA). Here, the structure of holo HsADA1 is presented, as well as biochemical characterization that confirms its high activity and shows that it is active across a broad pH range. Structurally, holo HsADA1 adopts a closed conformation distinct from the open conformation of holo BtADA. Comparison of holo HsADA1 and MmADA reveals that MmADA also adopts a closed conformation. These findings challenge previous assumptions gleaned from BtADA regarding the conformation of HsADA1 that may be relevant to its immunological interactions, particularly its ability to bind adenosine receptors. From a broader perspective, the structural analysis of HsADA1 presents a cautionary tale for reliance on homologs to make structural inferences relevant to applications such as protein engineering or drug development.


Subject(s)
Adenosine Deaminase/metabolism , Adenosine Deaminase/chemistry , Adenosine Deaminase/deficiency , Animals , Catalysis , Cattle , Crystallography, X-Ray , Humans , Hydrogen-Ion Concentration , Mice , Models, Molecular , Molecular Structure , Primary Immunodeficiency Diseases/genetics , Protein Conformation , Receptors, Purinergic P1/chemistry , Receptors, Purinergic P1/metabolism
15.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 12): 452-458, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34866600

ABSTRACT

Actophorin, a protein that severs actin filaments isolated from the amoeba Acanthamoeba castellanii, was employed as a test case for crystallization under microgravity. Crystals of purified actophorin were grown under microgravity conditions aboard the International Space Station (ISS) utilizing an interactive crystallization setup between the ISS crew and ground-based experimenters. Crystals grew in conditions similar to those grown on earth. The structure was solved by molecular replacement at a resolution of 1.65 Å. Surprisingly, the structure reveals conformational changes in a remote ß-turn region that were previously associated with actophorin phosphorylated at the terminal residue Ser1. Although crystallization under microgravity did not yield a higher resolution than crystals grown under typical laboratory conditions, the conformation of actophorin obtained from solving the structure suggests greater flexibility in the actophorin ß-turn than previously appreciated and may be beneficial for the binding of actophorin to actin filaments.


Subject(s)
Acanthamoeba , Weightlessness , Acanthamoeba/chemistry , Acanthamoeba/metabolism , Actins/metabolism , Crystallization , Crystallography, X-Ray
16.
J Phys Chem Lett ; 12(37): 9020-9025, 2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34516127

ABSTRACT

Ribonucleotide reductase (RNR), which supplies the building blocks for DNA biosynthesis and its repair, has been linked to human diseases and is emerging as a therapeutic target. Here, we present a mechanistic investigation of triapine (3AP), a clinically relevant small molecule that inhibits the tyrosyl radical within the RNR ß2 subunit. Solvent kinetic isotope effects reveal that proton transfer is not rate-limiting for inhibition of Y122· of E. coli RNR ß2 by the pertinent 3AP-Fe(II) adduct. Vibrational spectroscopy further demonstrates that unlike inhibition of the ß2 tyrosyl radical by hydroxyurea, a carboxylate containing proton wire is not at play. Binding measurements reveal a low nanomolar affinity (Kd ∼ 6 nM) of 3AP-Fe(II) for ß2. Taken together, these data should prompt further development of RNR inactivators based on the triapine scaffold for therapeutic applications.


Subject(s)
Enzyme Inhibitors/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Ferrous Compounds/chemistry , Pyridines/chemistry , Ribonucleotide Reductases/metabolism , Thiosemicarbazones/chemistry , Enzyme Inhibitors/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Free Radicals/chemistry , Free Radicals/metabolism , Hydroxyurea/chemistry , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/metabolism , Ribonucleotide Reductases/antagonists & inhibitors , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
17.
Exp Eye Res ; 211: 108729, 2021 10.
Article in English | MEDLINE | ID: mdl-34400147

ABSTRACT

Myocilin, a modular multidomain protein, is expressed broadly in the human body but is best known for its presence in the trabecular meshwork extracellular matrix, and myocilin misfolding is associated with glaucoma. Despite progress in comprehending the structure and misfolding of the myocilin olfactomedin domain, the structure and function of full-length myocilin, and contextual changes in glaucoma, remain unknown. Here we expressed and purified milligram-scale quantities of full-length myocilin from suspension mammalian cell culture (Expi293F), enabling molecular characterization in detail not previously accessible. We systematically characterized disulfide-dependent and -independent oligomerization as well as confirmed glycosylation and susceptibility to proteolysis. We identified oligomeric states with glycosylation sites that are inaccessible to enzymatic removal. Low-resolution single particle 2D class averaging from conventional transmission electron microscopy imaging confirms an extended arrangement of tetramers, truncated products consistent with dimers, and a higher-ordered state consistent with octamer. Taken together, our study reveals new myocilin misfolded states and layers of intrinsic heterogeneity, expands our knowledge of olfactomedin-family proteins and lays the foundation for a better molecular understanding of myocilin structure and its still enigmatic biological function.


Subject(s)
Cytoskeletal Proteins/chemistry , Eye Proteins/chemistry , Glycoproteins/chemistry , Trabecular Meshwork/metabolism , Animals , Blotting, Western , Cell Line , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/ultrastructure , Eye Proteins/metabolism , Eye Proteins/ultrastructure , Gene Expression , Glycoproteins/metabolism , Glycoproteins/ultrastructure , Glycosylation , Humans , Microscopy, Electron, Transmission , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Processing, Post-Translational , Proteomics , Transfection
18.
J Biol Chem ; 297(3): 101067, 2021 09.
Article in English | MEDLINE | ID: mdl-34384785

ABSTRACT

Recombinant antibodies with well-characterized epitopes and known conformational specificities are critical reagents to support robust interpretation and reproducibility of immunoassays across biomedical research. For myocilin, a protein prone to misfolding that is associated with glaucoma and an emerging player in other human diseases, currently available antibodies are unable to differentiate among the numerous disease-associated protein states. This fundamentally constrains efforts to understand the connection between myocilin structure, function, and disease. To address this concern, we used protein engineering methods to develop new recombinant antibodies that detect the N-terminal leucine zipper structural domain of myocilin and that are cross-reactive for human and mouse myocilin. After harvesting spleens from immunized mice and in vitro library panning, we identified two antibodies, 2A4 and 1G12. 2A4 specifically recognizes a folded epitope while 1G12 recognizes a range of conformations. We matured antibody 2A4 for improved biophysical properties, resulting in variant 2H2. In a human IgG1 format, 2A4, 1G12, and 2H2 immunoprecipitate full-length folded myocilin present in the spent media of human trabecular meshwork (TM) cells, and 2H2 can visualize myocilin in fixed human TM cells using fluorescence microscopy. These new antibodies should find broad application in glaucoma and other research across multiple species platforms.


Subject(s)
Cytoskeletal Proteins/immunology , Epitopes/immunology , Eye Proteins/immunology , Glycoproteins/immunology , Leucine Zippers/immunology , Animals , Antibodies/immunology , Cytoskeletal Proteins/metabolism , Epitopes/metabolism , Eye Proteins/metabolism , Female , Glaucoma/metabolism , Glycoproteins/metabolism , Humans , Male , Mice , Mice, Inbred BALB C , Molecular Conformation , Protein Conformation , Protein Domains/immunology , Recombinant Proteins/immunology , Reproducibility of Results , Trabecular Meshwork/metabolism
19.
Hum Mutat ; 42(8): 903-946, 2021 08.
Article in English | MEDLINE | ID: mdl-34082484

ABSTRACT

Rare variants of the olfactomedin domain of myocilin are considered causative for inherited, early-onset open-angle glaucoma, with a misfolding toxic gain-of-function pathogenic mechanism detailed by 20 years of laboratory research. Myocilin variants are documented in the scientific literature and identified through large-scale genetic sequencing projects such as those curated in the Genome Aggregation Database (gnomAD). In the absence of key clinical and laboratory information, however, the pathogenicity of any given variant is not clear, because glaucoma is a heterogeneous and prevalent age-onset disease, and common variants are likely benign. In this review, we reevaluate the likelihood of pathogenicity for the ~100 nonsynonymous missense, insertion-deletion, and premature termination of myocilin olfactomedin variants documented in the literature. We integrate available clinical, laboratory cellular, biochemical and biophysical data, the olfactomedin domain structure, and population genetics data from gnomAD. Of the variants inspected, ~50% can be binned based on a preponderance of data, leaving many of uncertain pathogenicity that motivate additional studies. Ultimately, the approach of combining metrics from different disciplines will likely resolve outstanding complexities regarding the role of this misfolding-prone protein within the context of a multifactorial and prevalent ocular disease, and pave the way for new precision medicine therapeutics.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Cytoskeletal Proteins , Eye Proteins/chemistry , Eye Proteins/genetics , Glaucoma/genetics , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/metabolism , Glycoproteins , Humans , Mutation , Virulence
20.
J Phys Chem B ; 125(20): 5200-5209, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33978414

ABSTRACT

Modulating fluorescent protein emission holds great potential for increasing readout sensitivity for applications in biological imaging and detection. Here, we identify and engineer optically modulated yellow fluorescent proteins (EYFP, originally 10C, but renamed EYFP later, and mVenus) to yield new emitters with distinct modulation profiles and unique, optically gated, delayed fluorescence. The parent YFPs are individually modulatable through secondary illumination, depopulating a long-lived dark state to dynamically increase fluorescence. A single point mutation introduced near the chromophore in each of these YFPs provides access to a second, even longer-lived modulatable dark state, while a different double mutant renders EYFP unmodulatable. The naturally occurring dark state in the parent YFPs yields strong fluorescence modulation upon long-wavelength-induced dark state depopulation, allowing selective detection at the frequency at which the long wavelength secondary laser is intensity modulated. Distinct from photoswitches, however, this near IR secondary coexcitation repumps the emissive S1 level from the long-lived triplet state, resulting in optically activated delayed fluorescence (OADF). This OADF results from secondary laser-induced, reverse intersystem crossing (RISC), producing additional nanosecond-lived, visible fluorescence that is delayed by many microseconds after the primary excitation has turned off. Mutation of the parent chromophore environment opens an additional modulation pathway that avoids the OADF-producing triplet state, resulting in a second, much longer-lived, modulatable dark state. These Optically Modulated and Optically Activated Delayed Fluorescent Proteins (OMFPs and OADFPs) are thus excellent for background- and reference-free, high sensitivity cellular imaging, but time-gated OADF offers a second modality for true background-free detection. Our combined structural and spectroscopic data not only gives additional mechanistic details for designing optically modulated fluorescent proteins but also provides the opportunity to distinguish similarly emitting OMFPs through OADF and through their unique modulation spectra.


Subject(s)
Fluorescent Dyes , Lasers , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...